tammikuu 2018

Täydellinen kuunpimennys on ohi – näe se täällä uudelleen

Tänään 31. tammikuuta tapahtui täydellinen kuunpimennys. Sitä on etukäteen hehkutettu monilla ylisanoilla, mutta Suomessa pimennys näkyi valitettavasti huonosti – itse asiassa Etelä-Suomessa täydellistä vaihetta ei nähty lainkaan.

Siksipä pimennystä kannattaa katsoa netissä, etenkin nyt jälkikäteen. Tällä Griffith -observatorion videolla on pimennys kokonaisuudessaan, eli koko nelituntisen videon katsomalla pääsee vielä tunnelmaan hyvin. Kiireiset voivat mennä suoraan kohtaan noin 1 tuntia ja 55 minuuttia, kun täydellinen vaihe on juuri alkamassa.

Suomessa tätä pimennystä voitiin seurata kunnolla vain aivan pohjoisimmassa Suomessa, missä täydellinen vaihe näkyi (sään salliessa) alusta loppuun saakka. Utsjoella Kuu nousi koillisesta horisontista kello 14.40, eli 12 minuuttia ennen täydellisen vaiheen alkua. 

Mitä pitemmälle tullaan etelään, sitä huonommin pimennys näkyi: Kokkola–Lappeenranta-linjan lounaispuolella täydellinen vaihe ehti jo päättyä ennen kuin Kuu ennätti nousemaan. Eteläisessä Suomessa oli siis tyytyminen pelkkään osittaiseen pimenemiseen.

Helsingissä Kuu nousi lähes minuutilleen (klo 16.30) samaan aikaan kuin Aurinko laskee (klo 16.31), joskin pilvet haittasivat pahasti näkymistä.

Osittainen vaihe päättyi kello 17.11 eli vajaat kolme varttia kuunnousun jälkeen.

(Juttua on päivitetty pimennyksen aikana ja sen jälkeen)

Keittiöstä tuttu kurkuma petraa muistia ja mielialaa

Ke, 01/31/2018 - 12:33 By Markus Hotakainen

Monilla mausteilla on todettu olevan erilaisia terveydentilaa edistäviä ominaisuuksia. Yksi niistä on keltainen kurkuma, jonka vaikutuksia on äskettäin tutkittu Kalifornian yliopistossa Los Angelesissa (UCLA).

Kurkuman keskeinen ainesosa on kurkumiini eli diferoyylimetaani, kemiallinen yhdiste, jonka on jo aiemmin havaittu estävän tai ainakin hidastavan diabeteksen puhkeamista. Sillä on myös tulehdusta hillitseviä ja antioksidanttisia ominaisuuksia.

Tällä kertaa tutkittiin kurkuman tai tarkemmin sanottuna nimenomaan kurkumiinin vaikutusta muistiin ja mielialaan. Lähtökohtana tutkimukselle on ollut havainto, että Intiassa, missä kurkumaa käytetään ahkerasti ruoanlaitossa, esiintyy iäkkäämmillä ihmisillä suhteellisen vähän Alzheimerin tautia.

Testiryhmään kuului neljäkymmentä iältään 50–90-vuotiasta ihmistä, joilla on todettu lieviä muistihäiriöitä. He nauttivat kahdesti päivässä 90 milligramman annoksen kurkumiinia puolentoista vuoden ajan. Vertailun vuoksi osa sai pelkkää lumelääkettä.

Jokaiselle tehtiin ennen lääkityksen aloittamista kognitiivinen testi, joka toistettiin kokeen aikana puolen vuoden välein. Kokeen alussa ja lopussa mitattiin myös veren kurkumiinipitoisuus.

Lisäksi 30 vapaaehtoisen aivoja tutkittiin positroniemissiotomografialla eli PET-kuvauksella, jolla kartoitettiin Alzheimerin tautiin liittyvien beeta-amyloidin ja tau-proteiinin esiintymistä kokeen alussa ja lopussa.

Kurkumiinia nauttineet koehenkilöt kokivat muistinsa ja mielialansa parantuneen kokeilun aikana. Muistitesteissä heidän tuloksensa paranivat keskimäärin 28 prosenttia ja PET-kuvauksen perusteella beeta-amyloidin ja tau-proteiinin määrä oli vähäisempi kuin lumelääkettä saaneilla. Joitakin haittavaikutuksiakin esiintyi, sillä muutamalla koehenkilöllä oli vatsakipuja ja pahoinvointia.

"Toistaiseksi ei ole varmuutta siitä, miten kurkumiini tarkkaan ottaen vaikuttaa aivoihin, mutta se saattaa liittyä aineen kykyyn lieventää aivojen tulehdustilaa, jonka on todettu kytkeytyvän sekä Alzheimerin tautiin että vakavaan masennukseen", toteaa tutkimusta johtanut Gary Small.

Jatkossa tutkimus on tarkoitus toistaa laajemmalla ryhmällä, johon otetaan myös lievästä masennuksesta kärsiviä. Tavoitteena on selvittää, vaihteleeko kurkumiinin vaikutus esimerkiksi sen mukaan, kuinka suuri geneettinen riski on sairastua Alzheimerin tautiin.

Tutkimuksesta kerrottiin UCLA:n uutissivuilla ja se on julkaistu American Journal of Geriatric Psychiatry -lehdessä.

Kuva: Markus Hotakainen

Osittain täydellinen kuunpimennys extraherkuilla

Ti, 01/30/2018 - 06:50 By Markus Hotakainen

Englanninkielisillä nettisivustoilla on hehkutettu, kuinka keskiviikkona 31.1. on ”Super Blue Blood Moon”. Tarjolla on siis varsinainen taivaallinen tripla, ainakin jos hehkutuksiin on uskominen.

Kuu on "super", kun se on täydenkuun aikaan lähimpänä – tai melkein lähimpänä – Maata. Kuu näyttää silloin halkaisijaltaan nelisentoista prosenttia suuremmalta ja kolmanneksen kirkkaammalta kuin ollessaan ratansa etäisimmässä pisteessä. 

Tätä "superiutta" on kuitenkin vaikea huomata, sillä täysikuuta on hankala vertailla itsensä kanssa. Siksi aiheesta kohkaaminen superkuusta toiseen on vähän pöljää.

"Blue Moon" on puolestaan toinen samaan kuukauteen osuva täysikuu. 2. tammikuuta oli edellinen ja 31. päivä on taas täysikuu. Tästä on seurauksena, että helmikuussa ei ole ollenkaan täysikuuta, sillä seuraava on vasta 2. maaliskuuta. Ja myös maaliskuussa on "Blue Moon", sillä 31.3. Kuu on jälleen täysi.

"Blood Moon" viittaa täydelliseen kuunpimennykseen, jonka aikana Kuu muuttuu väriltään verenkarvaiseksi. Syynä on se, että pimennyksen täydellisenkin vaiheen aikana Maan heittämään varjoon lankeaa ilmakehän läpi kulkenutta ja taittunutta valoa. 

Siniset värisävyt siroavat ilmakehässä voimakkaasti, joten valo on väriltään punaista. Samasta syystä nouseva ja laskeva Aurinko on punainen tai oranssi.

Edellisen kerran kaikki kolme ilmiötä sattuivat samaan aikaan vuonna 1866. Tosin silloin ei vielä tunnettu käsitettä "superkuu", sillä sitä alettiin käyttää vasta 1970-luvun lopulla. 

 

 

Suomessa keskiviikkoinen kuunpimennys ei näy kovin kummoisesti. Täydellistä vaihetta pääsee ihastelemaan alusta loppuun vain aivan pohjoisimmassa Suomessa. Utsjoella Kuu nousee koillisesta horisontista kello 14.40, vain 12 minuuttia ennen täydellisen vaiheen alkua, joten se on vielä hyvin matalalla.

Etelää kohti tultaessa pimennys on Kuun noustessa yhä pidemmällä ja Kokkola–Lappeenranta-linjan lounaispuolella täydellinen vaihe ehtii jo päättyä ennen kuin Kuu kurkistaa horisontin takaa. Eteläisessä Suomessa on siis tyytyminen pelkkään osittaiseen pimenemiseen.

Helsingissä Kuu nousee lähes minuutilleen (klo 16.30) samaan aikaan kuin Aurinko laskee (klo 16.31), joten oikealta reunaltaan tummentunut Kuu on vielä varsin valoisalla taivaalla. Osittainen vaihe päättyy jo kello 17.11 eli vajaat kolme varttia kuunnousun jälkeen. Jos jotain aikoo nähdä, on syytä hakeutua avoimelle tai korkealle paikalle, jolta on mahdollisimman esteetön näkymä koillisen suuntaan. Ja toivoa pilvetöntä taivasta.

Viime elokuussa oli osittainen kuunpimennys, joka oli samaan tapaan käynnissä Kuun noustessa. Monin paikoin kävi kuitenkin niin, että alareunastaan tummentunut Kuu kohosi taivaanrannan takaa melkein suoraan pilvien taakse – kuten Nuuksion Pitkäjärven rannalta otetusta kuvasta näkyy. 

Kovin lupaavilta eivät sääennusteet tälläkään kertaa näytä, mutta kannattaa kuitenkin kyttäillä hämärtyvälle taivaalle.

Kuva: Markus Hotakainen

Suomen metsien pinta-ala kasvanut roimasti sadassa vuodessa

Ma, 01/29/2018 - 13:50 By Jarmo Korteniemi

Interaktiivinen kartta näyttää, kuinka maankäyttö on Euroopassa muuttunut vuosikymmenten aikana. Toisin kuin voisi olettaa, metsiä on lähes kaikkialla aiempaa enemmän.

Suomen ja koko Euroopankin metsät ovat vallanneet runsaasti tilaa viljelysalueilta ja ruohostomailta. Asia käy ilmi hollantilastutkimuksesta, jossa perehdyttiin runsaan sadan vuoden aikana (1900–2010) Euroopassa tapahtuneisiin maankäytön muutoksiin.

Tutkimuksen perusteella Suomen metsien pinta-ala on kasvanut 110 vuodessa noin viidenneksellä. Metsien lisääntyminen on keskittynyt Pohjois- ja Itä-Suomeen, jossa aiemmin aukkoiset metsät ovat kasvaneet tiheämmiksi. Samalla viljelysmaiden ja ruohostoalueiden alat ovat kumpikin vähentyneet noin kolmanneksella. Länsirannikolla ja Etelä-Suomessa entiset viljelysmaat taas ovat muuttuneet ruohostoiksi tai pusikoituneet.

Kartoilta erottaa myös väestön liikkeet. Kaupungit vievät nykyään tuplasti enemmän alaa kuin pitkin maaseutua levittäytyneet pikkupitäjät satakunta vuotta aiemmin. Tuolloin maassamme eli 2,5 miljoonaa asukasta, ylivoimaisesti suurin osa maaseutumaisissa kunnissa. Sadassa vuodessa väkimäärä tuplaantui ja kylät kuihtuivat.

Muutoksia kokeneet alueet löytyvät alta mustalta pohjalta.

Euroopan tasolla trendi on sama, aiemmin hakatut metsien rippeet ovat laajentuneet lähes kaikkialla. Merkittävää vähenemistä näkyy vain harvoissa paikoissa, esimerkiksi Korsikalla.

Tutkijoiden mukaan pelkästään vuoden 1950 jälkeen on jotakuinkin Ranskan kokoisen alueen käyttö muuttunut merkittävästi Euroopassa. Yhteenlaskettu alue on laajuudeltaan lähes 700 000 km2, eli 15 prosenttia koko tutkimusalasta. Muutos on ollut erityisen suurta Etelä-Eurooopassa. Syiden oletetaan piilevän metsien laajamittaisessa istuttamisessa toisen maailmansodan jälkeen, kaupungistumissa, rautaesiripun romahtamisessa, sekä Euroopan unionin yhtenäisen maatalousjärjestelmän käyttöönotossa.

Suomessa merkittävimmät syyt lienevät maa- ja metsätalouden muutokset. Taannoiset pienviljelyalueet ovat nyttemmin korvautuneet tehokkaammalla tuotannolla, jossa samalta alalta saadaan vähemmällä väkimäärällä aiempaa paljon parempi tuotto. Metsien määrää on lisännyt myös aikoinaan suosittu soiden kuivatus, polttopuun korvaaminen muilla energianlähteillä, sekä puurakentamisen huomattava väheneminen.

Luonnolle hyvä vai huono?

Metsien laadusta tai esimerkiksi ekosysteemien hyvinvoinnista tutkimus ei kuitenkaan kerro mitään. Puupelloksikin kutsuttu tyypillinen suomalainen talousmetsä ei lajirikkaudellaan päätä huimaa. Sama koskee myös tehotuotannossa olevia peltoja.

Ruohosto- ja viljelysmaiden hupeneminenkin on uhka. Perinteisen maanviljelyksen tarjoamat elinympäristöt ovat Suomessa jo pahasti uhanalaisia. Perinnebiotoopit ovat pitkään olleet maan monipuolisimpia eliöyhteisöjä. Lisää tästä aiheesta aiemmassa jutussamme.

Maankäyttöluokittain eroteltu muutos vuosien 1900 ja 2010 välillä.

Tutkimuksessa käytettiin erityisen monipuolista HILDA-mallia, jolla voidaan yhdistellä monenlaisia historiallisia aineistoja toisiinsa. Mukana on esimerkiksi ilmakuvia, vanhoja karttoja, tietosanakirjoja sekä kansallisia tilastoja. Tuloksena syntyi jotakuinkin Euroopan unionin kattava interaktiivinen kartta, jossa maankäytön muutoksiin voi perehtyä hyvinkin tarkasti.

Maankäyttö jaoteltiin tutkimuksessa kuuteen yleiseen luokkaan: metsiin, ruohostomaihin, viljelyksiin, asutuskeskuksiin, vesistöihin sekä muihin alueisiin. Luokkien sisällä on paljon vaihtelua. Esimerkiksi "ruohostomaat" pitänevät sisällään monenlaisia avoimia ei-viljeltyjä alueita, kuten avosoita, luonnonniittyjä ja jopa tunturikoivikkoa. "Muut alueet" taas käsittävät Suomessa ainoastaan Ylä-Lapin tundran ja paljakan.

Asiasta kertoi Suomessa ensimmäisenä Maaseudun Tulevaisuus.

Artikkelin lähteinä käytetty sivustoa GeoInformatie-sivustoa sekä kolmea tutkimusartikkelia (2013, 2014, 2015, joista kaksi tuoreinta on maksumuurien takana).

Jutussa näkyvät kuvat ovat muokattuja kuvankaappauksia karttapalvelusta.

Suorana labrasta 5/2018: Paavo Niskala & fuusioenergiaa

Ma, 01/29/2018 - 09:33 By Toimitus
Paavo Niskala

Tällä viikolla @suoranalabrasta -twiitit tulevat Aalto-yliopiston Teknillisen fysiikan laitokselta ja niitä lähettää Paavo Niskala, eli @paavi. Hän on plasmafyysikko, joka viimeistelee parhaillaan väitöskirjaa fuusioenergiasta.

Paavo valmistui Aallosta diplomi-insinööriksi vuonna 2014 ja väittelee näillä näkymin kesällä tohtoriksi. 

Aiheenaan hänellä ovat fuusioplasmat, joiden käyttäytymistä hän mallintaa tietokonesimulaatioiden avulla.

"Erityisesti kiinnitän huomiota lämmön ja polttoainehiukkasten häviöitä muokkaavaan turbulenssin ja virtausten vuorovaikutukseen. Käytän pääasiassa täällä Aallossa kehitettyä simulointityökalua, jota ajetaan supertietokoneilla Suomessa ja maailmalla. Lisäksi teen yhteistyötä pietarilaisten tutkijoiden kanssa. Rahoituksen tutkimukselle saan eurooppalaisen fuusiotutkimuksen kattojärjestöltä Eurofusionilta."

Tutkijat ovat jo vuosikymmeniä pyrkineet kehittämään fuusioreaktoria Maan päälle. Perusidean tiedetään toimivan, sillä Aurinko tuottaa valoa nimenomaan yhdistämällä kevyitä alkuaineita, vaikka sen helposti näin suomalaisen talven pimeydessä unohtaakin. 

Suurin huomio Suomessa ja maailmalla kiinnittyy tällä hetkellä niin kutsuttuihin tokamakeihin, joissa polttoaine kuumennetaan plasmaksi, joka puolestaan pyritään pitämään koossa donitsia muistuttavalla magneettisella pullolla. Tälle periaatteelle pohjautuu muun muassa eteläiseen Ranskaan rakennettava massiivinen koelaitos Iter.

"Fuusiotutkimuksen keskeisimpiin haasteisiin kuuluu tällä hetkellä magneettisen koossapidon tehokkuus", selittää Paavo. 

"Polttoaine kuumennetaan aina 150 miljoonaan asteeseen asti, mutta osa lämmpöstä ja hiukkasista vuotaa väistämättä kohti reaktorin seiniä. Suurimman osan häviöistä aiheuttaa turbulenssi, joka syntyy varattujen hiukkasten ja sähkömagneettisen kenttien monimutkaisen vuorovaikutuksen tuloksena. Jos lämpö saadaan pysymään reaktorissa riittävän hyvin, pitäisi plasman niin sanotusti syttyä ja alkaa tuottaa riittävästi energiaa fuusioreaktioiden ylläpitämiseen ilman merkittävää ulkoista kuumennusta."

Paavon tärkein kiinnostuksen kohde on juuri tämä turbulenssi, mitä hän tutkii massiivisten tietokonesimulaatioiden avulla. Näihin hän käytää luonnollisesti supertietokoneita.

"Mallintamisesta  tekevät haastavaa millimetreistä metreihin ja nanosekunneista sekunteihin vaihtelevat mittaskaalat. Toisaalta kaoottisesti käyttäytyvällä plasmalla on taipumusta itsejärjestäytymiseen: turbulenssi synnyttää virtauksia, jotka auttavat vaimentamaan sitä samaa turbulenssia. Näiden kahden vuorovaikutukselle onkin haettu analogiaa muun muassa peto- ja saaliseläinten välisestä dynamiikasta."

Tutkimuksen ohella Paavo osallistuu oppilaiden ohjaamiseen sekä opettamiseen. Hän on myös kirjoittanut tutkimusaiheestaan artikkelin Eurofusionin Fusion in Europe -julkaisuun pari vuotta sitten. 

Mitä tulee muuhun kuin työhön, niin Aallon ulkopuolella Paavo harrastaa salilla huhkimista, salibandya, vaihtelevista aihesta lukemista sekä videopelien pelaamista että niistä kirjoittamista. Hän on myös kirjoitellut ja tehnyt podcasteja suomalaisiin pelimedioihin. 

"Niin, ja sain Guinnessin maailmanennätyksen maailman pisimmästä Halo-maratonista syksyllä 2015."

Montako varvasta on hevosella? Tutkijoiden mukaan viisi.

La, 01/27/2018 - 15:33 By Markus Hotakainen

Uljas hevonen on kavioeläinten lahkoon ja hevoseläinten heimoon kuuluva nisäkäs, jolla on tunnetusti vain yksi sarveiskynnen eli kavion suojaama varvas. Vai onko varpaita sittenkin useampia?

Tutkijoita on pitkään askarruttanut, miten viisivarpaisista kantamuodoista on kehittynyt yksivarpainen nykyhevonen ja missä vaiheessa neljä "ylimääräistä" varvasta katosi. Tuoreen tutkimuksen mukaan ne eivät välttämättä olekaan kadonneet.

Hevosen kavio on kehittynyt evoluution myötä nykyiseen muotoonsa, kun elinolosuhteet muuttuivat ja asuinseuduiksi valikoituivat maapohjaltaan kovat ruohotasangot. Alkuhevosilla varpaiden määrä oli vähentynyt jo neljään ja esimerkiksi 40 miljoonaa vuotta sitten eläneellä Mesohippuksella niitä oli enää kolme.

New York teknillisen korkeakoulun tutkijaryhmä on Nikos Solouniaksen johdolla päätynyt siihen, että kyseessä ei ole surkastuma, jonka seurauksena varpaiden lukumäärä olisi pienentynyt vaan pikemmin sulautuma: kaikki viisi varvasta olisivat edelleen hevosen kaviossa.

Jo aiemmin on arveltu, että hevosen ainoana pidetyn varpaan molemmin puolin on jäänteet kahdesta muinaisesta varpaasta, mutta uuden tutkimuksen mukaan se ei ole koko totuus. Kaksi muutakin varvasta – tai ainakin niiden jäänteet – ovat edelleen havaittavissa kavion harjanteina.

Solounias huomasi viitteitä hevosen kavion todellisesta kehityksestä jo parikymmentä vuotta sitten, kun hän vuonna 1999 tutki kahdeksan miljoonaa vuotta sitten eläneen Hipparionin fossiilisia jalanjälkiä Laetolin alueella Tansaniassa.

Alkeellisella hevosella arveltiin olleen vain kolme varvasta, mutta jalkojen jättämissä painaumissa erottui merkkejä siitä, että varpaita olisikin ollut viisi, mutta laitimmaiset niistä olisivat sulautuneet yhteen.

"Perinteisesti on ajateltu, että hevosen kehitys on kulkenut nelivarpaisesta kolmivarpaiseen ja lopulta yksivarpaiseksi. Uudet löydökset osoittavat, että nykyinen hevonen ei todellisuudessa olekaan yksivarpainen eivätkä sen kantamuodot olleet kolmi- tai nelivarpaisia", toteaa tutkimukseen osallistunut Melinda Danowitz.

Tulokset eivät perustu pelkästään fossiiliaineistoon, vaan myös nykyhevosten tutkimukseen. Hevosen sikiöllä on todettu olevan jaloissa enemmän verisuonia ja hermoja kuin yksivarpaisella eläimellä pitäisi olla.

Jos hevonen olisi aidosti yksivarpainen, kussakin jalassa pitäisi olla vain kaksi valtimoa ja laskimoa sekä kaksi hermokimppua. Danowitzin mukaan niitä on kuitenkin viisi tai seitsemän, mikä viittaa siihen, että jaloissa on viiden varpaan aihiot, jotka eivät kehity "valmiiksi" varpaiksi.

Tutkimuksesta kerrottiin New Yorkin teknillisen korkeakoulun uutissivustolla ja se on julkaistu Royal Societyn Open Science -nettilehdessä.

Kuva: Markus Hotakainen

Viikonloppuna bongataan taas pihalintuja

Pe, 01/26/2018 - 13:37 By Markus Hotakainen

Suomen suurin lintutapahtuma eli Pihabongaus on jälleen tulevana viikonvaihteena. Siihen voi osallistua kuka tahansa tarkkailemalla tunnin ajan lintuja omalla pihalla tai muulla paikalla.

Tapahtuman järjestävän BirdLifen tiedotteen mukaan "pihabongauksen tavoitteena on innostaa tarkkailemaan talvisia lintulaudan ja kotipihan lintuja sekä kiinnostumaan lähiluonnosta".

Osallistujan ei tarvitse olla lintuharrastaja eikä kyseessä ole kilpailu, joten yhdenkin linnun havaitseminen riittää. Pihabongauksen tavoitteena on kerätä tietoa Suomen talvisesta linnustosta ja sen muutoksista.

Pihabongaukseen osallistuminen on helppoa ja vaivatonta. Tarkkaile lintuja kotipihallasi tai muussa sopivassa paikassa tunnin ajan joko lauantaina tai sunnuntaina. Kirjaa muistiin tunnistamasi lintulajit ja laske montako yksilöä kutakin lajia on enimmillään näkyvissä samaan aikaan (näin vältät laskemasta samoja yksilöitä moneen kertaan). 

 

 

Havainnot voi ilmoittaa 2. helmikuuta saakka BirdLifen sivuille avattavalla lomakkeella tai postikortilla osoitteeseen BirdLife Suomi, Annankatu 29 A 16, 00100 Helsinki. Postikortissa on lintuhavaintojen lisäksi oltava havainnoijan nimi ja osoite, havaintopaikan osoite, päivämäärä ja kellonaika sekä havainnoijien määrä.

Lintulajien tunnistukseen saa apua omalta sivulta, mistä voi tulostaa talvisia pihalintuja esittelevän julisteen. Sieltä löytyy myös tulostettava havaintolomake sekä tietoa talvilinnuista ja niiden ruokinnasta. Kannattaa tarkistaa, että lintulaudan tarjonta on runsasta ja monipuolista!

Viime vuonna Pihabongaus järjestettiin jo 12. kerran ja osallistujia oli yli 20 000 noin 15 000 paikassa ympäri maan. Osallistujien kesken arvotaan tälläkin kertaa lintuaiheisia palkintoja.

Lisätietoa tapahtumasta löytyy BirdLifen sivuilta.

Kuva: Markus Hotakainen

Diskopallosateliitti lensi juuri Suomen yli ja tulee pian uudelleen

Pe, 01/26/2018 - 12:02 By Jari Mäkinen
Humanity Star

Viime viikonloppuna ensilentonsa tehnyt pieni Electron -kantoraketti vei taivaalle paitsi pari satelliittia, niin myös yllätyksen: noin metrin kokoisen pallon, jonka tehtävänä on tuikkia taivaalla.

Humanity Star on hiilikuidusta ja 65 erittäin hyvin valoa heijastavasta paneelista tehty pallo, joka kiertää planeettamme kerran noin 90 minuutissa. 

Kyseessä on Electron-raketin kehittäneen Rocket Lab -yhtiön ja sen vetäjän Peter Beckin kaunis hanke, jonka tarkoituksena on saada ihmiset ympäri maailman katsomaan taivaalle. Kun pallo kiertää maapalloa, heijastaa se Auringon valoa alaspäin ja näkyy tähtien joukossa kirkkaana, eteenpäin radallaan liikkuvana pisteenä.

 

Vaikka ajatus on kovin kaunis, on hanketta syystäkin arvosteltu, koska se lisää avaruusromun määrää ja myös tuo taivaalle yhden kirkkaan valopisteen lisää.

Tähtitieteilijät ovat jo nyt harmissaan siitä, että yhä useammin satelliitit tuikkaavat heidän kaukoputkiinsa kesken kiinnostavien havaintojen.

Toisaalta Humanity Star ei lisää mitenkään erityisesti romua tai valosaastetta, koska kumpaakin avaruudessa on jo paljon. Koska se on varsin kevyt ja kookas sekä matalalla kiertoradalla, se putoaa itsekseen alas vielä tämän vuoden aikana (oletettavasti joskus lokakuussa) ja tuhoutuu täysin ilmakehässä. 

Sen sijaan hanke on hyvä herätyskello: kun ja jos satelliittien lähettäminen avaruuteen tulee hyvin edulliseksi ja yleisesti, lisääntyy avaruuteen lähetettävien kappaleiden määrä roimasti. Lähiavaruuteen tulee silloin paljon pieniä satelliitteja, jotka eivät pysty muuttamaan rataansa itsenäisesti. Osa niistä myös rikkoontuu, jolloin niihin ei edes saada yhteyttä. 

Tästä voi tulla ongelma varsin pian, joten kaikenlaisten hyvääkin tarkoittavien hyödyttömien kappaleiden lähettämistä avaruuteen tulisi rajoittaa. 

Näkyy myös Suomesta

Mutta Humanity Star ei sinällään ole vielä ongelma, ja siksi sitä kannattaakin ihailla taivaalla. Se kiertää Maata napojen kautta, se näkyy kaikkialla maapallolla silloin, kun se on radallaan paikan päällä ja Aurinko osuu sen pintaan sopivasti.

Suomen päältä se lentää muutamia kertoja vuorokaudessa, viimeksi nyt perjantaina juuri ennen puoltapäivää.

Vaikka sää olisi hyvä, ei sitä päivällä pysty näkemään, mutta yöllä ylilennon tehdessään sen huomaa selvästi kirkkaana pisteenä taivaalla. 

Alla oleva kartta näyttää missä Humanity Star on tällä hetkellä; rataa seuraamalla eteenpäin voi nähdä muun muassa seuraavan Suomen-ylilennon ajan. Paras lähipäivien ylitys tapahtuu (Helsingin horisontin mukaan) sunnuntaina 11. helmikuuta klo 7.12 aamulla, jolloin valo taivaalla on varsin kirkkaana noin puolentoista minuutin ajan.

Samalla – ja myös sitä ennen – voi samoin havaita, että taivaalla on jo nyt varsin paljon kirkkaitakin satelliitteja sekä kauniita tähtiä, tähdenlentoja, planeettoja, Kuu ja kenties revontulia!

Jos kartta tai rata eivät näy kunnolla, ne saa näkyviin suoraan n2yo.com -seurantapalvelussa.

Harvinainen vika iski Ariane-rakettiin – toimitti satelliitit avaruuteen, mutta sai hengityksen lamaantumaan

Pe, 01/26/2018 - 11:34 By Jari Mäkinen

Eurooppalainen Ariane 5 -kantoraketti laukaisi viime yönä Suomen aikaa kaksi satelliittia avaruuteen. Tällä kerralla kaikki ei kuitenkaan mennyt suunnitelman mukaisesti, sillä yhteys rakettiin menetettiin kesken lennon. Onneksi raketti teki työnsä ilman lennonjohtoakin ja satelliitit nyt ovat avaruudessa.

Vaikka 1990-luvulla Ariane 5 koki muutaman takaiskun, on euroraketti osoittautunut sen jälkeen erittäin luotettavaksi työjuhdaksi. Ennen eilistä laukaisua se oli lentänyt 82 kertaa ilman ongelmia, joten jos lento olisi epäonnistunut, niin kyseessä olisi ollut ensimmäinen huti sitten vuoden 2002.

Nyt tosiaan näyttää siltä, että rakettien laukaisusta vastaava Arianespace pääsi pelkällä säikähdyksellä; jos lento olisi epäonnistunut, olisi tälle vuodelle suunniteltu tiivis laukaisuohjelma ollut vaarassa, koska onnettomuuden syy olisi pitänyt selvittää ennen seuraavaa lentoa. Laukaisuihin ja tulevien rakettien valmisteluihin olisi tullut kuukausien viive.

Tämä olisi ollut erityisen hankalaa siksi, että tänä vuonna Ariane 5 tulee laukaisemaan avaruuteen tavallisten kuormien lisäksi kohti Merkuriusta lähtevän BepiColombo -luotaimen sekä Hubblen avaruusteleskoopin seuraajan James Webb Space Telescopen. Näistä JWST voidaan laukaista milloin vain, mutta Merkuriukseen täytyy lähteä ensi lokakuussa – tai lento lykkääntyisi jälleen kerran myöhemmäksi.

Mitä lennolla tapahtui?

Ariane 5:n lento VA541 nousi lentoon suunnitellusti eilen 25.1. klo 19.20 paikallista aikaa Kouroussa, eli klo 00.20 Suomen aikaa. 

Lento sujui normaalisti aina siihen saakka, kunnes raketin ensimmäinen vaihe lopetti toimintansa ja irtosi. Kun aikaa lentoon lähdöstä oli kulunut hieman yli yhdeksän minuuttia, aloitti toisen vaiheen moottori toimintansa ja raketin lähettämän telemetriasignaalin piti tulla kuuluviin maa-asemalla. 

Näin ei käynyt, vaan raketin toinen vaihe pysyi mykkänä. Lennonjohto ei pystynyt seuraamaan lentoa ja siksi epäilykset lennon epäonnistumisesta alkoivat nopeasti kasvaa.

Lennonjohdolla tosin ei ollut tässä vaiheessa enää mitään muuta tekemistä kuin lennon seuranta, sillä raketti teki työtään omien tietokoneidensa ja niihin tallennetun lentoprofiilin mukaisesti. 

Ja Ariane nähtävästi hoiti hommansa itsenäisesti loppuun saakka, sillä myöhemmin kumpikin satelliitti irtosi omille radoilleen ja niiden omistajat saivat niihin yhteydet.

Toistaiseksi ei kuitenkaan tiedetä vielä – ainakaan virallisesti – kuinka täsmälleen SES 14- ja  Al Yah 3 -tietoliikennesatelliitit ovat niille aiotuilla radoillaan. 

Ne piti viedä niin sanotulle supersynkroniselle radalle, mikä on noin 9000 kilometriä normaalia korkeammalla.

Tietoliikennesatelliitit, joiden lopullinen kiertorata on noin 36 000 kilometrin korkeudessa päiväntasaajan päällä, viedään yleensä raketilla "vain" radalle, joka vie niitä kohti lopullista rataansa.  Satelliitit siirretään tältä omin pienten moottoriensa avulla lopulliselle radalle.

Tavallista korkeampi siirtorata kuitenkin vähentää satelliittien omaa työtä ja säästää siten polttoainetta varsinaiseen toimintaan. Voi olla, että tällä kerralla säästö jääkin varsin vähäiseksi, mikäli satelliitit joutuvat korjaamaan rataansa epätarkan laukaisun vuoksi.

Vaikka Ariane 5 näyttääkin toimineen suunnitellusti, tutkitaan telemetrian katkeaminen varmasti perin pohjin ennen seuraavaa lentoa. Tämä kuitenkaan ei todennäköisesti aiheuta suuria paineita laukaisuohjelman suhteen. 

Ihmisporaa kehittävä suomalaisfirma sai rahoitusta

To, 01/25/2018 - 12:10 By Toimitus
Kirurgi käyttämässä Surgify- turvaporanterää simuloidussa leikkauksessa. Kuva: Surgify

Aalto-yliopiston ja HUS:n neurokirurgian klinikan välisenä yhteistyönä tehdystä tutkimuksesta syntynyt startup-yritys on saanut miljoonan euron rahoituksen kirurgisen poranterän viimeistelyyn ja myyntiluvan hakemiseen Euroopassa.

Surgifyn kehittämä teknologia ehkäisee kirurgisten porien aiheuttamia hermo- ja verisuonivaurioita leikkausten aikana. Teknologia on mahdollista yhdistää vaivattomasti nykyisin käytössä oleviin kirurgisiin poriin, eikä sen käyttö vaadi kirurgilta ja hoitohenkilökunnalta ylimääräistä harjoittelua. Neurokirurgian lisäksi innovaatiota voidaan hyödyntää selkäkirurgiassa, sekä tulevaisuudessa myös ortopediassa ja hammastoimenpiteissä.

”Teknologia on herättänyt suurta kiinnostusta sairaaloissa ja kirurgien keskuudessa sekä Suomessa että kansainvälisesti. Vierailimme esimerkiksi hiljattain Bostonissa Harvard Universityn opetussairaaloissa, joissa vastaanotto oli erittäin positiivinen”, kertoo yrityksen toimitusjohtaja Visa Sippola ja jatkaa:

”Uskomme, että kehittämämme teknologian avulla on mahdollista säästää tulevaisuudessa ihmishenkiä. Pystymme myös tuomaan selkeitä säästöjä kirurgian alalle – nykyisten kirurgisten porien aiheuttamat komplikaatiot aiheuttavat maailmanlaajuisesti yli 4 miljardin euron kustannukset joka vuosi.”  

Teknologia on kehitetty alun perin Aalto-yliopiston ja HUS:n neurokirurgian klinikan välisenä yhteistyönä.

”Olemme ylpeitä Aalto-yliopiston kulttuurista, joka tukee vahvasti yrittäjyyttä ja innovaatiotoimintaa. Menestyksekkäiden startup-yritysten takaa löytyy aina paljon kokeiluja, epäonnistumisia ja onnistumisia, jotka lopulta johtavat toimivaan innovaatioon”, sanoo innovaatioasiantuntija Panu Kuosmanen Aalto-yliopiston tutkimus- ja innovaatiopalveluista.

Surgifyn tavoitteena on saada turvaporanterä markkinoille vuoden 2019 aikana. Yritys aikoo käynnistää tuotteen myynnin ensin Suomessa ja muissa Pohjoismaissa, minkä jälkeen liiketoimintaa on tarkoitus laajentaa nopeasti kansainvälisille markkinoille.

Startupin toiseen rahoituskierrokseen osallistuivat suomalaisen pääomasijoittaja Butterfly Venturesin lisäksi belgialainen Cascara Ventures, ruotsalainen Merkatura AB (Andreas Bunge) ja saksalainen FRIIH GmBH (Dr. Michael Friebe). Rahoitus on tarkoitus käyttää Surgify:n kehittämän neurokirurgisen poran viimeistelyyn ja myyntiluvan hakemiseen Euroopassa.

*

Juttu on Aalto-yliopiston tiedote käytännössä suoraan lainattuna.

Arkista aherrusta avaruudessa

Otsikkokuva
Body D8

Scott ja Mark Kelly ovat ainoat astronauttikaksoset. Siinä lienee suurin syy siihen, että Scott valittiin vuoden mittaiselle lennolle Kansainväliselle avaruusasemalle. Hänen kosmonauttikolleganaan oli kiertoradalla samaan aikaan ja yhtä pitkään Mihail Kornijenko

Kokemuksistaan ennätyspitkällä lennolla sekä päätymisestään astronautiksi ja vuodeksi avaruuteen Scott Kelly on kirjoittanut kirjan Endurance, jonka nimi on kunnianosoitus Ernest Shackletonille ja hänen laivalleen. Kellyllä oli asemalla mukanaan Alfred Lansingin kirja Shackletonin retkikunnan uskomattomasta matkasta.

Uskomaton on ollut myös Kellyn matka, jota hänen yhdessä Margaret Lazarus Deanin kanssa kirjoittamansa kirja kuvaa erinomaisen hyvin. Liki 400-sivuisesta teoksesta jää päällimmäisenä mieleen, että avaruudessa on oikeasti vaarallista, mutta samalla aika tylsää. Vaikutelmaan vaikuttaa tietysti lennon kesto – ja se, että Kelly oli ollut aiemminkin pitkään ISS:llä ja sitä ennen kahdesti sukkulalennolla. Avaruus oli hänelle entuudestaan tuttu paikka.

Silti lukijalle voi tulla yllätyksenä, että avaruuslennot eivät enää aikoihin ole olleet samanlaisia tarunhohtoisia sankaritekoja kuin 1960-luvulla, vaan suurelta osin hyvin arkista työtä. Työpaikka vain sattuu olemaan 400 kilometrin korkeudessa mutkikkaassa rakennelmassa, joka kiertää Maata lähes 29 000 kilometrin tuntinopeudella.

Kirjan keskeisiä teemoja on painottomuus, jonka vaikutusten tutkiminen oli pitkän lennon päätarkoitus. Siinä suhteessa Scott Kelly oli erinomainen "koekaniini". Hän oli viettänyt aiemmin jo puoli vuotta painottomuudessa, joten vuoden kestävän asemapestin aikana voitiin tutkia, eroaako kokonaisen vuoden mittainen altistus puolen vuoden vaikutuksista.

Lisäksi maanpinnalla oli oivallinen vertailukohde, Scottin geneettinen kaksoiskappale Mark. Kummallekin tehtiin vuoden mittaan lukemattomia kokeita ja lennon jälkeen niitä jatkettiin – ja jatketaan edelleen. Osa painottomuuden vaikutuksista on ohimeneviä, mutta osa ei. 

Ennemmin tai myöhemmin toteutuvien Mars-lentojen kannalta on tärkeä tietää, missä kunnossa astro-, kosmo- tai taikonautit ovat päästessään vihdoin perille. Tätä seikkaa Kelly korostaa tutkimuksen motiivina moneen otteeseen. Paikoin tuntuu siltä, että vakuuttaakseen myös itsensä ajoittain mielettömältä tuntuvan urakan mielekkyydestä.

Koska Kelly on tehnyt avaruuslentoja sekä avaruussukkulalla että Sojuz-aluksella, kirjasta käyvät hauskallakin tavalla ilmi erot amerikkalaisten ja venäläisten tekniikassa, koulutuksessa ja ylipäätään suhtautumisessa avaruuslentojen tekemiseen. Eroavaisuuksia riittää niin pienemmissä kuin isommissakin asioissa.

Kun esimerkiksi ISS-asemaa kohti oli tulossa uhkaavan kookas avaruusromun kappale, amerikkalaisten puolella tuli kiire sulkea tiiviisti kaikki moduulien väliset luukut. Venäläiset eivät suotta vaivautuneet, koska heidän näkemyksensä mukaan mahdollisen törmäyksen sattuessa olisi yhdentekevää, ovatko luukut kiinni vai auki. Asema olisi joka tapauksessa tuhon oma.

Paitsi että Kelly kuvaa avaruuden arkea avoimesti, hän on rehellinen myös omien ajatustensa ja uransa varrella tekemiensä ratkaisujen suhteen. Entinen taistelu- ja sukkulalentäjä ei ollut innoissaan asemapestistä, sillä se merkitsi siirtymistä lentolaitteen ohjaimista koelaitteistojen ääreen. Ja samalla joutumista mitä kummallisimpiin tehtäviin hampaiden paikkaamisesta vessan purkamiseen ja kasaamiseen.

Asemalla vietetyn vuoden kanssa tasavertaisen kiinnostava on Scott Kellyn koko ura: miten ylivilkkaasta ja tapaturma-alttiista lapsesta tuli laiska opiskelija, joka Tom Wolfen The Right Stuff -kirjan luettuaan vihdoin löysi itselleen päämäärän. 

Kukaan tuskin kuvittelee, että astro- ja kosmonauttien vähälukuiseen joukkoon pääsisi helposti, mutta Kellyn kohdalla voi melkein puhua ihmeestä. Tai ei se oikeastaan ole ihme, se vain on vaatinut ylen määrin sinnikkyyttä, ahkeruutta ja väistämättä myös itsekkyyttä, josta hänen läheisensä ovat joutuneet kärsimään. Myös sen Kelly tunnustaa auliisti.

Yhteensä 520 vuorokautta avaruudessa on jättänyt Scott Kellyyn jälkensä, joista osa ei ehkä katoa koskaan, osa selviää mahdollisesti vasta vuosien kuluttua. Tuleva Mars-miehistö joskus 2020-luvulla saa kuitenkin olla kiitollinen hänen tekemistään uhrauksista. 

***

Scott Kelly: Endurance – A Year in Space, a Lifetime of Discovery. Doubleday, 2017. 387 s. ISBN 978-0-857-524-751

Kirjailijan nimi
Scott Kelly
Kirjan nimi

Endurance

Kategoria

Tutkijat ko­put­tavat oviin ja et­sivät vaik­ka nii­tyl­tä – videolla näytteitä

Ungarinyinin, torlakin ja vepsän kieliä halutaan tutkia ja elvyttää, kun se vielä on mahdollista. Niitä yhdistää kolme asiaa: puhujat ovat iäkkäitä, puhuttu muoto on vahvempi kuin kirjoitettu ja ne ovat uhanalaisia.

 

Laura SiragusaStef Spronck ja Max Wahlström ovat lingvistejä ja Helsingin yliopiston humanististen tieteiden ohjelman tutkijatohtoreita, jotka tutkivat katoamisvaarassa olevia kieliä.

He kaikki ovat kiinnostuneita kielten ja kulttuurin suhteesta, ja siihen pääsee käsiksi pienten alkuperäiskielten tutkimuksen kautta. 

Yllä olevalla videolla tutkijat puhuvat omituisia kieliä, ja alla olevassa, Helsingin yliopiston tiedotuksen julkaisemassa Niina Niskasen, Piia Purran ja Suvi Uotisen kokoamassa teksteissä he kertovat enemmän tutkimuskohteestaan.

Max Wahl­ström: Van­hat nai­set ovat tor­la­kin tut­ki­jan par­hai­ta haas­ta­tel­ta­via

"Joskus käy niin, että informantteja on lähdettävä etsimään niityiltä vuohipaimenesta", kertoo Max Wahlström. 

"Kun heidät saadaan tupaan, alamme kysellä vanhoista asioista, ja samalla tallentuu murre."

Torlakki on eteläslaavilainen siirtymämurre serbian, makedonian ja bulgarian välissä. Sitä puhutaan Itä-Serbiassa ja Bulgariassa. Wahlström tutkii Timok-joen laaksossa Serbiassa puhuttavaa torlakin varieteettia.

"Serbia on kieliopiltaan lähellä esimerkiksi venäjää. Serbiassa on muun muassa samat sijamuodot kuin venäjässä. Makedoniassa ja bulgariassa sijoja ei ole, ja kielet ovat lisäksi kehittäneet esimerkiksi määräisen artikkelin sekä säilyttäneet muita slaavilaiskieliä monimutkaisemman verbijärjestelmän. Merkittävä syy torlakissa tapahtuneisiin kielenmuutoksiin ovat pitkäkestoiset kielikontaktit vuosisatojen aikana."

"Torlakissa on piirteitä paitsi serbiasta myös makedoniasta ja bulgariasta, ja siksi sen tutkiminen on niin kiinnostavaa. Torlakin avulla on mahdollista päästä kurkistamaan siihen, miten kielenmuutokset tapahtuvat."

Torlakin puhujien määrästä ei ole tarkkaa tietoa, sillä jotkut puhuvat murretta vain vähän, toiset enemmän. Uhanalainen murre kuitenkin on, ja siksi sen tallentamisella ja tutkimisella on kiire.

Max Wahlström tekee tutkimusta yhdessä Serbian Tiedeakatemian Balkanologisen instituutin kanssa. Yhdessä instituutin tutkijoiden kanssa kerätään sekä kielitieteellistä että kansatieteellistä aineistoa. Tämä tapahtuu kiertämällä Timokin alueen syrjäisissä kylissä ja koputtelemalla talojen oviin.

"Balkanilla on helppo tehdä kenttätöitä", kiittelee Wahlström. 

"Ihmiset ovat avoimia ja ottavat meidät hyvin vastaan. Etsimme jututettaviksi erityisesti vanhoja naisia, sillä he taitavat murteen miehiä paremmin. Vanhat miehet ovat kaikki käyneet Jugoslavian armeijan ja oppineet siellä serbokroaattina tuolloin tunnetun yleiskielen. Naiset ovat pysytelleet kotikylissä, ja he myös elävät miehiä pidempään."

Stef Spronck: Un­ga­ri­nyin osoit­taa, mi­ten kie­li on pal­jon enem­män kuin kie­liop­pi

Alkuperäiskielten tutkija huomaa konkreettisesti, miten kieli ja kulttuuri kietoutuvat yhteen. Stef Spronck antaa esimerkin.

"Länsimaiselle kielentutkijalle lause ’istun siskoni vieressä’ on yleensä vain kokoelma sanoja ja kielioppia", Spronck sanoo.

"Tyypillisesti kielentutkija ryhtyy tutkimaan kieltä pyytämällä puhujia kääntämään tämän tyyppisiä yksinkertaisia lauseita. Ungarinyinin kielen puhujalle tämä lause on kuitenkin perustavanlaatuisesti outo."

Syy: ngarinyinin kulttuurissa vastakkaista sukupuolta olevat sisarukset eivät ole läheisesti tekemisissä keskenään, joten ungarinyiniä puhuva mies todennäköisesti vastaisi kysymykseen: ’ei niin voi sanoa’.

Hollantilainen lingvisti lähti vuonna 2008 Australiaan tekemään tohtorintutkintoaan. Häntä kiehtoi se, miten kulttuuri ja kielioppi kietoutuvat yhteen Australian kielissä.

Spronck oli kotimaassaan opiskellut yleistä kielitiedettä ja slaavilaisia kieliä, mutta Australiassa hän päätyi sattumalta ngarinyin-kansan ja heidän alkuperäiskielensä ungarinyinin pariin. Kielen käyttäjät elävät nykyisin Länsi-Australiassa Derbyn kylässä ja sen lähettyvillä.

Ungarinyinin kieli on vakavasti uhanalainen. Sen puhujia on alle viisikymmentä, ja kieli elää lähinnä harvojen, jo iäkkäiden käyttäjien puheessa. Kielen puhujat, jotka työskentelivät Spronckin kanssa kielen nauhoituksen parissa, toivoivat tarinoiden siirtyvän seuraaville sukupolville. He haluavat varmistua siitä, että ungarinyiniä voi kuulla myös tulevaisuudessa.

Ungarinyin on säilynyt vuosisatoja ilman kirjoitettua kieltä, ja osa vanhoista puhujista suhtautuu kirjoittamiseen varauksella.

Ungarinyin on säilynyt vuosisatoja ilman kirjoitettua kieltä, ja osa vanhoista puhujista suhtautuu kirjoittamiseen varauksella, sillä kielellä on vahvat perinteet nimenomaan puhuttuna kielenä.

Nuoremmat sukupolvet suhtautuvat kirjoitukseen työkaluna, jonka ansioista kieltä on helpompi jakaa ja se pysyy muistissa. Kielen puhujat ja kielitietieteilijät ovat kehitelleet useita tapoja kirjoittaa ungarinyiniä vuosien ajan, ja viettäessään aikaa ngarinyinien yhteisössä Spronck esitteli niitä työpajoissa ja keskustelutilaisuuksissa.

Spronck vietti lopulta Australiassa yli kuusi vuotta, sillä alkuperäiskansaan tutustuminen ja henkilökohtaisten suhteiden rakentaminen veivät aikaa. Spronckin työhön kuului kenttämatkoja, ihmisten haastattelua ja kielen dokumentointia ja kuvailua.

Australiassa on ollut parhaimmillaan 250 alkuperäiskieltä. Nyt niistä enää noin kymmenen on päivittäisessä käytössä. Eri puolilla Australiaa nousseet liikkeet tekevät työtä vanhojen alkuperäiskielten elvyttämiseksi.

Lau­ra Si­ra­gusa: Vep­säl­lä on toi­voa

Kun italialainen Laura Siragusa opiskelijana valitsi pääaineekseen venäjän, hän ei vielä aavistanut päätyvänsä pienen vepsän kielen pariin.

Hän sai ensi kontaktin suomalais-ugrilaisiin kieliin vaihto-opiskelijana Helsingissä ja palasi myöhemmin oppimaan lisää. Yksi hänen esikuvistaan on vepsäläinen tutkija ja aktivisti Zinaida Strogalschikova.

Viime elokuussa Suomeen saapunut Siragusa viihtyy Helsingissä hyvin: yhteistyömahdollisuuksia muiden alkuperäiskansatutkijoiden kanssa on paljon, koska kiinnostuksen kohteet ovat yhteisiä.

Itämerensuomalaisella vepsän kielellä on noin viisituhatta puhujaa. Vepsäläiseksi identifioituvia on Siragusan mukaan kuutisen tuhatta. Vepsää puhutaan Äänisjärven etelä- ja länsipuolella, ja se voi parhaiten Karjalan tasavallassa, jossa käynnistyi tarmokas elvytysliike 1980-luvulla. Siellä vepsä saa tukea paikallishallinnolta: on kirjallisuutta ja sanomalehtiä, tv ja radiokin toimivat. Sanastoa kehitetään aktiivisesti esimerkiksi koulumaailman käyttöön.

Muualla kylät ovat eristyneempiä ja tyhjenevät nuorista, potentiaalisista puhujista. Toisaalta kylissä kieli on läheisemmässä suhteessa perinteiseen ympäristöön ja arkeen. Vepsänkielinen musiikkitoiminta, kuten kuorot ja yhtyeet, voi hyvin.

Vaikka vepsällä on kirjakieli, myös puhutulla kielellä on Siragusan mukaan merkitystä. Kun kielellä on puhujia, se pysyy elävämpänä.

"Vepsäläiset itse ovat optimistisia kielensä tulevaisuudesta. He eivät halua uhrin asemaa. Vepsä selvisi jo sodasta, Stalinin terrorista ja Venäjän assimilaatiopolitiikasta. Toivoa siis on."

Kissanaaras on oikeatassuinen

Ke, 01/24/2018 - 10:44 By Toimitus
Kissa. Kuva: Flickr / Rachel Hobday

Suurin osa ihmisistä on oikeakätisiä. Mutta miten on kissojen kanssa? Tutkijoiden mukaan kissojen(kin) tassupreferenssi voi olla merkki stressinsietokyvystä.

Belfastissa, Pohjois-Irlannissa olevan Queen's Universityn tutkijat ovat kiehnänneet kissojen kanssa ihan toden teolla.

Tutkijat Louise McDowell, Deborah Wells ja Peter Hepper tutkivat 44 kissaa ja huomasivat, että ne eivät olleet yhtä tiukasti tottuneita käyttämään ensisijaisesti jompaa kumpaa etutassuaan.

Silti pieni ero löytyi: uroskissoille ei tassulla ollut juuri merkitystä, mutta naaraista selvästi suurempi osa oli oikeatassuisia. Tutkimus ilmestyi juuri Animal Behaviour -julkaisussa.

Merkittävää tutkimuksessa on se, että monissa aikaisemmissa eläimien "kätisyyttä" koskeneissa tutkimuksissa ovat kokeet olleet puolipakotettuja. Eläimille teetettiin siis testejä laboratorio-olosuhteissa tai vastaavissa, ja niiden reaktiot rekisteröitiin. Nyt kissoja tutkittiin kuitenkin niiden normaaleissa kotioloissa.

24 uroskissaa ja 20 naaraskissaa elivät ja tekivät temppujaan siis kuten tavallisesti, mutta huomaamattoman tarkkailun alaisina.

 

Eläinten luontainen "kätisyys" tulee esiin mm. niiden astuessa portaita alas, kiipeävät esteiden yli tai tavoittelevat jotain asiaa käpälällään. 

Kissoille tehtiin kotioloissa myös pieniä "pakotuskokeita" siten, että niiden piti kurottaa ruokaa hankalan tornin sisältä.

Suurin osa kissoista käytti ensisijaisesti toista tassuaan: 73 % ruokaa tavoitellessa, 70 % astuessa alas ja 66 % kiivetessä kohteen yli. Tämä selvä "kätisyys" oli selvä luonteenpiirre, joka tuli esille niin luontaisissa kuin "pakotetuissa" toimissa.

Tulosten mukaan hieman yllättäen uroskissat olivat enemmän vasentassuisia ja naaraat oikeatassuisia.

Deborah Wells olettaa yliopistonsa tiedotteessa, että syy voi olla hormoneissa sekä eri sukupuolten välisissä pienissä hermostoarkkitehtuurin eroissa.

Hänen mukaansa on myös viitteitä siitä, että "kätisyys" kertoo eläimen stressinsietokyvystä. Vasenta raajaansa preferoivat tai ne, joille asialla ei ole merkitystä, ovat mahdollisesti hieman leväperäisempiä ja joutuvat helpommin mieron tielle, kun taas oikeaa raajaansa ennen kaikkea käyttävät ovat säntillisempiä. 

Olisi tosin jännää tietää, miten tätä on mitattu kissoilla. Wellsin mukaan kuitenkin koirista on havaittu aiemmin se, että "vasenkätiset" ovat yleensä pessimistisempiä kuin "oikeakätiset". 

Otsikkokuva: Flickr / Rachel Hobday

Osa TRAPPIST-1-planeetoista on todennäköisesti asuttavia

Ti, 01/23/2018 - 21:46 By Markus Hotakainen

Vuonna 2015 löytynyt TRAPPIST-1 on kaikkiaan seitsemän suunnilleen Maan kokoisen kiviplaneetan muodostama järjestelmä noin 40 valovuoden etäisyydellä Aurinkokunnasta. Planeetoista kolme kiertää tähteä elämänvyöhykkeellä ja nyt kahden niistä on todettu olevan mahdollisesti elämälle suotuisia.

"TRAPPIST-1 on hyvin vanha ja himmeä tähti, joten planeetat ovat melko viileitä. Niiden lämpötilat vaihtelevat noin 125 celsiusasteesta eli Venusta vilpoisemmasta noin -100 celsiusasteeseen eli Maan napa-alueita kylmempään", Planetary Science Instituten tutkija Amy Barr kertoo.

Planeetat kiertävät hyvin lähellä tähteä – uloimmankin etäisyys on alle 10 miljoonaa kilometriä – ja lisäksi soikeilla radoilla, joten tähden aiheuttamien vuorovesivoimien arvellaan kuumentavan niiden sisäosia.

Planeettojen kokoa ja massaa ei tunneta vielä kovin suurella tarkkuudella, joten niiden koostumus on osittain arvailua. Tutkijat ovat kuitenkin tehneet laskelmia erilaisilla oletuksilla planeettojen rakenteesta eli missä suhteissa niissä on vettä tai vesijäätä, kiveä ja rautaa.

Tulosten perusteella kolmas ja neljäs planeetta eli TRAPPIST-1d ja TRAPPIST-1e ovat elämän kannalta lupaavimpia.

Niiden pintalämpötila on sopivissa rajoissa, vuorovesivoimien vaikutus ei ole liian suuri eikä niiden sisuksista huokuva lämpö ole saanut aikaan voimakasta kasvihuoneilmiötä. d-planeetan pinnalla saattaa lainehtia jopa valtameri.

Samaisen tutkimuksen mukaan kahdella sisimmällä eli b- ja c-planeetoilla on todennäköisesti ainakin osittain sula vaippa, jota c-planeetalla peittää kiinteä kuori. Vuorovesivoimien seurauksena sen pinnalla saattaa esiintyä voimakkaita vulkaanisia purkauksia samaan tapaan ja samasta syystä kuin Jupiterin Io-kuun pinnalla.

Tuloksista kerrottiin Planetary Science Instituten tiedotteessa ja tutkimus on julkaistu Astronomy & Astrophysics -tiedelehdessä.

Kuva: NASA/R. Hurt/T. Pyle

Mittaustiedot kertovat karua tarinaa: maapallo kuumenee ennätyksellisesti

Ti, 01/23/2018 - 12:47 By Toimitus
Vuoden 2017 lämpötila-anomaliakartta

Viime vuoden ilmastotilastot julkistettiin viime viikon lopulla ja ne ovat aika karua luettavaa. Maailmanlaajuisesti lämpötilaennätyksiä ei lyöty, mutta vuosi oli suoraa jatkoa aiemmille ennätysvuosille ja piti sisällään paljon äärisääilmiöitä.

Viime viikkoina eri puolilla planeettaamme on hytisty ja hikoiltu harvinaisen kylmässä ja kuumassa. 

Ilmastotieteilijät katsovat maapalloa kuitenkin kokonaisuutena ja jokaista vuotta osana pitkää mittaushistoriaa. Tilastoissa vuosi 2016 on edelleen koko mittaushistorian kuumin, mutta sillä oli taakkanaan lämmittävä El Niño – joka vaikutti myös vuonna 2015. Viime vuonna tämä ilmiö ei ollut enää puskemassa lämpötilaa ylemmäs, ja kun tämä otetaan huomioon, oli 2017 mittaushistorian lämpimin El Niñoton vuosi.

Linja on selvä: maapallo lämpenee ja tekee niin nopeammin kuin tutkijat ovat laskeneet. Maailman ilmatieteellisen järjestön WMO:n mittausten mukaan 2017 oli 1,1°C lämpimämpi kuin keskimääräinen vuosi ennen teollistumista.

Vuoden 2016 luku oli 1,2°C ja 2015 1,1°C. Kaikkiaan kuusi mittaushistorian lämpimintä vuotta ovat olleet vuoden 2010 jälkeen.

"Pitkän ajanjakson lämpötilatrendi on kuitenkin tärkeämpi kuin yksittäisten vuosien lämpötilojen arviointi", sanoo WMO:n pääsihteeri Petteri Taalas järjestön tiedotteessa

"Lämpenemisen tahti näyttää vain kiihtyvän. Seitsemäntoista kahdeksastatoista kaikkein kuumimmasta vuodesta ovat olleet tällä vuosituhannella ja viimeisen kolmen vuoden aikana lämpötilan kasvu on ollut hyvin erikoista. Erityisesti pohjoiset alueet ovat lämmenneet, millä on laajoja ja pitkäkestoisia vaikutuksia meren pinnan tasoon ja sääilmiöihin muillakin maapallon alueilla."

Lämpötila-anomaliakartta
Kartta näyttää erot keskimääräisiin, pitkäaikaisiin lämpötiloihin. Koko maapallo on hyvin punainen, etenkin pohjoiset alueet. Grönlannin kaakkoispuolen vaalea "normaalilämpötilainen" alue johtuu suurelta osin siitä, että sulavista jäätiköistä valuu alueelle viileää vettä.

 

Viime vuoden tilastojen mukaan vuonna 2017 maapallon keskimääräinen lämpötila oli 0,46°C ylitse vuosien 1981-2010 keskiarvon 14,3°C.

Merijään määrä oli vuoden aikana myös hyvin vähäistä, sillä jää peitti paljon keskimääräistä pienempiä alueita napojen ympäristössä koko vuoden ajan, siis niin kesällä kuin talvellakin. Etelämantereen ympäristössä jääpeite oli ennätyksellisen pieni, kun taas Arktiksella kyseessä oli toiseksi pienin mitattu jäänpeitto.

2017 oli La Niña -vuosi

Kolme viime vuotta ovat näyttäneet myös selvästi sen, mikä vaikutus Tyynellä valtamerellä olevalla El Niño -ilmiöllä on. Tämä ajoittain syntyvä ilmiö lämmitti selvästi vuosia 2015 ja 2016, mutta ilmiö heikkeni jo vuoden 2016 lopussa. 

Yleensä El Niñoa seuraa vastaavanlainen, mutta viilentävä La Niña -ilmiö. Näin tapahtuikin vuonna 2017, jolloin La Niña vaikutti viilentävästi globaaliin säätilaan vuoden alussa ja lopussa. Merkille pantavaa on kuitenkin se, että tällä kerralla La Niña on ollut olennaisesti tavallista heikompi.

Vuosi piti sisällään myös paljon voimakkaita äärisääilmiöitä, kuten hirmumyrskyjä, lämpöaaltoja, kylmiä kausia, kuivuutta ja tulvia.

 

 

Suhteellinen anomalia 2017
Vuosien keskimääräiset lämpötilat verrattuna vuosien 1981-2010 keskiarvoon. Punaiset ovat El Niñon lämmittämiä vuosia, siniset La Niñan viilentämiä ja harmaat neutraaleita.

Video: Jäähdytyslaitteisto keksittiin täällä, kuumassa Australiassa

Jäähdytystä jo vuodesta 1851!

 

Tiedetuubi vie paikkoihin, jotka ovat merkittäviä tieteen ja tekniikan kannalta. Nyt vuorossa on Geelong, Australia ja jäähdytyslaitteisto.

Jos nyt Australiassa on ennätyksellisen kuumaa, niin lämmintä siellä on ollut aikaisemminkin. Tästä aiheutui kovasti hankaluuksia etenkin lihakauppiaille, koska hyvä liha meni helposti piloille.

Etenkin ongelma oli suuri, kun lihaa laivattiin Eurooppaan: suuri osa lastista saattoi pilaantua matkan aikana. Siksi asialle piti tehdä jotain, ja ratkaisu oli tietysti jäähdytyslaitteisto. Video kertoo sen keksimisestä ja näyttää paikan, missä ensimmäinen mekaaninen jäähdytin hyrähti käyntiin.

Juttu lähetettiin aikanaan vuonna 2011 TV1:n Prisma Studiossa.

Eksoplaneetalla tuulee väärin

Ma, 01/22/2018 - 18:05 By Markus Hotakainen

CoRoT-2b on melko tyypillinen eksoplaneetta. Se on massaltaan 3,3 kertaa Jupiteria suurempi ja kiertää hieman Aurinkoa viileämpää tähteä runsaan neljän miljoonan kilometrin etäisyydellä. Yhteen kierrokseen menee aikaa vain 1,7 vuorokautta eli noin 42 tuntia.

Tähti itsessään on Kotkan tähdistön suunnassa noin 930 valovuoden etäisyydellä. Sen röntgensäteily on hyvin voimakasta ja tähteä kiertävän planeetan kaasukehästä arvioidaan haihtuvan säteilyn vaikutuksesta lähes viisi miljoonia tonnia ainetta joka sekunti.

Pieni etäisyys on myös nostanut planeetan lämpötilan yli 1 200 celsiusasteeseen, joten se on luokiteltu "kuumaksi Jupiteriksi". CoRoT-2b kääntää aina saman puolen kohti tähteä, joten lämpötila on noissa lukemissa vain päiväpuolella; yön puolella on jäätävä kylmyys.

Kaasumaisilla, lähellä tähteään kiertävillä eksoplaneetoilla esiintyy yleensä voimakkaita lännestä itään puhaltavia tuulia. Siksi niiden kaasukehän kaikkein kuumin kohta on yleensä jonkin verran itään suoraan kohti tähteä olevasta pisteestä.

"Olemme aiemmin tutkineet yhdeksää muuta 'kuumaa Jupiteria', hyvin lähellä tähteä kiertävää jättiläisplaneettaa. Jokaisen kaasukehässä tuulet puhaltavat teorian mukaisesti lännestä itään", kertoo Nicolas Cowan McGill-yliopistosta.

CoRoT-2b on kuitenkin poikkeus säännöstä. Sen kuumin kohta onkin tähteä kohti olevan pisteen länsipuolella.

"Tässä tapauksessa luonto teki meille tepposet. Tällä planeetalla tuulet puhaltavat väärään suuntaan. Tutkimalla sitä tarkemmin toivomme saavamme lisää tietoa 'kuumien Jupiterien' olemuksesta", Cowan sanoo.

Väärään suuntaan puhaltavat tuulet eivät ole ainoa CoRoT-2b-planeetan kummallisuus. Se on kuumempi kuin etäisyys tähdestä antaisi olettaa ja sen kaasukehä on "turvoksissa". Jälkimmäinen seikka on selitettävissä korkealla lämpötilalla, mutta arvioitua korkeampi lämpötila on toistaiseksi arvoitus.

Väärään suuntaan puhaltavat tuulet voisivat selittyä planeetan magneettikentällä. Jos kaasukehän ja magneettikentän välillä on vahva vuorovaikutus, se saattaa vaikuttaa myös tuuliin ja niiden suuntaan.

Toinen mahdollinen selitys on, että planeetan pyörimisliike ei olekaan "lukittunut". Se voi pyöriä niin hitaasti, että päivä on pidempi kuin vuosi. Silloin tuulten vallitseva suunta olisi idästä länteen eikä teorian mukaisesti lännestä itään.

Planeetan itäpuolta saattavat myös verhota pilvet, jotka tekevät siitä länsipuolta tummemman. Se olisi kuitenkin ristiriidassa "kuumien Jupiterien";kaasukehän virtauksia koskevien mallien kanssa.

Outoon löytöön johtaneet havainnot tehtiin infrapuna-alueella toimivalla Spitzer-avaruusteleskoopilla. Arvoituksen ratkaisua voidaan joutua odottamaan siihen saakka, että Webb-avaruusteleskooppi saadaan avaruuteen ehkä ensi vuoden keväällä. Sen peili on pinta-alaltaan yli 40-kertainen Spitzerin peiliin verrattuna.

Löydöstä kerrottiin McGill-yliopiston tiedotteessa ja tutkimus on julkaistu Nature Astronomy -tiedelehdessä (maksullinen).

Kuva: Aldaron/CC BY-SA 3.0

Kiinalaisten hallinnasta päässyt avaruusasema tulee yhä nopeammin alaspäin – milloin ja minne se putoaa?

Ma, 01/22/2018 - 11:45 By Jari Mäkinen
Tiangong piirroskuvassa

Kerroimme jo viime lokakuussa siitä. miten Kiina on menettänyt yhteyden suureen avaruusasemaansa. Arvio sen putoamisajasta on nyt maaliskuun puoliväli, mutta putoamispaikasta ei vielä voi sanoa juuri mitään. Paitsi sen, minne se ei ainakaan putoa.

Noin 10 metriä pitkä ja massaltaan 8,5 tonnia oleva Tiangong-1 on kiinalaisten ensimmäinen avaruusasema. Se laukaistiin avaruuteen vuonna 2011 ja yksi miehittämätön alus sekä kaksi taikonauttien lentoa kävi sillä vierailemassa, ennen kuin aseman seuraaja Tiangong-2 lähetettiin kiertoradalle syksyllä 2016.

Ykkönen oli tarkoitus ohjata alas tuhoutumaan Maan ilmakehässä hallitusti Tyynen valtameren eteläosien päällä, sillä näin suuresta kappaleesta selviää varmasti palasia pinnalle saakka. Ilmakehän kitkakuumennus ei riittäne tuhoamaan esimerkiksi rakettimoottorien tai polttoainesäiliöiden tukevatekoisia osia tai suurimpia metallikappaleita, kuten vaikkapa telakointiportteja. 

Niiden rippeet ja koko joukko muita pieniä osia putoaa siis varmaankin pinnalle saakka.

Kun pudotus tehdään hallitusti, on eteläinen Tyyni valtameri valittu hautausmaa-alueeksi siksi, että siellä on erittäin vähän liikennettä ja se on suuri, turvallinen merialue. Esimerkiksi Kansainväliseltä avaruusasemalta lähtevät kertakäyttöiset rahtialukset ohjataan putoamaan sinne, ja myös avaruusasema Mir – suurin koskaan Maahan pudotettu rakennelma – suunnattiin putoamaan tuolle hautumaa-alueelle.

Ongelmana nyt kuitenkin on se, että Tiangong-1:n putoaminen ei tapahdu hallitusti. 

Kiinan avaruusohjelman lennonjohto menetti yhteyden asemaansa vuoden 2015 lopussa ja siitä alkaen asema on pudonnut alaspäin noin 160 metriä vuorokaudessa.

Sitä ennen aseman kiertorataa pidettiin jotakuinkin vakiona säännöllisin ratamuutoksin. Nyttemmin joidenkin raporttien mukaan aseman asentoa on voitu säätää, mutta sen rataa ei voi edelleenkään hallita.

Ratakorkeus pysyikin 330 kilometrin ja 390 kilometrin välissä vuoden 2015 loppuun, mutta sen jälkeen, kun kiertorataa ei ole voitu nostaa tarpeen tullen, on asema pudonnut koko ajan alaspäin.

Noillakin korkeuksilla on hieman ilmakehän rippeitä, jotka hidastavat ratanopeutta ja saavat asemaa (kuten kaikkia samoilla seuduilla Maata kiertäviä kappaleita) putoamaan alaspäin. Ja mitä alemmas asema putoaa, sitä nopeammin sen vajoaminen alaspäin tapahtuu.

Nyt tammikuun 2018 puolivälissä asema kiersi Maata keskimäärin 280 kilometrin korkeudessa ja sen rata putoaa koko ajan alaspäin noin 160 metriä vuorokaudessa.

Tarkkaa aikaa, jolloin asema putoaa Maahan ei kuitenkaan voida vielä sanoa, koska putoamisnopeus vaihtelee ja etenkin lennon viime hetket ovat vielä hyvin epävarmoja. Monet asiat, ennen kaikkea Auringon aktiivisuus, vaikuttavat ilmakehän yläosien tiheyteen, mikä vaikuttaa puolestaan siihen, kuinka nopeasti asema tulee alaspäin.

Vielä viime vuonna putoamisajaksi arveltiin tammikuun alkua, mutta nyt arvio on maaliskuun puoliväli – kenties jopa huhtikuun alku.

Kaavio putoamisajankohdasta

Kuten yllä oleva Euroopan avaruusjärjestön tekemä piirros näyttää, on aikaikkuna edelleen varsin laaja. 

Putoamispaikka pystytään arvioimaan vasta sen jälkeen, kun putoamisaika on paremmin tiedossa. Mitä lähemmäksi putoaminen tulee, sitä paremmin molempi voidaan arvioida.

Suomessa ei kuitenkaan ole syytä hätään, koska Tiangong 1:n rata ei kulje koskaan Suomen päältä; putoaminen voi tapahtua luonnollisesti vain alueella, jonka yli asema lentää radallaan. Vain radan korkeus muuttuu, ei sen niin sanottu inklinaatio, eli kaltevuus päiväntasaajan suhteen. 

Tiangongin tapauksessa se on 43°, eli vaaravyöhykkeessä ovat vain alueet välillä 43° etelään ja pohjoiseen päiväntasaajasta. Euroopassa tämä tarkoittaa alueita Ranskan eteläosista ja Italian pohjoisosista etelään.

Näilläkin alueilla maapallolla suurin osa pinnasta on meren peitossa, joten todennäköisyys sille, että asema putoaa asutulle alueelle on erittäin pieni. 

Jotakuinkin luotettava arvio putoamispaikasta saadaan noin vuorokautta ennen oletettua putoamista, mutta silloinkin alue on vielä varsin suuri. Käytännössä se, mitä silloin tiedetään, on edessä oleva rata, ja koska putoaminen tapahtuu sen kohdalla, on "vaara-alue" edelleen pitkä soiro ympäri maapallon. Vielä noin seitsemän tuntia ennen putoamista on epvarmuus useiden tuhansien kilometrien luokkaa. 

Tiangong-1 ei ole suurin hallitsemattomasti Maahan putoava kappale: se oli amerikkalainen avaruuasema Skylab, joka putosi vuonna 1979 Australian eteläosien autiomaahan ja mantereen lounaispuolella olevalle merialueelle. Skylabin kappaleita voi yhä edelleen löytää Nullarborin autiomaasta.

Suorana labrasta 4/2018: Lotta Kaila ja kasvinsuojeluaineita

Ma, 01/22/2018 - 09:40 By Toimitus

Tällä viikolla @suoranalabrasta tavoittelee puhdasta ruokaa puhtaasta ympäristöstä. Viikon twiittaaja Lotta Kaila (@lottakaila) tekee työtä sen eteen, että kasvinsuojeluaineet ja niiden käyttö on turvallista niin ihmisille kuin ympäristöllekin.

Jos Lotan twiittaushistoriaan on luottamista, liittyvät tämän viikon twiitit suurelta osin kasvinterveyteen, ruoantuotantoon ja mehiläisiin.

Mutta niissä on varmaankin pieni ero aiempiin vastaaviin @suoranalabrasta -hankkeessa olleisiin twiitteihin, sillä Lotta ei ole tutkija eikä hänen työnsä ole tutkimusta.

Sen sijaan hänen työhönsä kuuluu paljon tutkimusaineiston käsittelyä, koska Lotta on ylitarkastaja Turvallisuus- ja kemikaalivirastossa, eli Tukesissa, missä hänen tehtävänään on varmistaa, että kasvinsuojeluaineita markkinoidaan ja käytetään turvallisesti Tukesin hyväksymien käyttöehtojen mukaisesti. Vain tällöin ne ovat turvallisia ihmisille ja ympäristölle.

Ihmisten ja ympäristön turvallisuutta uhkaavat muun muassa laittomat valmisteet ja valmisteiden välinpitämätön käyttö. Laittomat valmisteet voivat aiheuttaa vaaraa, jos ne esimerkiksi sisältävät kiellettyjä aineita. Välinpitämätön kasvinsuojeluaineiden käyttö saattaa puolestaan aiheuttaa esimerkiksi kasvinsuojeluaineiden kulkeutumisen pellolta pientareelle pölyttäjien ja muiden hyötyeliöiden niskaan. Lotta tekee töitä tällaisen toiminnan ehkäisemiseksi.

Tukesin antamat hyväksymisehdot kasvinsuojeluaineille perustuvat tutkittuun tietoon, ja tämä liittää Lotankin työn vahvasti tutkimukseen.

Hyväksymisehtojen toteutumisen valvonta varmistaa osaltaan sen, että tutkimuksesta saatu tieto toteutuu käytännön elämässä.

Video: Elektroni nousi viimeinkin lentoon ja rynnisti avaruuteen

Uudenlainen, pieni kantoraketti onnistui viime yönä viemään kolme pientä satelliittia avaruuteen. Kyseessä oli Electron-raketin toinen koelento ja ensimmäinen onnistunut sellainen.

 

Kalifornialainen Rocket Lab onnistui laukaisemaan Electron -kantorakettinsa avaruuteen Uudessa Seelannissa sijaitsevalta laukaisupaikaltaan. "Still Testing" -nimen ("Testataan edelleen") saanut raketti nousi lentoon klo 14:43 paikallista aikaa, eli klo 3.43 viime yönä Suomen aikaa.

Laukaisu tapahtuu videolla kohdassa 14:59 minuuttia ja näyttää siitä eteenpäin koko lennon avaruuteen saakka.

Yhtiö on koettanut laukaista kaksivaiheista, komposiittirunkoista rakettiaan jo joulukuun 8. päivästä alkaen, mutta lentoa on lykätty eteenpäin moneen kertaan. Nyt kuitenkin kaikki sujui hyvin – kunhan laukaisua oli jälleen kerran siirretty hieman eteenpäin, koska kaksi alusta tuli luvatta raketin lentoradan alla olevalle varoalueelle.

Kyseessä oli jo toinen raketin lento. Edellinen yritys vuoden 2016 toukokuussa pääsi jo avaruuteen, mutta ei saavuttanut kiertoratanopeutta, koska lentoa seuranneella maa-asemalla tapahtuneesta viasta johtuen yhteys rakettiin menetettiin ja se jouduttiin tuhoamaan kaikelta varalta; kaikissa raketeissa on itsetuhojärjestelmä, joko joko automaattisesti tai valvojan toimesta erillisen kauko-ohjaussysteemin avulla tuhoaa raketin turvallisesti, jos raketti esimerkiksi kääntyy pois radaltaan tai on mahdollista, että siitä koituisi vaaraa ulkopuolisille. Myös tilanne, missä raketti ei ole hallinnassa, vaikka se näyttää lentävän hyvin, on syy tuhoamiseen.

Nyt kaikki kuitenkin sujui nähtävästi hyvin. Ensimmäinen vaihe toimi kaksi minuuttia ja 30 sekuntia, minkä jälkeen se irtaantui ja toisen vaiheen rakettimoottori syttyi. Kun lentoa oli kulunut kahdeksan minuuttia, oli toinen vaihe saavuttanut kiertoradan, jonka matalin piste oli 300 km:n korkeudessa ja korkein 500 km:n korkeudessa. Siellä mukana olleet kolme satelliittia irtosivat omille teilleen.

Rocket Lab on toinen pitkällä oleva amerikkalaisyhtiö, joka kehittää pieniä, mikro- ja minisatelliittien laukaisuun sopivia kantoraketteja. Toinen on Vector Space Systems, jonka kanssa muun muassa suomalainen Iceye on tehnyt laukaisusopimuksen.

Siinä missä Vector aikoo laukaista rakettejaan Alaskasta, käytää Rocket Lab Uudessa Seelannissa Māhian niemimaalle rakentamaansa laukaisukeskusta. Kummastakin paikasta voi lähettää kätevästi satelliitteja napojen kautta kulkeville radoille, eli siksi näiden ei täydy olla päiväntasaajalla.

Rocket Lab kertoo, että sillä on tekeillä parhaillaan viisi seuraavaa Electron -rakettia ja seuraava laukaisu on tiedossa vielä parin kuukauden aikana. Kunhan lennot pääsevät vauhtiin, aikoo yhtiö tehdä aluksi yli 50 laukaisu vuodessa ja lopulta noin 120 laukaisua vuodessa.

Kiinnostavaa yhtiön laukaisuissa on myös se, että niitä voi tilata ja ostaa suoraan netistä. Palvelu tosin lienee tässä vaiheessa vielä enemmänkin PR-henkistä, sillä tälläkin hetkellä sivuston mukaan paikkoja on edelleen tarjolla viime vuoden 2017 viimeiselle neljännekselle…

Mallit uusiksi? Mustan aukon magneettikenttä oletettua heikompi

Su, 01/21/2018 - 11:45 By Markus Hotakainen

Yigit Dallilarin johtama yli 60 tutkijan ryhmä on tehnyt havaintoja V404 Cygni -kaksoistähtijärjestelmään kuuluvan mustan aukon magneettikentästä. Sen voimakkuus osoittautui yllättäen selvästi oletettua vähäisemmäksi.

Kun jättiläistähti räjähtää supernovana ja sen sisimmät osat luhistuvat mustaksi aukoksi, jäljelle ei jää suunnattoman gravitaation lisäksi paljoakaan, ainoastaan aukon pyörimisliike ja magneettikenttä, jotka ovat perintöä edesmenneeltä tähdeltä.

Magneettikentän avulla on selitetty monille mustille aukoille tyypilliset ainesuihkut. Aukkoon syöksyvä aine kasautuu ennen katoamistaan kertymäkiekkoon, ja osa aineesta sinkoutuu kauas avaruuteen aukon pyörimisakselin suuntaisesti.

Mustan aukon magneettikenttä kiihdyttää sähköisesti varatut hiukkaset lähes valon nopeuteen.

V404 Cygni on kirkkaudeltaan muuttuva tähti, jossa tapahtuu aika ajoin purkauksia. Mustan aukon massa on noin kymmenkertainen Aurinkoon verrattuna ja sen seuralainen on hieman Aurinkoa kevyempi punainen jättiläistähti. Etäisyyttä kaksoistähdellä on noin 8 000 valovuotta.

 

 

Tutkijaryhmän havainnot kohdistuivat tämän niin sanotun mikrokvasaarin tuoreimpaan purkaukseen, joka tapahtui vuonna 2015. Tekemällä mittauksia näkyvän valon lisäksi myös infrapuna- radio- ja röntgenalueilla tähtitieteilijät selvittivät, miten purkaus käyttäytyi eri aallonpituuksilla. Siitä puolestaan pystyttiin määrittämään mustan aukon magneettikentän voimakkuus.

Koska kenttä osoittautui selvästi heikommaksi kuin nykyiset mallit antavat olettaa, liittyy mustien aukkojen suihkuihin todennäköisesti ilmiöitä, joita ei vielä tunneta.

Mustia aukkoja koskeva ymmärrys on tärkeää monella tavalla. Se kytkeytyy sekä tähdenmassaisten että supermassiivisten mustien aukkojen syntyyn ja sitä kautta myös galaksien ja koko maailmankaikkeuden kehitykseen.

"Jos palaamme ajassa taaksepäin maailmankaikkeuden varhaisvaiheisiin, alkuräjähdystä seuranneisiin hetkiin, mustien aukkojen ja galaksien välillä näyttää olleen hyvin vahva yhteys. Sekä mustien aukkojen että galaksien synty ja kehitys ovat läheisesti kytköksissä toisiinsa. Tuloksemme on yllättävä ja yritämme selvittää sen seuraukset", tutkimukseen osallistunut Chris Packham Texasin yliopistosta toteaa.

Tutkimuksesta kerrottiin Texasin yliopiston (San Antonio) uutissivuilla ja se on julkaistu Science-tiedelehdessä (maksullinen).

Kuva: University of Texas at San Antonio

Video: Tällainen on Afrikan suuri silmä, jättimäinen SALT-teleskooppi

Eräs näytteilleasettajista Helsingissä perjantaista sunnuntaihin auki olevilla Matkailumessuilla on Etelä-Afrikka, ja sen osastolla on myös tähtitiedettä: paikalla on SAAO:n, Etelä-Afrikan tähtitieteellisen observatorion Daniel Cunnama, joka kertoo ennen kaikkea Sutherladista, pikku kylästä, missä sijaitsee maailman suurimpien joukkoon lukeutuva teleskooppi. Ja kyllä, sitä pääsee myös turisti katsomaan – kuten koko upeaa Afrikan eteläistä tähtitaivasta.

 

On varmaankin yllättävää kuulla, että eräs maailman suurimmista tähtitieteellisistä havaintolaitteista sijaitsee Etelä-Afrikassa. Mutta näin vain on: SALT, Southern African Large Telescope on virallisesti maailman suurimpien optisten teleskooppien listalla numerolla neljä, mutta laskentatavan mukaan sijoitus voisi olla parempikin.

Kaikkien isojen teleskooppien pääpeilit on tehty osista, ja osien asettelutavasta riippuen eri teleskoopit voivat olla suurimpia tai eivät ole.

Onko kyseessä pinta-ala, reunoiltaan kulmikkaan peilin ääripisteiden välinen etäisyys vai peilin efektiivinen halkaisija – kokoa voidaan mitata eri tavoilla. Joka tapauksessa SALT on kuusikulmaisen peilinsä fyysisen suurimman halkaisijansa (11,1 metriä) mukaan suurin, mutta koska peilin käyttökelpoisen osan läpimitta on virallisesti 9,2 metriä, painuu se listalla neljänneksi. 

SALT sisäkuva
Kuusikulmainen pääpeili näkyy hyvin SALTin sisältä otetussa kuvassa.

 

Joka tapauksessa niin peiliä, teleskooppia kuin kaukoputkirakennusta paikan päällä katsoessa se on ensimmäinen mieleen tuleva sana "suuri".

Myös tähtitieteilijän kannalta se on suuri, sillä peilin valtava pinta-ala kerää paljon valoa ja sillä voidaan tehdä monia sellaisia tutkimuksia, jotka eivät luonnistu pienemmillä putkilla. SALT on erityisen hyvä tähtitieteellisten "videokuvien" ottamisessa, eli sillä voidaan ottaa monia peräkkäisiä hyvin lyhyen valotuksen kuvia heikoistakin kohteista.

Yksinkertainen ja edullinen jättiteleskooppi

Vuonna 2005 käyttöön otettu SALT tuli erittäin edulliseksi, sillä sen hintalapussa on vain noin 20 miljoonaa euroa. Vastaavan kokoinen La Palmalla oleva Suuri Kanariansaarten teleskooppi, GranTeCan tuli maksamaan noin 130 miljoonaa euroa.

Etelä-Afrikka maksoi itse vain noin kolmasosan hinnasta. Loppua varten kerättiin kasaan niin sanottu SALT-koalitio, johon kuuluu tutkimusorganisaatioita ja yliopistoja Saksasta, Puolasta, Yhdysvalloista, Brittein saarilta, Uudesta-Seelannista ja Intiasta.

Edullisuuteen vaikuttaa ennen kaikkea kolme asiaa. Ensinnäkin teleskoopin rakenteissa säästettiin siten, että teleskooppia ei voi kääntää pystysuunnassa lainkaan: se kököttää koko ajan 37 asteen kulmassa ylöspäin. Horisontin suunnassa sitä sen sijaan voi kääntää täyden ympyrän.

Kohteiden saaminen kuvaan ja niiden pitäminen kuvassa tutkimisen ajan hoidetaan teleskoopin päällä peilin polttopisteen tasossa olevalla seurantalaitteistolla. Kuuden akselin suhteen kääntyvän, sivu- ja pystysuunnassa liikkuvan laitteiston massa on tonneja ja se pystyy pitämään havaintolaitteen tarkalleen polttopisteessä pitkän aikaa. Kun seurantalaitteiston liikkeen ja teleskoopin pyörimisen laskee yhteen, voi SALT tehdä havaintoja hyvin suurelta alueelta taivasta.

SALT ja Linnunrataa
Linnunrata näkyy kauniisti eteläisen taivaan alla.

Koska tähtitaivas liikkuu, tulevat kaikki havaintopaikalta näkyvissä olevat tähtitaivaan kohteet aikanaan teleskoopin näkökenttään. Kaikkia kohteita voidaan siis havaita, mutta havaintojen teko vaatii suunnittelua – mitä joka tapauksessa täytyy tehdä tämän kokoisella ammattilaiskaukoputkella.

Toinen säästötapa oli teettää kaikki pääpeilin 91 täsmälleen saman kokoista pallopeiliosaa Moskovassa. Venäläisten optinen osaaminen on korkealla tasolla, mutta hinta etenkin 2000-luvun alussa oli vielä matala.

Kolmas, ei mitenkään vähäinen tekijä on Etelä-Afrikan yleisesti edullinen hintataso. Yllättäen maalla on myös varsin korkeaa teknistä osaamista, kuten esimerkiksi erittäin vaativa seurantakoneisto on suunniteltu ja tehty Etelä-Afrikassa. Apartheid-ajan kauppasaarron perintönä maa joutui kehittämään muun muassa omaa asetekniikkansa; seurantakoneisto käyttää tykkien suuntaamiseen käytettyä tekniikkaa.

Myös teleskoopin suojana oleva rakennus on eurooppalaisittain ajateltuna varsin yksinkertainen ja karkeasti tehty. Se kuitenkin on hyvä, kestävä, turvallinen ja toimiva.

SALT kuvattuna päivällä
SALTin tunnusomainen piirre on kupolin vieressä oleva pallopäinen torni. Sen päässä on laitteisto, jonka avulla pääpeilin yksittäiset peilit voidaan suunnata tarkasti polttopisteeseen. Pääpeilin muoto säädetään havaintoyön alussa ja tarpeen mukaan yön kuluessakin.

 

Suomalaista värinää teleskoopissa

SALTin isänä voi pitää uusiseelantilaissyntyistä tähtitieteilijä David Buckleytä, joka vastasi teleskoopin suunnittelusta ja puski hankkeen ideasta todellisuudeksi. Hän oli myös hakemassa teleskooppia varten tähtitieteilijöitä ulkomailta, koska eteläafrikkalaisin voimin ei maailmanluokan teleskooppia voitu operoida. Nyt tilanne on jo hieman toinen, sillä osin SALTin ansiosta on maan tähtitieteilijämäärä (ja -laatu) noussut olennaisesti.

Yksi rekrytoiduista oli Petri Väisänen, Helsingin yliopiston kasvatti, joka tosin lähti heti valmistuttuaan ulkomaille ja palasi Suomeen vain väittelemään sekä lähtemään uudelleen matkaan.

Väisänen oli kolmen vuoden ajan 1990-luvun lopussa Yhdysvalloissa, Bostonissa sijaitsevassa Harvard-Smithsonianin astrofysiikan tutkimuskeskuksessa ja lähti väiteltyään vuonna 2001 Chileen, Euroopan eteläiseen observatorioon ESOon. Siellä hän oli yksi suuren (ja silloin vielä uudenkarhean) VLT-teleskoopin tähtitieteilijöistä; vaikka havaintoja teleskoopilla tekevä tutkija olisikin paikalla teleskoopilla, ei VLT:n kaltaista kallista ja monimutkaista laitteistoa anneta vierailijoiden käyttöön, vaan ESO:n oma tähtitieteilijä vastaa operoinnista.

VLT otti myös eräänä ensimmäisenä teleskooppina käyttöön laajassa mittakaavassa etäkäytön ja palveluhavainnot, eli tutkijan ei täydy tulla paikan päälle Atacaman autiomaahan, vaan hän voi joko olla mukana etäyhteyden kautta tai kertoa vain tarkasti millaisia havaintoja mistä kohteesta hän tarvitsee, ja paikalla oleva tähtitieteilijä hoitaa havainnon tekemisen.

Nämä VLT:n opit olivat eräs syy siihen, miksi Buckley oli kiinnostunut Väisäsestä. Vuonna 2004 Väisänen muutti perheineen Kapkaupunkiin, missä SALTin toimistot sijaitsevat samalla kampusalueella Etelä-Afrikan tähtitieteellisen observatorion SAAO:n kanssa.

Afrikka on muutenkin Väisäselle rakas paikka, koska hän on syntynyt siellä suomalaiseen lähetyssaarnaajaperheeseen.

Petri Väisänen
Väisänen kertoi mielenkiintoisesta Scholzin tähdestä vuonna 2015 Tiedetuubin videolla.

Väisänen oli mukana viimeistelemässä SALTin tekniikkaa ja käynnistämässä sen rutiininomaista havaintotoimintaa. Vuonna 2015 hänet nimitettiin Buckleyn paikalle SALTin tieteelliseksi johtajaksi ja tämän vuoden alusta Väisänen on toiminut koko SAAO:n johtajana.

Tähtitiedettä ja lammasfarmareita

SALT sijaitsee noin 300 kilometrin päässä Kapkaupungista koilliseen niin sanotulla Karoolla, eli autiomaan tyylisellä ylänköalueella.

Lähellä Sutherlandin kylää olevalla observatorioalueella oli jo ennen SALTia muutamia pienempiä kaukoputkia, mutta SALTin sekä aktivoituneen eteläafrikkalaistutkimuksen myötä alue on kasvanut ja sinne on noussut uusia kupoleita kuin sieniä sateen jälkeen.

Käytännössä kaikki uudet teleskoopit ovat joko kauko-ohjattuja tai robottiteleskooppeja, joita tutkijat tulevat katsomaan vain hyvin harvoin. Sen sijaan paikalla koko ajan oleva tekninen henkilökunta voi tulla apuun, jos ongelmia ilmenee. Observatorioalue onkin nykyisin kuin teleskooppihotelli, mistä melkeinpä kuka tahansa voi vuokrata paikan ja tehdä sopimuksen laitteiston teknisestä ylläpidosta.

Observatorioaluetta
Etualalla näkyvä 1,9-metrisellä peilillä varustettu Radcliffe Telescope oli Etelä-Afrikan suurin havaintolaite SALTin käyttöönottoon saakka. Nyt sen seurana on SALTin lisäksi parikymmentä muuta havaintolaitetta.

 

Noin 1500 metrin korkeudessa ylängöllä oleva Sutherland on tilastojen mukaan Etelä-Afrikan kylmin paikka talvisin, eikä lumi ole siellä mitenkään vierasta. Kesäisin – siis pohjoisen puolen talvella – päivälämpötila on usein yli 20°C:n ja olosuhteet vastaavat pitkälti Chilen ylänköjä.

Itse asiassa aikanaan, kun ESO oli perustettu ja sen teleskoopeille etsittiin sopivaa sijoituspaikkaa eteläiseltä pallonpuolelta 1960-luvun alussa, oli Sutherland eräs varteenotettavimmista vaihtoehdoista. Ellei maassa olisi ollut tuolloin rotuerottelua ja poliittista epävakaisuutta, olisi se kenties valittukin. 

Maastoa SALTin ympärillä
Maasto Sutherlandissa on varsin karua. Observatorioalue sijaitsee seudun korkeimman kukkulan päällä noin 1750 metrin korkeudessa.

 

Tähtitieteilijöitä ja teknistä henkilökuntaa varten observatorioalueella on pieni hotelli ja huoltorakennuksia, mutta niiden vieressä on myös vierailijakeskus sekä "tavallisia" kaukoputkia, joilla paikalle tulevat vieraat voivat katsella eteläisen tähtitaivaan ihmeitä. Paikalle siis pääsevät myös muutkin kuin tähtitieteilijät ja Sutherland onkin varteenotettava kohde jokaiselle tieteestä innostuneelle Kapkaupungin-kävijälle.

Matka Kapkaupungista Sutherlandiin kestää viitisen tuntia ja kulkee läpi viiniviljelmien sekä kauniiden vuoristo- ja erämaamaisemien. Matkan varrella on esimerkiksi Maetjesfonteinin kylä, missä kannattaa poiketa vaikka lounastamaan. Vaikka Sutherlandissa voisi piipahtaa jopa päiväseltään, kannattaa siellä viettää ainakin yksi yö, sillä tähtitaivaan näkeminen on sen väärti.

Sutherland onkin viime aikoina panostanut turismiin ja ennen kaikkea tähtiturismiin. Kylässä on muutamia hotelleja, jotka ovat hankkineet pihalleen kaukoputkia ja kylän valoja on säädetty siten, että taivas näkyy hyvin. Etelä-Afrikkalainen grillijuhla. braai, tähtitaivaan alla onkin aivan upea kokemus.

Sutherland hotelToistaiseksi majoitukset ovat Sutherlandissa varsin vaatimattomia, mutta mitäpä muuta matkaaja siellä kaipaa kuin vuoteen, syötävää ja tähtitaivaan?

MaastoaSutherland on kiinnostava kohde myös luonnosta muutenkin innostuneelle: geologiaa sekä Karoon omalaatuista kasvillisuutta ja eläimiä on runsaasti.

-

Artikkelin kirjoittaja on vieraillut Etelä-Afrikassa ja SALTilla useita kertoja sekä tehnyt SALT:in / SAAO:n tilauksesta muun muassa jutun alussa olevan videon.

Tiedetuubin Klubi suunnittelee ryhmämatkaa Kapkaupunkiin ja SALTille marraskuussa 2018. Jos olet kiinnostunut tulemaan mukaan, kerro tästä sähköpostilla klubiin. Mikäli et ole vielä klubin jäsen, voit liittyä mukaan täällä.

Norwegian rikkoi Atlantin ylilennon nopeusennätyksen

To, 01/18/2018 - 22:36 By Jari Mäkinen
Norwegianin Boeing 787 Dreamliner

Kun yliäänilentoja ei oleta huomioon, on nopein Atlantin yli lentänyt yhtiö nyt Norwegian. Sen Boeing 787 Dreamliner suhautti New Yorkista Lontooseen viidessä tunnissa ja 13 minuutissa.

Pohjois-Atlantilla lentoaika Yhdysvaltojen tai Kanadan ja Euroopan välillä riippuu paljon suihkuvirtauksista.

Kohti Amerikkaa lennettäessä matka-aika on yleensä pitempi, koska lentokone puskee vastatuuleen.

Toiseen suuntaan lennettäessä, siis kohti itää, on tilanne päinvastainen: nopeusnäytössä on monasti äänen nopeuttakin suurempi luku, joskin kyse on maanopeudesta, ei ilmanopeudesta.

Viime maanantaina Norwegian -lentoyhtiön Boeing 787 Dreamliner pääsi ratsastamaan juuri sopivan suihkuvirtauksen mukana ja sen nousu sekä laskeutuminen tapahtuivat niin suoraan kuin mahdollista, jolloin se onnistui tekemään uuden tavallisten, alisoonisten reittilentojen nopeusennätyksen.

 

Matka-aika New Yorkin John F. Kennedyn lentoasemalta Lontoon Gatwickiin kesti vain 13 minuuttia päälle viisi tuntia. Keskinopeus oli 1248,85 kilometriä tunnissa. Suihkuvirtaus, jonka avulla kone pääsi näin suureen nopeuteen, oli noin 320 kilometriä tunnissa.

Koneen kapteenina toiminut Harold van Dam sanoo asiasta raportoineessa The Telegraphin jutussa, että aika olisi voinut olla vielä hieman lyhyempikin, ellei matkalla olisi ollut myös "hieman turbulenssia."

Usein hyvässä suihkuvirtauksessa lentäminen saa aikaan sen, että meno on hieman heittoisaa.

Aika on kolme minuuttia vähemmän kuin tammikuussa 2015 tapahtuneella edellisellä ennätyslennolla. Se, kuten tämäkin, laskeutui yli tunnin aikataulun mukaista laskeutumisaikaansa aikaisemmin.

British Airwaysin Concorde

Kun yliäänimatkustajakoneet (lue: Air Francen ja British Airwaysin Concordet) olivat vielä liikenteessä, olivat ennätykset  toista luokkaa.

Nopein Concorden tekemä matka tapahtui helmikuun 7. päivänä 1996, kun British Airwaysin Concorde G-BOAD lensi New Yorkista Lontooseen virallisessa ajassa 2 tuntia 52 minuuttia ja 59 sekuntia. Tämä tarkoittaa sitä, että kone lensi 6035 kilometrin matkan keskinopeudella 2010 km/h.

Nykyisin koneiden nopeudet ovat alisoonisia, eli alle äänen nopeuden, mikä tarkoittaa noin 800-900 km/h. Kyseessä on kuitenkin nopeus suhteessa koneen ympärillä olevaan ilmaan, joten jos lentokone lentää sopivassa myötätuulessa, on nopeus maan pinnan suhteen mitattuna paljon suurempi.

Tyypillisesti suihkuvirtauksissa tuulen nopeus on 120 – 160 kilometriä tunnissa, joten myötätuuli puhaltaa konetta tuolla vauhdilla ilmanopeutta suuremmalla maanopeudella eteenpäin.

Suihkuvirtaus pohjoisella Atlantilla on Amerikasta Eurooppaan päin, minkä ansiosta lento sieltä tännepäin käy nopeammin. Ei ole mitenkään harvinaista, että koneen maanopeus on jopa yli huimalta kuulostava 1000 km/h.

Virtaukset otetaan luonnollisesti huomioon lentoreittejä suunniteltaessa, jotta lentomatka vastatuuleen olisi mahdollisimman lyhyt ja lentoaika myötätuulessa olisi aina niin pitkä kuin suinkin.

Tuorlan observatoriosta tulee ainutlaatuinen Tiedekeskus Tuorla

To, 01/18/2018 - 12:49 By Jari Mäkinen

Tuorlan observatorio on ollut suomalaisen tähtitieteen merkkipaikka, joten viime vuonna tullut uutinen sen sulkemisesta oli hurja. Nyt paikka on saamassa uuden elämän: siitä tulee varsin ainutlaatuinen tiedekeskus.

Vaikka Tuorlan observatorion sulkeminen tuntuu ikävältä, on sen takana monta järkisyytä. Alun perin Tuorla perustettiin paikalleen noin 25 kilometrin päähän Turun keskustasta yksinkertaisesti siitä syystä, että kaupungin valojen keskeltä ei tähtitaivasta voinut nähdä kunnolla. 

Valitettavasti vain Suomen säät ovat sen verran huonot, että havaintokelpoisia öitä on kovin vähän. Uudet, isot kaukoputket ovat lisäksi nykyisin kansainvälisiä yhteishankkeita, ja ne sijoitetaan joka tapauksessa paremmille havaintopaikoille.

Niinpä turkulaistähtitieteilijätkin ovat jo pitkään menneet tekemään havaintojaan esimerkiksi La Palman saarelle tai Chileen, tai kuten yhä useammin, käyttävät teleskooppeja etänä työhuoneestaan – tai suoraan kotoaan.

Kun vielä Tuorlan tilat ovat kaivanneet jo jonkin aikaa kohennusta ja laajennusta, päätös tutkijoiden sijoittamisesta Turun yliopiston kampusalueelle kaupunkiin oli täysin looginen ja jopa toivottu. 

Tutkijat ovat jo osin siirtyneet kaupunkiin, ja loputkin tutkijoista muuttavat ihan lähiaikoina.

Suurin Suomessa oleva teleskooppi on Tuorlassa, mutta nykymittapuun mukaan se on pieni ja vanhentunut.

 

Tuorlan observatorioalueella on kuitenkin pitkä ja kunniakas historia, joten paikkaa ei luonnollisestikaan voi jättää rappeutumaan tai tuhota. Niinpä sitä odottaa nyt sama kohtalo kuin varsin monia vastaavia tähtitieteellisiä tutkimuslaitoksia ympäri maailman: siitä tulee tiedemuseo. Suomessa tätä ennen Helsingissä Obsevatoriomäellä ollut tähtitieteen laitos muutettiin Helsingin yliopiston tähtitieteen yleisökeskukseksi.

Tuorlassa tilaa on enemmän ja paikka on täydellinen uudenlaisen, maailmanlaajuisestikin mielenkiintoisen tähtitieteellisen tiedekeskuksen perustamiseen.

Paikka saa nimen Tiedekeskus Tuorla ja sinne luodaan toimintatiloja ilmiöpohjaiselle ja elämykselliselle oppimiselle. Tähtitieteen lisäksi mukaan otetaan myös muita tieteenaloja. 

"Turun yliopisto haluaa olla aktiivisesti mukana niin suomalaisen koulun opetuksen sisältöjen elävöittämisessä kuin tieteen merkityksen kertomisessa kansalaisille", toteaa Turun yliopiston rehtori Kalervo Väänänen yliopiston tiedotteessa.

Tuorlan päärakennus
Tuorlan päärakennus kokee muodonmuutoksen ja sinne tulee myös noin 40 henkilölle majoitustilat. Tilat valmistuvat syksyksi 2018.

"Tuorlan tiloihin rakennetaan laboratorioita, green screenejä ja muuta tämän ajan viimeisintä opetustekniikkaa edustavia kokonaisuuksia", kertoo tutkijatohtori Pasi Nurmi Turun yliopiston kehittämispalveluista. 

"Samalla planetaariota ja observatorioalueen kallioluolaa kehitetään koko perheelle suunnatuksi tieteen elämyskeskukseksi. Leirikouluja ja opettajien täydennyskoulutusta varten tulee myös majoitustiloja noin 40 henkilölle."

Tiedekeskus Tuorlan toiminta käynnistyy vaiheittain vuoden 2018 aikana. Aluksi kehitetään luokkaretkitoimintaa kevään 2018 aikana. Kesällä toiminta laajenee yliopiston järjestämiin leireihin ja myöhemmin syksyllä käynnistyvät leirikoulut ja muu kurssitoiminta. 

"Kun saamme tiedekeskuksen toiminnan täysin käyntiin, alamme järjestää Tuorlassa myös opettajien täydennyskoulutusta ja kesäyliopiston kursseja. Tämän rinnalla suurelle yleisölle suunnattu planetaario jatkaa toimintaansa ja kehittyy nykyistä laajemmaksi ja monipuolisemmaksi tarjoten ainutlaatuisia tiede-elämyksiä kaikenikäisille."

Tiedekeskus Tuorlan toiminnasta vastaavat Petriina Paturi (vas.), Maija S. Peltola ja Pasi Nurmi.

 

Ihmiset ovat kiinnostuneita siitä, miten tiedettä tehdään, mutta Nurmen mukaan yliopistolta on aikaisemmin puuttunut toiminnallinen paikka, missä voisi järjestää esimerkiksi leirikouluja tai pidempiä luokkaretkiä.

Turun yliopistossa järjestetyt Lasten yliopiston kesäleirit ovat olleet suosittuja, ja uuden tiedekeskuksen myötä niiden tarjontaa pystytään lisäämään jo kesällä 2018. Lisäksi Tuorlan planetaariossa käy jo nykyäänkin vuosittain noin 7000–8000 ihmistä, joista valtaosa on koululaisia.

"Yliopistolla on merkittävä rooli tieteen arvon ylläpitäjänä", sanoo luonnontieteen ja tekniikan tiedekunnan varadekaani Petriina Paturi.

"Yleisissä keskusteluissa tieteen arvoa välillä kyseenalaistetaan ja annetaan yksilöiden mielipiteille sama arvo kuin tutkitulle tiedolle. Tiedekeskuksen tavoitteena on toimia linkkinä tieteen, koulujen, perheiden ja koko yhteiskunnan välillä."

*

Jutun pohjana on Turun yliopiston tiedote.

Video: Lento läpi Orionin kaasusumun

NASA on julkaissut huiman videon, jossa lennetään Orionin suuren kaasusumun lävitse. Virtuaalimatka perustuu Hubble- ja Spitzer-avaruusteleskoopeilla tehtyihin havaintoihin.

Video kuvaa siten sumun kolmiulotteista rakennetta näkyvän valon ja infrapunasäteilyn aallonpituuksilla. Orionin kaasusumu näkyy juuri nyt iltaisin etelän suunnalla keskellä Orionin tähdistöä, muinaisten tarujen jättiläismetsästäjän vyöstä roikkuvan miekan keskimmäisenä "tähtenä". Sumulla on etäisyyttä noin 1 350 valovuotta ja ikää ainoastaan kaksi miljoonaa vuotta. Sen keskellä loistavan Trapetsi-tähtijoukon tähdet ovat syttyneet loistamaan vain noin 300 000 vuotta sitten.

Kuva ja video: NASA/ESA/F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Frattare, M. Robberto and M. Gennaro (STScI)/R. Hurt (Caltech/IPAC)

Tässä se on: suomalaisen "vakoilusatelliitin" ensimmäinen kuva

Ke, 01/17/2018 - 19:42 By Jari Mäkinen
Iceye X1:n ensimmäinen kuva

Suomalaisen Iceye-yhtiön 12. tammikuuta laukaistu koesatelliitti Iceye X1 on ollut nyt toiminnassa vajaan viikon. Sen käyttöönotto on edennyt niin rivakasti, että toissapäivänä otettu ensimmäinen tutkakuva on nyt julkistettu.

Kuva otettiin 15. tammikuuta klo 23.47 Suomen aikaa ja siinä näkyy palanen Alaskassa olevaa Noatakin kansallispuistoa.

Kuva on mustavalkoinen, koska tutkasatelliitin kuvat ovat itse asiassa takaisin Maan pinnasta heijastuneita mikroaaltoja, joista pystytään koostamaan paljain silmin näkyvä kuva.

Vaikka värejä ei tutkakuvassa siis näe, voidaan tutkakuvia ottaa myös pilvien läpi ja yöllä, koska satelliitti lähettää itse tarvitsemansa tutkasignaalin ja se kulkee pilvienkin läpi.

Tutkakuvaa pystytään käsittelemään monin eri tavoin, jolloin siitä saadaan puristettua irti paljon erilaista informaatiota alla olevasta Maan pinnasa, jäästä tai meristä. Tutka-aallot tunkeutuvat myös hieman pinnan alle, joten ne voivat "nähdä" enemmän kuin näkyvä valo.

Ensimmäinen kuva kokonaisuudessaan (otsikossa on suurennos). Kuvassa pohjoinen on jotakuinkin oikealla.

 

Yksi Iceye X1:n lähettämä tutkakuva on raakadatana kooltaan noin 1,2 GB ja se näyttää noin 80 x 40 km olevan alueen. Kunhan laitteistot on saatu täyteen iskuun, on teoreettisesti kuvien resoluutio on 10 x 10 metriä.

Kuvan ottamiseen menee noin kymmenen sekuntiaa. Se tapahtuu siten, että satelliitti ottaa vastaan ikään kuin yhden pitkän viirun tietoa alhaalta ja kun satelliitti kulkee eteenpäin radallaan hieman yli 7,5 km/s, pyyhkii keila maastoa ja lopputuloksena on yksi kuva.

Iceye käyttää yhteydenpitoon satelliittinsa kanssa Huippuvuorilla olevaa maa-asemaa, jolloin siihen voidaan olla yhteydessä kerran jokaisen kierroken ainaka. Yhteys satelliittiin saadaan siis 90 minuutin välein. Satelliitti käyttää yhteydenpitoon myös paljon esimerkiksi Aalto-1 -satelliittia nopeampaa yhteyttä, joten kuvat saadaan pikaisesti alas käsiteltäväksi; tämä on ymmärrettävää, koska tutkakuvien saaminen nopeasti on satelliitin tärkein tehtävä.

Iceyen rata

Yleensä Icye X1:n kaltaiset satelliitit ovat massaltaan tonneja, mutta suomalaissatelliitti painaa vain noin 70 kg. Se on siksi paljon edullisempi, mutta sen tuottamat kuvat ovat vain vähän huonompia kuin suurempien satelliittien.

Iceye aikoo lähettää yhtensä 18 satelliittia – ainakin näin aluksi – Maata kiertämään ja seuraava laukaisu on vuorossa ensi kesänä. Sekin on vielä virallisesti koesatelliitti, joka testaa yhtiön uutta ja edullista tutkatekniikkaa.

Nyt kuitenkin voi jo nähdä, että Iceye X1 toimii – ja hyvin.

Tästä Iceye X1 näyttää avaruudessa.

 

Paljonko neutronitähti voi painaa?

Ke, 01/17/2018 - 14:27 By Markus Hotakainen
Havainnollistus neutronitähdestä. Kuva: Goethe University Frankfurt

​Neutronitähdet, nuo jättiläistähtien vähän yli kymmenkilometriset jäänteet, löydettiin 1960-luvulla, mutta niiden massa laskettiin jo 1930-luvun lopulla. Tai tarkkaan ottaen massalle saatiin laskettua teoreettinen yläraja.

Maksimimassan suuruus tunnetaan Tolmanin–Oppenheimerin–Volkoffin rajana, sillä sen laskivat Robert "Atomipommi" Oppenheimer ja George Volkoff kollegansa Richard Tolmanin kvanttiteoreettisten tarkastelujen pohjalta. 

Oletuksena oli, että neutronitähden aine on niin sanottua Fermi-kaasua, joka koostuu pelkästään neutroneista. Todellisuudessa olosuhteet neutronitähtien sisuksissa tunnettiin kehnosti, joten alkujaan ylärajaksi saatiin vain noin 0,7 kertaa Auringon massa.

Jos neutronitähden massa kasvaa tätä raja-arvoa suuremmaksi – kuten voi tapahtua kaksoistähtijärjestelmässä, jossa toisesta tähdestä virtaa kaasua neutronitähteen – sen sisäinen paine ei enää kykene vastustamaan vetovoimaa, vaan neutronitähti luhistuu mustaksi aukoksi.  

Sittemmin arviota on korotettu puolestatoista peräti kolminkertaiseen Auringon massaan. Isohko vaihteluväli kertoo siitä, että neutronitähtien sisäistä rakennetta ei edelleenkään tunneta kovin hyvin.

Useimpien neutronitähtien massan on todettu olevan noin 1,4 Auringon massaa, mutta raskaampiakin on löydetty. Esimerkiksi pulsarin PSR J0348+0432 massa on 2,01 -kertainen Auringon massaan verrattuna.

Nyt ylärajalle on saatu uusi, entistä paljon tarkempi arvo. Göethe-yliopiston tutkijat Luciano RezzollaElias Most ja Lukas Weih ovat laskeneet uuden ylärajan muutaman prosentin tarkkuudella.

Menetelmä perustuu Cosima Breun samaisessa yliopistossa tekemään tutkimukseen, joka osoitti neutronitähtien tietyt piirteet universaaleiksi riippumatta aineen tilanyhtälön kuvaamista sisäisistä ominaisuuksista.

Kun tutkimuksen tulos yhdistettiin tuoreisiin gravitaatioaaltohavaintoihin kahden neutronitähden yhteentörmäyksestä (kuvassa tietokonemallinnus tapahtumasta), saatiin massan ylärajaksi noin 2,17 Auringon massaa.

Se pätee pyörimättömälle neutronitähdelle, mikä on tilanteena varsin teoreettinen, sillä kaikki tähdet pyörivät. Pyörivälle neutronitähdelle massan yläraja on hieman suurempi, sillä pyörimisliikkeen aiheuttama keskihakuvoima vastustaa osaltaan tähden taipumusta luhistua vetovoiman vaikutuksesta vielä tiheämmäksi kappaleeksi. 

Tulos on tutkijoiden mukaan hyvä esimerkki teorian ja havaintojen saumattomasta yhteispelistä. "Teoreettisen tutkimuksen kauneus on sen kyvyssä tehdä ennusteita. Teoria kaipaa kuitenkin kipeästi havaintoja, jotka asettavat rajat epävarmuustekijöille", toteaa Rezzolla.  

Kun gravitaatioaaltoja onnistuttiin havaitsemaan ensimmäisen kerran LIGO-observatorioiden huippuherkillä interferometreillä, tutkijat hehkuttivat, kuinka maailmankaikkeuteen avautui uusi ikkuna. Neutronitähden massan yläraja on ensimmäisiä uudesta ikkunasta avautuneita konkreettisia näkymiä. 

*

Uutinen perustuu Göethe-yliopiston tiedotteeseen.
Kuva: Goethe University Frankfurt

Ennätys taas uusiksi – galaksi 13,3 miljardin vuoden takaa

Ma, 01/15/2018 - 14:23 By Markus Hotakainen

Hubble- ja Spitzer-avaruusteleskoopit ovat tähynneet hyvin kauas ja löytäneet galaksin nimeltä SPT0615-JD. Etualalla olevan galaksin gravitaatio on vääristänyt sen kuvajaisen kaareksi. 

Jokseenkin yhtä kaukaa, yli 13 miljardin valovuoden etäisyydeltä, tunnetaan muitakin kehittymässä olevia galakseja, mutta pienen kokonsa ja suuren etäisyytensä takia ne erottuvat vain himmeinä punaisina valopisteinä.

"Toistaiseksi emme tunne ainuttakaan toista näin kaukaista galaksia, jonka ulottuvuuksista olisi saatu tietoa", toteaa Brett Salmon STScI-tutkimuslaitoksesta (Space Telescope Science Institute). "Tarkastelemalla gravitaatiolinssin vaikutuksia galaksista muodostuvaan kuvaan pystyimme määrittämään sen koon ja muodon."

Albert Einsteinin ennustaman gravitaatiolinssi-ilmiön ansiosta hyvin kaukaisia kohteita pystytään tarkastelemaan yllättävällä tarkkuudella. Kun etäisen kohteen valo kulkee lähempänä olevan galaksin läheltä, vetovoima taivuttaa valonsäteitä ja "zoomaa" kaukoputkessa näkyvän kuvan suuremmaksi ja kirkkaammaksi. 

 

 

Parhaassa tapauksessa käy kuten SPT0615-JD:lle eli muutoin täysin näkymätön kohde erottuu valtaisaan etäisyyteensä nähden hyvinkin yksityiskohtaisesti. Kaukaisella galaksilla arvellaan olevan massaa ainoastaan kolmen miljardin Auringon verran ja läpimittaa noin 2 500 valovuotta.

SPT0615-JD on siis suunnilleen samaa kokoluokkaa kuin Linnunradan seuralaisgalaksi Pieni Magellanin pilvi, jonka läpimitta on noin 7 000 valovuotta ja massa seitsemisen miljardia Auringon massaa. SPT0615-JD lienee tyypillinen oman aikakautensa tähtijärjestelmä, jollaisia syntyi maailmankaikkeuden ensimmäisten tähtien sytyttyä loistamaan. 

Kuva: NASA/ESA/STScI

Suorana labrasta 3/2018 – Alf Rehn, turkulaistanskaislontoolainen professori

Ma, 01/15/2018 - 08:53 By Jari Mäkinen
Alf Rehn

Suorana labrasta -twitterhanke alkaa nyt uutena vuotena uusin sävelin ja varsin korkealentoisesti: professori Alf Rehn kaappaa tilin haltuunsa alkavan viikon ajaksi ja työntää sinne palasia hektisestä menostaan kansainvälisissa kuvioissa.

Suorana labrasta -twitterhanke alkaa nyt uutena vuotena uusin sävelin ja varsin korkealentoisesti: professori Alf Rehn kaappaa tilin haltuunsa alkavan viikon ajaksi ja työntää sinne palasia hektisestä menostaan kansainvälisissa kuvioissa.

Rehn on nykysinin Odensessa pääpaikkaansa pitävän Etelä-Tanskan yliopiston (Syddansk Universitet) innovaatio-, design- ja hallintoasiain professori, minkä lisäksi hän on kysytty esitelmöitsijä, toimii monissa luottamustooimissa sekä on aktiivinen kolumnisti.

Hän on myös hyvin aktiivinen keskustelija twitterissä, missä hänen tunnuksensa on yllättävä @alfrehn.

Koulutusta Rehnillä riittää, sillä hän valmistui taloustieteiden maisteriksi vuonna 1997 ja tekniikan tohtoriksi vuonna 2002.

Sittemmin hän on toiminut  Vuodesta 2004 hän on toiminut professorina Kuninkaallisessa teknillisessä korkeakoulussa Tukholmassa ja Åbo Akademin liiketaloustieteen professorina – ja nyt siis hänen työpaikkansa on Tanskassa.

Tanskan ja Lontoon välillä sukkuloiva Rehn nousi mediahuomioon vuonna 2009, kun hänet otettiin mukaan nousevia ajattelijoita listaavaan "gurututkaan", Thinkers 50 -listalle. Kahta vuotta myöhemmin hän oli jälleen listalla. Vuonna 2012 hän oli kolmantena Nordic Business Report -lehden valitessa Suomen suurimpia bisnesajattelijoita.

Se, missä nyt mennään, selviää toivottavasti viikon kuluessa!

Etelänapa siirtyi taas – ja alastomat tutkijat juoksivat sen ympärillä

Su, 01/14/2018 - 22:56 By Jari Mäkinen
Uusi etelänapamerkki

Perinteet ovat tärkeitä. Yksi tällaisista korvaamattomista traditioista tapahtuu maantieteellisellä etelänavalla näin tammikuussa, kun napaa siirretään hieman koilliseen.

Maantieteellisen etelänavan kohdalla olevan Amundsen-Scottin tutkimusaseman pihalla on merkki, joka osoittaa tarkalleen paikan, missä etelänapa sijaitsee.

Merkki on ollut siellä vuodesta 1959 alkaen – siis lähes vuonna 1956 perustetun aseman alusta alkaen – mutta sitä joudutaan siirtämään noin yhdeksän metriä eteenpäin joka vuosi.

Syynä ei ole itse maantieteellisen etelänavan siirtyminen, sillä vaikka maapallon pyörähdysakseli liikkuu ja navan sijainti muuttuu, on tämä liike erittäin hidasta.

Sen sijaan syynä on se, että paksu jäätikkö, jonka pinnalla tutkimusasema sijaitsee, liikkuu tuon vajaat kymmenen metriä vuodessa kohti koillista. Siksi jään päällä oleva asema ja etelänavan sijaintia osoittava merkki hivuttautuu koko ajan kauemmaksi etelänavalta.

Kerran vuodessa merkki viedään oikealle paikalleen, joka siis siirtyy samalla koko ajan kauemmaksi asemasta.

Merkin ensimmäinen paikka on nyt noin 600 metrin päässä nykyisestä.

Amundsen-Scottin aseman perinteenä on ollut tehdä joka vuosi uusi merkki etelänavalle ja asettaa se uudelle, tarkalle etelänavan paikalle 1. tammikuuta.

Perinteenä on myös ollut se, että uuden merkin on tehnyt tai sen on teettänyt jokin paikalla asemalla oleva tutkimusryhmä. Tänä vuonna vastuun kantoi Martin Wolf IceCube -neutrino-observatoriosta.

Toinen perinne on se, että samaan aikaan niin sanottu 300 Club -kerho saa lisää jäseniä. Kyseessä on varsin elitistinen joukko, sillä kyseessä ovat henkilöt, jotka ovat juosseet superkylmässä Etelämantereen ilmassa etelänapamerkin ympäri alasti.

Yleensä klubiin liittyminen tapahtuu siten, että ulos lenkille lähdetään asemalla olevasta saunasta.

Kyllä, etelänavalla on sauna.

Jalkineet on sallittu, joten saunasta lähtiessä laitetaan kengät jalkaan, sen jälkeen tyypillisesti kävellään ripeästi merkille sekä sen ympäri ja palataan saunaan lämmittelemään.

Juokseminen ei ole hyvä ajatus, koska asema sijaitsee 2835 metrin korkeudessa ja siksi ilma on hyvin ohutta. Niinpä jo merkin ympäri kävely ilman rihman kiertämää on itse asiassa vaativa suoritus.

Koko Etelämannerta peittää paksu jäätikkö, ja sen vuoksi myös etelämannerasema on itse asiassa kuin se olisi vuoren huipulla, vaikka sen ympärillä on vain laaja lumi- ja jäätasanko.

Ohut ilma onkin matalien lämpötilojen, rajujen tuulien ja pitkän sysipimeän yön lisäksi eräs Etelämantereen keskellä olevien tutkimusasemien hankaluuksista.

Pysyvää asumista jo vuodesta 1956

Maantieteellisen etelänavan tutkimusaseman on perustanut Yhdysvallat vuonna 1956 ja se on ollut siitä alkaen ympärivuotisesti asuttu. Nykyisin noin 50 henkeä on siellä läpi pitkän, kylmän ja pimeän talvikauden, ja kesäisin yöttömän yön aikaan siellä on parhaimmillaan yli 200 henkilöä.

Asema perustettiin siis kylmän sodan aikaan, ja vaikka Etelämanner on demilitarisoitua aluetta, näkyy tämä siinä. että magneettisen etelänavan päällä on Neuvostoliiton/Venäjän Vostok-asema.

Kolmas suuri Etelämantereen jäätikön päällä oleva asema on ranskalais-italialainen Concordia, joka sijaitsee erään jäätikössä olevan kohoaman päällä 3233 metrin korkeudessa.

Amundsenin retkikunta katsomassa telttaansa vuonna 1911.

Kaksi muutakin muistomerkkiä

Maantieteellisellä etelänavalla on kaksi muutakin historiallista jäännettä.

Ensimmäinen niistä on peräisin joulukuulta 1911. Silloin norjalaisen Roald Amundsenin retkikunta saapui ensimmäisenä etelänavalle ja pystytti sinne telttansa. Tämä tapahtui tarkalleen 14. joulukuuta 1911.

Yllä olevassa kuvassa on retkikunta katsomassa telttaansa: vasemmalla Amundsen, ja siitä oikealle Helmer Hanssen, Sverre Hassel ja Oscar Wisting. Kuvan otti Olav Bjaaland.

Teltta on sittemmin hautautunut lumen alle, eikä sen tarkkaa sijaintia tiedetä, mutta se on silti julistettu historialliseksi muistomerkiksi. Arvioiden mukaan teltta on noin 17 metriä pinnan alla noin kahden kilometrin päässä nykyisestä etelänavasta.

Toinen historiallinen paikka on ensimmäisen Argentinan retkikunnan paikalle vuonna 1965 jättämä lipputanko. Se on puolestaan noin puolen kilometrin päässä asemalta.

Video vuodelta 2016

Alla oleva video näyttää etelänapamerkin paljastuksen vuonna 2016. Valitettavasti nakujuoksua ei ole kuvattu...ainakaan virallisesti.

Mustan aukon pyöriminen säätelee ainesuihkujen syntyä

Pe, 01/12/2018 - 18:50 By Markus Hotakainen

Galaksien keskuksissa lymyäviä supermassiivisia mustia aukkoja tunnetaan jo niin paljon, että niiden ominaisuuksia voidaan selvitellä tilastollisesti. Tällä tavoin on nyt saatu tietoa siitä, miten aukkojen pyörimisliike vaikuttaa niiden lähistöltä suurella nopeudella sinkoutuvien aihesuihkujen syntyyn.

Suihkujen lähettämää säteilyä havaitaan erityisesti kvasaareissa, jotka ovat maailmankaikkeuden kirkkaimpiin kuuluvia kohteita. Kvasaarien energia on peräisin miljoonia kertoja Aurinkoa massiivisempien mustien aukkojen kertymäkiekoista, joissa lähiympäristön aine kiertyy kohti kosmista imuria. Vain osa tästä energiasta säteilee radioalueella, sillä ainoastaan noin 10 prosenttia kvasaareista on "kirkkaita" radiosäteilyn aallonpituuksilla.  

Jo aiemmin on tiedetty, että radiosäteilyn voimakkuuteen vaikuttaa se, välttääkö osa kertymäkiekon aineesta karun kohtalon ja päätyy mustan aukon sijasta sen pyörimisakselin suuntaisiin ainesuihkuihin, jotka voivat sinkoutua miljoonien valovuosien etäisyydelle.

Tähän saakka ei kuitenkaan ole tiedetty, miksi joissakin kvasaareissa suihkuja esiintyy, joissakin taas ei.  

Andreas Schulzen johtama ryhmä Japanin kansallisessa tähtitieteen observatoriossa (National Astronomical Observatory of Japan) selvitti, vaikuttaako ainesuihkujen syntyyn supermassiivisen mustan aukon pyöriminen. 

Mustia aukkoja ei – ainakaan toistaiseksi – pystytä havaitsemaan suoraan, joten Schulze tarkasteli kollegoineen aukkoja ympäröivissä kertymäkiekoissa esiintyvän hapen ionin (O III) lähettämän säteilyn voimakkuutta. Se kertoo, kuinka paljon aukkoon syöksyvä aine vapauttaa energiaa. Siitä on puolestaan mahdollista määrittää aukon pyörimisliike ja -nopeus.

Analysoimalla lähes 8 000 Sloan Digital Sky Survey -aineistosta löytyvää kvasaaria Schulzen tutkijaryhmä huomasi, että hapen O III -emissio on radioalueella voimakkaasti säteilevissä kvasaareissa keskimäärin 1,5 kertaa suurempi kuin vaitonaisissa. Vinha pyörimisliike näyttää siis olevan merkittävä tekijä ainesuihkujen synnyn kannalta.

"Tutkimusmenetelmämme nojaa muiden vastaavien tavoin useisiin olettamuksiin. Tuloksemme eivät tietenkään tarkoita, että pyörimisliike olisi ilman muuta ainoa tekijä, joka erottaa radioalueella 'äänekkäät' ja 'hiljaiset' kvasaarit. Ne kuitenkin viittaavat siihen, että pyörimisliikettä ei pidä jättää huomiotta. Se saattaa määrittää näiden kaukaisten ainetta ahmivien hirviöiden melutason", Schulze pohtii.

Tutkimus julkaistiin alun perin Astrophysical Journal -lehdessä (maksullinen).

Kuva: NAOJ

Video: Iceye X1 laukaistiin avaruuteen

Jo kolmas suomalaissatelliitti on laukaistu avaruuteen: Intian PSLV-kantoraketti nosti Iceye X1 -satelliitin kiertoradalle tänään aamulla.

 

Tämän ensimmäisen suomalaisen kaupallisen satelliitin laukaisu tapahtui Intian avaruusjärjestön Satish Dhawanin  avaruuskeskuksesta klo 5.59 Suomen aikaa aamulla ja Iceye sai yhteyden satelliittiinsa klo 7.20.

Tähän mennessä kaikki on mennyt siis oikein hyvin.

Nyt edessä on satelliitin toimintojen tarkistaminen ja sen ottaminen vähitellen käyttöön. Satelliitin tarkoituksena on pääasiassa testata Iceyen tutkatekniikan toimivuus, mutta jo tämän ensimmäisen satelliitin avulla yhtiö myy tutkakuviaan muutamille asiakkaille ennen kaikkea Yhdysvalloissa.

Yllä oleva video näyttää tämänaamuisen laukaisun tiivistettynä intialaisen musiikin säestyksellä. Iceye X1 vapautuu avaruuteen videon kohdassa 41 sekuntia (vasemmanpuoleinen satelliitti).

PSLV:n palaaminen lentoon elokuisen onnettomuuden jälkeen on hyvä uutinen myös Suomi 100 -satelliitille sekä toiselle suomalaiselle kaupalliselle satelliitille, Reaktor Space Labin Hello Worldille. Ne irtoavat omille teilleen samaan tapaan kuin nanosatelliitit videolla kohdasta 1:07 minuuttia alkaen.

Molemmat ovat lähdössä matkaan seuraavalla intialaisraketin lennolla, joka tapahtuu näillä näkymin maaliskuussa.

Alun perin tämän artikkelin videona oli laukaisu kokonaisuudessaan; kyseinen video on nyt alla. Mukana siinä on intiankielisiä osuuksia ja sen koko selitys on intiaksi, mutta nämä eivät haittaa kuvien katsomista.

Laukaisu tapahtuu videolla noin 27 minuutin kohdalla (tosin tunnelman vuoksi kannattaa katsoa hieman jo aikaisemmin). Iceyen satelliitin irrottaminen raketista tapahtuu kohdassa 45:30.

Satelliitin virallinen nimi on intialaisten videolla (ja muissa tiedoissa) POC-1.

Avainsanat

Tutkijat: Marsissa jättimäisiä jääkenttiä

Pe, 01/12/2018 - 05:23 By Jarmo Korteniemi
Kuva: NASA/JPL-Caltech/UA/USGS

Tutkijat ovat viimein päässeet vilkaisemaan erään Marsin laajimman pinnanmuodon sisälle. Kyse on laajoja alueita peittävästä paksusta jääkerroksesta.

Amerikkalainen tutkimusryhmä on saanut kuvia kerroksesta, joka verhoaa noin kolmannesta Marsista. Odotusten mukaisesti kerros on pääosin jäätä. Jää on kaiken kukkuraksi kerrostunutta ja sitä on erittäin paljon.

Löytö julkistettiin Science-tiedelehden tammikuun numerossa.

Marsin keskileveysasteita peittää suurelta osin laaja materiakerros, joka ikäänkuin verhoaa kaiken alleen ja näin pehmentää muita pinnanmuotoja. Kerros ulottuu lähes kaikkialle päiväntasaajan molemmin puolin, leveysasteiden 30 ja 60 välillä. Maapallolla se siis ulottuisi jotakuinkin Kairosta Helsinkiin.

Tähän mennessä kerrosta ei ole päästy tutkimaan aivan suoraan. Sitä nimittäin peittää samanlainen tomu- ja kivikuorrotus kuin lähes kaikkea muutakin Marsissa.

Tutkijat päättivätkin suunnata huomionsa jyrkänteisiin, joissa verhoava kerros kuorrotuksineen päättyy yllättäen. Näissä kohdissa eroosio on syönyt kerrokset poikki ja paljastaa niiden sisällön.

Seinämistä otetuissa tarkoissa kuvissa erottui paksu kirkas patja, joka koostuu kymmenistä ohuemmista sisäkerroksista. Patjan materiaaliksi paljastui suhteellisen puhdas jää. Lämpötilamittaus puolestaan osoitti, ettei kyse ollut mistään ohuesta seinämälle kertyneestä kuurakerroksesta. Nyt katsottiin siis varmasti seinämän sisärakenteeseen.

Vaikka jyrkänteet alulle saattanutta ilmiötä ei tunneta, niiden nykyinen toiminta on kuitenkin yksinkertaista: Kun jää paljastuu ja altistuu kaasukehän alhaiselle paineelle, se alkaa sublimoitua suoraan vesihöyryksi. Samalla seinämä vetäytyy taaksepäin, levenee ja mahdollisesti kasvaa korkeuttakin. Ja paljastaa koko ajan lisää jäätä. Prosessi jatkuu niin kauan kuin jäätä riittää tai olosuhteet muuttuvat riittävästi.

Jyrkänteitä on toistaiseksi löytynyt kahdeksan kappaletta. Ne kaikki sijaitsevat 55–58 leveysasteiden välillä kummallakin pallonpuoliskolla. Maassa tämä vastaisi Latvian ja Etelä-Amerikan kärjen tienoita.

Kuva painanteesta, jonka pohjoisseinämästä otsikkokuva on suurennettu. (NASA/JPL-Caltech/UA/USGS)

Paljastuneen jääpatjan paksuus on paikoitellen ainakin sata metriä. Parhaimmissa paikoissa kerros alkaa heti metrin tai parin syvyydestä pinnan alta.

Tämä on ensimmäinen kerta, kun jääkerrosta päästään tutkimaan suoraan. Kerroksen olemassaolo tosin on tiedetty jo aiemminkin. Se on selvitetty epäsuorasti tutka- ja spektrometritutkimusten avulla. Se, että kerrokset ovat noin paksuja ja paikoin noinkin lähellä pintaa, oli yllätys.

Vanhaa ilmastotietoa astronauttien janojuomaksi?

Jääpatjan kerroksellisuus paljastaa sen historian. Aine on kerrostunut alueelle lumena vähintään kymmeniä tuhansia vuosia sitten, silloin kun Marsin akselin kaltevuus on ollut nykyistä paljon suurempi. Planeetan ilmastonvaihtelut ovat hyvin dramaattisia, sillä kaltevuus vaihtelee useita kymmeniä asteita miljoonien vuosien saatossa. Science-artikkelin kirjoittajien mukaan osa kerroksista vaikuttaa vaihtelevan juuri tuohon syklisyyteen sopivalla tavalla.

Kerrostunut jää siis kertoisi Marsin menneistä ilmasto-olosuhteista, samaan tapaan kuin jäätikköjää maapallolla. Jo kerrosten tarkka paksuusvaihtelu kertoisi paljon, mutta sen sisältämän kaasukoostumuksen selvittäminen olisi vielä mielenkiintoisempaa. Haaveissa onkin saada paikalle laite, joka tutkisi paljastunutta jäätä eri korkeuksilta.

"Noin kolmannes Marsista on hyvin lähellä pintaa olevan jään peitossa. Olemme nyt nähneet poikkileikkauksia tämän jään läpi, mikä antaa meille aiempaa tarkemman kolmiulotteisen näkymän sen sisältämistä kerroksista. Jäähän on tallentunut Marsin vastikäistä historiaa", kertoo artikkelin ensimmäinen kirjoittaja Colin Dundas Yhdysvaltojen geologisen tutkimuskeskuksen Astrogeologian yksiköstä.

Marsin jään määrää kuvataan usein WEG-arvona (engl. Water Equivalent Global layer). Tämä tarkoittaa sen vesikerroksen syvyyttä, joka syntyisi, jos jää sulatettaisiin ja neste levitettäisiin tasaisesti ympäri punaista planeettaa. Aiempien arvioiden mukaan verhoavan kerroksen sisältämä jää vastaisi 2–3 metrin globaalia vesikerrosta (eli 10–20 Itämerta). Nyt julkaistun tutkimuksen tietoja tuskin voidaan yleistää, mutta jos yleistettäisiin, puhuttaisiin jopa paristakymmenestä metristä! Marsin napajäätiköihin on vertailun vuoksi sitoutunut noin Välimeren vesimäärä (WEG ~30 m).

Jos käyttökelpoista jäätä todella on saatavilla edes paikallisesti tuollaisia määriä, se saattaisi olla yllättävän helppo resurssi haman tulevaisuuden Mars-astronauteille. Nyt tutkittujen rinteiden luota juomavedeksi muunnettavaa jäätä saisi vaikka hakattua suoraan kallioseinämästä kimpaleina ämpäriin. Vastaavia paikkoja löytyisi lähinnä vain napajäätiköiltä, jotka tosin eivät ole kovin houkuttelevia laskeutumispaikkoja sijaintinsa (tai olosuhteidensa) puolesta. Jäästä saatava vesi voi osoittautua myös tärkeäksi rakennusmateriaalien sidosaineeksi.

Jään joukossa olevat mahdolliset epäpuhtaudet tosin saattavat tehdä aineesta vaikeasti hyödynnettävää. Marsin pintapölyssä kun on useita ihmiselle myrkyllisiä aineita.

Marsissa on tiedetty olevan vettä eri muodoissa jo kauan. Sitä on etenkin jäänä pinnan alla ja napajäätiköissä, mutta myös kaasuna kaasukehässä. Pinnalla on havaittu myös nestemäistä vettä aika ajoin, mutta ainoastaan erittäin suolaisina liuoksina.

Tutkimuksessa käytettiin kolmen pintaa kuvaavan instrumentin aineistoja: Mars Reconnaissance Orbiter -luotaimen kyydissä kiertävät HiRISE-kamera ja CRISM-spektrometri, sekä Mars Odyssey -luotaimen THEMIS-kamera. Kaikki aineistot ovat vapaasti yleisönkin katsottavissa netissä. Odyssey on kiertänyt planeettaa vuodesta 2001 ja MRO vuodesta 2006. Niiden lisäksi Marsia kiertää tällä hetkellä neljä muuta luotainta ja pinnalla toimii kaksi mönkijärobottia.

Tutkimuksesta kertoi Suomessa ensimmäisenä Tiedetuubi.

Lähteet: Dundas ja kumpp., Science (2018) (maksumuurin takana), JPL

Kuvat: HiRISE-kuva eräästä tutkitusta jyrkänteestä. NASA/JPL-Caltech/UA/USGS

Kirjoittaja on Marsin pinnanmuotojen tutkimukseen erikoistunut planetologi.

Huomenna se lähtee: näin suomalaissatelliitti Iceye X1 laukaistaan aamulla avaruuteen

To, 01/11/2018 - 20:34 By Jari Mäkinen
Iceye X1

Huomenna aamulla on tärkeä hetki suomalaiselle avaruustoiminnalle, kun Iceye-yhtiön ensimmäinen satelliitti laukaistaan Intiasta avaruuteen. Kyseessä on suurikokoinen koesatelliitti, joka nostaa yhtiön ja Suomen aivan uudelle tasolle avaruustoiminnassa.

Suomalaissatelliitti laukaistaan huomenna perjantaina aamulla klo 5.59 Suomen aikaa Intiasta, Sriharikotan niemimaalla sijaitsevasta Satish Dhawanin avaruuskeskuksesta PSLV-C40 -kantoraketilla.

Iceye X1 on eräs laukaisun suurimmista satelliiteista, vaikkakaan ei lennon päähyötykuorma; aivan raketin nokassa on intialaisten oma kaukokartoitussatelliitti Cartosat-2, mutta sen Iceyen satelliitti on heti sen alapuolella kahden muun kookkaan satelliitin kanssa.

Kaikkiaan 710 kg massaltaan olevan Cartosatin lisäksi kyydissä on 30 muuta satelliittia, joiden yhteismassa on 613 kg.

PSLV (Polar Satellite Launch Vehicle) on jo valmiina lennolleen C40.

Raketin laukaisuvalmistelut ovat tätä kirjoitettaessa jo käynnissä ja lentoon lähtö tapahtuu aamulla klo 5.59 Suomen aikaa, eli 9.29  paikallisaikaa Intiassa.

Taivaalle nouseva PSLV suuntaa jotakuinkin kohti etelää, juuri sopivasti meren päällä Intian ja Sri Lankan välistä yhä korkeammalle kiitäen.

Matkallaan raketti pudottaa tehtävänsä tehneitä apuraketteja ja rakettivaiheita pois, kunnes lopulta 16 minuutin ja 36,8 sekunnin kuluttua laukaisusta (jos kaikki sujuu hyvin), on raketin ylin vaihe satelliitit mukanaan kiertoradalla noin 510 kilometrin korkeudessa.

Ensinnä irtoaa Cartosat-2 ja sen jälkeen ovat vuorossa pienemmät suuret satelliitit: Iceye X1:n vuoro on kolmantena, kun lentoon lähdöstä on kulunut 17 min 49,02 sekuntia.

PSLV_n lentoprofiili
PSLV-C40:n nokkakartion sisusta ja lentoprofiili. 
Iceye X1 on "välitastanteella" oleva sinertävä laatikko vasemmalla.

Virallisesti papereissa satelliitin nimi on POC-1, eli "Proof of Concept 1", sillä Iceyelle kyseessä on testisatelliitti. Tämä koettaa ensimmäistä kertaa avaruudessa yhtiön kehittämää tekniikkaa, joka tuo nyt vain isommissa ja kalliissa tutkasatelliiteissa olevan tekniikan myös pienemmissä satelliiteissa käytettäväksi.

Pieni on tosin tässä suhteellista, sillä satelliitti on kohtalaisen kokoinen: lähes satakiloisen satelliitin tutka-antenni on yli kolme metriä halkaisijaltaan, kun se on avattuna avaruudessa, ja sen laatikkomaisen rungon koko on noin 80 cm x 60 cm x 50 cm.

Verrattuna noin 10 x 10 x 30 cm kooltaan olevaan Aalto-1 -satelliittiin tämä on jo jättiläinen, mutta toisaalta esimerkiksi Euroopan avaruusjärjestön Sentinel 1 -tutkasatelliittiin verrattuna kyse on kohtalaisen pienestä laitteesta. Sentinel 1:n runko on noin 3,9 m × 2,6 m × 2,5 m.

Yksi syy siihen miksi muun muassa Sentinel 1 on varsin kookas on se, että sen tutka toimii lähes koko ajan, ja siksi se tarvitsee paljon sähkövirtaa ja sen tutkalaitteiston tuottama lämpö pitää jotenkin saada häivytettyä avaruuteen. Iceyen ideana on käyttää tutkaa vain lyhyitä aikoja kerrallaan, jolloin lämmönhallinta on helpompaa.

Toinen ero on siinä, että Iceye on rakentanut satelliittinsa edullisemmista osista. Ne ovat riskialttiimpia, eikä niiden säteilysuojaus ole niin hyvällä tasolla kuin esimerkiksi Sentinelien, mutta toisaalta edullisemman hinnan ansiosta satelliitteja voidaan tehdä tarpeen mukaan lisää edullisesti.

Nyt yhtiöllä on suunnitelmissa 18 satelliitin lähettäminen avaruuteen, ja seuraava näistä lähtee jo nyt keväällä. Se on tarkoitus laukaista Yhdysvalloista Falcon 9 -kantoraketilla.

Iceye ei suinkaan ole yksin kehittämässä piensatelliittien tutkatekniikkaa: samalla kyydillä avaruuteen oli lähtemässä samankaltainen brittisatelliitti NovaSAR-S, mutta se pääsee lopulta avaruuteen vasta myöhemmin tänä vuonna.

Näin ollen suomalaiset voivat sanoa olevansa eittämättä tällä saralla edelläkävijöitä. Ja lisäksi Iceyellä on kehitteillä massiivinen tietojärjestelmä, joka käsittelee ja toimittaa kuvia asiakkaille.

Katso Aalto-1:n laukaisu tästä: lukuun ottamatta satelliitin vapautusta avaruuteen, tapahtuu se hyvin samaan tapaan!

Lappi tähtää Suomen avaruusalan kruunuksi

To, 01/11/2018 - 15:20 By Toimitus

Ilmatieteen laitos ja Oulun yliopisto ovat sopineet avaruustoiminnan lisäämisestä ja yhteistyön tiivistämisestä Sodankylän avaruuskampuksella, jossa sijaitsevat Ilmatieteen laitoksen Arktinen avaruuskeskus ja Oulun yliopiston erillislaitos Sodankylän geofysiikan observatorio (SGO).

Sodankylän kaakkoispuolella lentokentän vieressä sijaitsee Tähtelä, ja siellä on paljon avaruudellista.

Siellä on otsikkokuvassakin oleva suuri EISCAT-revontulitutkan antenni, satelliittien lähettämien tietojen vastaanottoasemia, erilaisia mittalaitteita ja kaukoputkia, sekä tusinan verran rakennuksia.

Satunnainen kävijä huomaa vasta päärakennuksen, Polarian, edessä olevia kylttejä lukiessaan, että paikalla ovat nykyisin Oulun yliopiston alainen erillislaitos Sodankylän geofysiikan observatorio sekä Ilmatieteen laitoksen Arktinen avaruuskeskus.

Nämä kaksi tahoa ovat toki toimineet läheisessä yhteistyössä aiemminkin, mutta nyt Ilmatieteen laitos ja Oulun yliopisto ovat sopineet avaruustoiminnan lisäämisestä ja yhteistyön tiivistämisestä: syntymässä on Sodankylän Avaruuskampus.

Käytännön toimenpiteenä yhteistyön tiivistämiseksi Ilmatieteen laitos ja Oulun yliopisto ovat sopineet uuden yhteisprofessuurin rahoittamisesta Sodankylän avaruuskampukselle vuoden 2018 aikana.

Uuden professorin asiantuntemuksella vahvistetaan geoavaruusympäristön ja ilmakehän vuorovaikutusten tutkimusta Suomessa. Professuurilla edistetään Sodankylän avaruuskampuksen mittaus- ja palveluinfrastruktuurin kehitystä ja modernien menetelmien hyödyntämistä esimerkiksi hahmontunnistus- ja inversiotekniikoiden käytössä sää-, ilmakehätutkimus- ja avaruussääsovelluksiin.

Professuuri avataan avoimeen kansainväliseen hakuun ja täytetään viiden vuoden määräajaksi tai pysyvästi päätoimisena sijoituspaikkana Sodankylän avaruuskampus.

Sodankylän geofysiikan observatorion johtaja Esa Turunen kertoo avaruussääilmiöiden, kuten revontulten, vaikutuksen ilmakehän kemiaan olevan yksi Sodankylän avaruuskampuksen keskeinen yhteinen tutkimuskohde.

”Tiedämme, että parittoman typen ja vedyn määrät lisääntyvät esimerkiksi sykkivien revontulten yhteydessä ja että tämä aiheuttaa katalyyttistä otsonikatoa keski-ilmakehässä joko suorana vaikutuksena 70-80 kilometrin korkeudessa tai välillisesti ilmamassojen kulkeutumisen kautta.”

Näiden prosessien globaalia merkitystä tutkitaan laajoilla tietokonemallinnuksilla, satelliittiaineistojen analyysillä ja omilla mittauksilla, joista uusimpana avaruuskampuksen laitokset ovat yhdessä pystyttämässä mesosfäärin otsonin määrän mittausta koko Suomen kattavalla havaintoverkolla.

Yhteinen havaintoverkko on myös satelliittitomografiamittaus, jolla koko Suomen alueelta saadaan kolmiulotteinen kuva yläilmakehän vapaista sähkövarauksista ja siten esimerkiksi revontulten aiheuttamista häiriöistä radioliikenteeseen ja satelliittipaikannukseen.

Ilmatieteen laitoksen avaruus- ja kaukokartoituskeskuksen johtaja Jouni Pulliainen painottaa Arktisen avaruuskeskuksen satelliittimaa-aseman kehittämisen olevan olennainen osa Suomen avaruusstrategiaa. Ilmatieteen laitoksen avaruustoiminta keskittyy kaukokartoitus- ja sääsatelliittien hyödyntämiseen sekä avaruussään, Maan ja muidenkin planeettojen kaasukehäprosessien tutkimukseen.

Monipuolista havaintotoimintaa avaruuskampuksella

Satelliittien vastaanoton lisäksi Sodankylän maa-asema kykenee myös komentamaan satelliitteja.

Satelliittiasemalla on käytössään kaksi 7-metristä paraboloidiantennia, joista toisessa on vastaanottimen lisäksi myös lähetin, yksi 2,4-metrinen vastaanottoantenni sekä superlaskentakeskus satelliittiaineistojen analyysiä varten. Tärkeä osa toimintaa on satelliittimittausten validointi ja kalibrointi omilla maanpinnalta sekä palloluotauksilla troposfäärissä ja stratosfäärissä tehtävillä havainnoilla.

Sodankylän avaruuskampuksella tuotettavia aineistoja hyödynnetään navigointiin Itämeren merijääalueilla, ilmakehän tilan seurantaan esimerkiksi tulivuorten purkautuessa, pohjoisen pallonpuoliskon ilmastotutkimukseen, tulvatarkkailuun keväisin sekä avaruussääpalvelujen tuottamiseen aurinkomyrskyjen aikaan.

Sodankylän satelliittidatakeskus tarjoaa satelliittiaineistoja, tuotteita ja infrastruktuuria myös yritystoimijoiden käyttöön Public-Private-Partnership -pohjalta.

Sodankylän geofysiikan observatorio tekee kansallisena tehtävänä geofysikaalisia mittauksia Suomen pituuspiirillä Jäämeren alueelta pohjoisen Fennoskandian, koko Suomen ja Afrikan kautta Etelämantereelle.

Havaintotoiminta kattaa monipuolisesti maan magneettikentän, ionosfäärin, revontulien, kosmisen säteilyn ja myös seismisen aktiivisuuden mittaukset.

Yli sata vuotta sitten perustetun observatorioalueen päärakennus, Polaria.

Oulun yliopisto panostaa observatorioon

Observatorion geoavaruusympäristön ja ilmakehän vuorovaikutusten tutkimus on osa yhdestä Oulun yliopiston valitsemasta strategisesta tutkimuksen keihäänkärjestä, Maan ja lähiavaruussysteemin sekä ympäristön tutkimus.

Yliopisto panostaa tämän tutkimuksen tukemiseen rahallisesti sekä infrastruktuuria kehittämällä että luomalla uusia tutkimustyöpaikkoja Sodankylään.

Kilpisjärvellä toimiva observatorion KAIRA-asema, Suomen suurin radioteleskooppi, yläilmakehää jatkuvasti kuvantava radioantennikenttä, on rakennettu pääosin yliopiston rahoituksella.

Sodankylän Tähtelässä avaruuskampuksen maisemaa hallitsee kansainvälisen tutkajärjestön EISCAT-sirontatutkavastaanottimen 32-metrinen lautasantenni. EISCAT-järjestö on juuri aloittanut uuden, maailman edistyksellisimmän yläilmakehän ja lähiavaruuden tutkimukseen tarkoitetun sirontatutkan EISCAT_3D rakentamisen, jonka odotetaan valmistuvan vuoden 2021 loppuun mennessä. Siihen kuuluvat lähetinvastaanotin Norjassa ja vastaanottimet Suomessa ja Ruotsissa. Observatorio koordinoi Suomen Karesuvantoon suunnitellun 10 000 yksittäisen antennin vastaanotinaseman rakentamista.

*

Jutun pohjana on Oulun yliopiston tiedote.

Radiopurkausten polarisaatio kielii lähteen lähiympäristöstä

Ke, 01/10/2018 - 20:40 By Toimitus

Vuodesta 2007 lähtien eri puolilla taivasta havaittujen nopeiden radiopurkausten arvoitus saattaa olla hiljalleen ratkeamassa. Nyt näyttää vahvasti siltä, että ne ovat peräisin neutronitähdistä.

Tutkijat ovat selvittäneet Arecibon ja Green Bankin radioteleskoopeilla tehtyjen havaintojen avulla, että FRB121102-tunnuksella tunnetun lähteen radiopurkaukset ovat voimakkaasti polarisoituneita. Ja se kertoo paljon lähteen lähiympäristöstä.

Vuosi sitten tutkijaryhmä sai määritettyä FRB121102:n sijainnin. Se on yli kolmen miljardin valovuoden etäisyydellä sijaitsevassa kääpiögalaksissa alueella, jolla syntyy uusia tähtiä. Koska etäisyys on näin suuri, yksittäisen purkauksen energiamäärän täytyy olla valtaisa: millisekunnissa vapautuu saman verran energiaa kuin Auringossa yhden vuorokauden aikana.

FRB121102 on toistaiseksi löydetyistä nopeiden radiopurkausten lähteistä ainoa, jossa niitä havaitaan toistuvasti. Polarisaatio eli sähkömagneettisen säteilyn sähkökentän värähtelytason suuntautuminen ei ole mikään ihmeellinen asia, sillä esimerkiksi vedenpinnasta heijastunut auringonvalo on polarisoitunutta.

Tässä tapauksessa kyse on hieman mutkikkaammasta ilmiöstä, sillä FRB121102:n radiosäteilyn todettiin olevan ympyräpolarisoitunutta eli sähkökentän värähtelytaso kiertyy. Tämä niin sanottu Faraday-kiertymä syntyy säteilyn kulkiessa magneettikentässä: mitä suurempi kiertymä, sitä voimakkaampi magneettikenttä.  

FRB121102:n tapauksessa kiertymä on suurimpia radiolähteillä havaittuja, joten purkausten säteilyn täytyy kulkea tiheässä plasmassa, jossa on poikkeuksellisen voimakas magneettikenttä.

“Linnunradan ainoat kohteet, joissa kiertymä on yhtä suuri kuin FRB121102:n säteilyssä, sijaitsevat galaksimme keskuksessa lähellä massiivista mustaa aukkoa. FRB121102 saattaa olla omassa galaksissaan samanlaisessa ympäristössä”, arvelee väitöskirjatutkija Daniele Michilli Amsterdamin yliopistosta ja Hollannin radioastronomian instituutista ASTRONista.

Hänen mukaansa radiopurkausten kiertymä voi selittyä myös sillä, että niiden lähde on voimakkaasti säteilevässä kaasusumussa tai supernovajäänteessä.

 

 

Tällä kertaa purkauksia havaittiin aiempaa korkeammilla radiotaajuuksilla, mikä osaltaan auttoi mahdollisen lähteen selvittämisessä. Arecibossa työskentelevän Andrew Seymourin mukaan ”purkausten polarisaatio ja rakenne ovat samanlaisia kuin Linnunradan nuorten ja hyvin energisten neutronitähtien säteilyllä. Se tukee malleja, joiden mukaan purkaukset ovat peräisin neutronitähdestä”.

Ennätyksellisen voimakkaan polarisaation lisäksi FRB121102:n purkausten rakenne on mutkikas. Siinä missä muissa vastaavissa purkauksissa esiintyy yksi tai korkeintaan kaksi ”kirkastumaa”, FRB121102:n purkauksessa niitä on havaittu jopa seitsemän.

Laura Spitler radioastronomian Max Planck -instituutista kertoo, että ”seuraavaksi yritämme selvittää, onko purkausten rakenne seurausta radiosäteilyn syntyprosessista vai syntyykö se säteilyn kulkiessa lähteen lähellä sijaitsevassa tiheässä plasmassa”.

“Jatkossa tarkkailemme, miten purkausten ominaisuudet muuttuvat aikaa myöten”, sanoo Jason Hessels Amsterdamin yliopistosta. ”Toivomme uusien havaintojen varmistavan, kumpi kilpailevista hypoteeseista on oikea: onko neutronitähti lähellä mustaa aukkoa vai voimakkaasti säteilevän kaasusumun sisällä.”

Tutkimuksesta kerrottiin Max Planck -instituutin uutissivuilla ja se julkaistaan Nature-tiedelehdessä.

Kuvat: David Broad/CC BY 3.0 [Arecibo], Gemini Observatory/AURA/NRAO/NSF/NRC [FRB121102]

Esineiden internet räjäyttää datan määrän – Aallossa koetetaan auttaa

Ke, 01/10/2018 - 12:56 By Toimitus

Helposti valmistettavat orgaaniset ohutkalvot voivat säilöä tietoa yli kymmenen vuotta yhdellä muutaman voltin sähköimpulssilla.

Jos olet tuskastunut siihen, että kovalevysi tai kännykän muisti tuntuu olevan koko ajan täynnä, voit lohduttautua sillä, että et ole yksin. Lisäksi ongelma on varsin pieni verrattuna siihen, että lähitulevaisuudessa on edessä vieläkin suurempia ongelmia.

Kiitos vain, esineiden internet, eli Internet of Things – kuten kaikkia kuviteltavia laitteita netin kautta yhdistävää maailmaa kutsutaan.

Osa ongelmaa on se, että nykyinen komponentti- ja piirilevyteknologia ei kykene hallitsemaan esineiden internetin synnyttämiä datamassoja.

Jo yksi älykello, siivousrobotti tai itsestään ajava auto voi tuottaa gigatavuittain dataa päivässä, ja yhdessä lentokoneen siivessä voi olla yli 10 000 sensoria. Arvioiden mukaan esineiden internet käyttääkin vuonna 2020 yli 50 miljardia sensoria.

Jotta laitteisiin saadaan tarpeeksi laskentatehoa, nykyiset tietokoneiden piirilevyissä käytettävät transistorit pitäisi pystyä kutistamaan muutaman nanometrin kokoisiksi.

Siinäkin on ihan pieni ongelma: ne eivät toimisi silloin kunnolla.

Lisäksi ennenäkemättömän datamäärän käsittely ja tallennus vaativat valtavasti energiaa.

Aalto-yliopistossa työskentelevän akatemiatutkija Sayani Majumdarin vetämä tutkijaryhmä kehittää molemmat ongelmat ratkaisevaa teknologiaa: peruspalikoita neuromorfisten eli aivojen toimintaa jäljittelevien tietokoneiden komponentteihin.

Maailman suurimmat IT-yritykset ja EU investoivat neuromorfisten tietokoneiden tutkimukseen huomattavasti, mutta kukaan ei vielä ole pystynyt luomaan toimivaa nanokokoista laitteistoa, jota voisi myös valmistaa teollisesti.

“Neuromorfisten tietokoneiden vaatima teknologia kehittyy nyt nopeammin kuin niiden haastajat eli kvanttitietokoneet. Yliopistot ja yritykset etsivät kuumeisesti tapoja tehdä vaativaa laskentaa suoraan älypuhelinten, tablettien ja tietokoneiden laitteistolla – ilman ohjelmistoja. Jotta se onnistuisi, tarvitaan äärimmäisen energiatehokkaita, aivojen neuroverkkojen sähköistä tietojenkäsittelyä imitoivia komponentteja”, Majumdar sanoo.

Vähemmän raskasmetallisaastetta

Majumdarin ryhmä on onnistunut valmistamaan uudenlaisia ferrosähköisiä tunneliliitoksia eli muutaman nanometrin paksuisia, kahden elektrodin välissä olevia ohutkalvoja. Liitokset toimivat vain muutamien volttien jännitteellä, ja niitä voi yhdistää monenlaisiin elektrodimateriaaleihin, kuten kaikissa tietokoneissa yleisiin piisiruihin.

Liitoksiin voi myös tallentaa informaatiota yli kymmeneksi vuodeksi ilman lisävirtaa. Niitä voi valmistaa nopeasti suuria määriä normaalissa huoneenlämpötilassa, ilman tyhjiötä tai puhdastiloja. Perinteiset tunneliliitokset on tehty metallioksideista, ja niitä voi valmistaa vain 700 asteen lämpötilassa ja tyhjiössä.

”Meidän liitoksemme on tehty orgaanisista hiilivedyistä, joten ne vähentäisivät myös elektroniikkajätteen raskasmetallisaasteen määrää”, Majumdar huomauttaa.

Ferrosähköiset ohutkalvokomponentit ovat ihanteellisia neuromorfisiin tietokoneisiin, koska ne vaihtavat tilaa ei vain binaarisesti nollan ja ykkösen, vaan myös monien muiden tilojen välillä. Siten ne voivat ikään kuin muistaa niihin syötettyä informaatiota samaan tapaan kuin aivot. Komponentit tarvitsevat vain minimaalisen määrän energiaa säilyttääkseen kerran saamansa informaation – vaikka niistä kytkisi virran pois ja käynnistäisi uudestaan.

Kyse ei ole enää edes transistoreista vaan muistavista ”memristoreista”. Esimerkiksi Marsia seuraavan kerran vuonna 2020 tutkimaan lähetettävä Rover-robotti tarvitsee keinotekoisia aivoja muistuttavan laitteiston, jotta se voisi analysoida keräämäänsä dataa vain yksi aurinkokenno energianlähteenään.

”Yritämme seuraavaksi yhdistää miljoonia tunneliliitoksiamme käyttäviä memristoreita neliösenttimetrin kokoiseksi verkostoksi. Ne voisivat suorittaa kompleksisia tehtäviä, kuten kuvan- ja hahmontunnistusta ja tehdä analysoimansa datan pohjalta itse päätöksiä”, Majumdar kertoo.

*

Juttu on Aalto-yliopiston tiedote lievästi editoituna.

Metsästä löytyi tuntematon muodostelma

Ti, 01/09/2018 - 13:11 By Toimitus
Uusi muodostelma, murtoo, laserkeilauskuvassa.

Turun yliopiston tutkijat ovat äkänneet suomalaisesta maastosta uuden, aiemmin tieteelle tuntemattoman maaperämuodostuman lasertekniikan avulla. Löydös on geomorfologisesti merkittävä.

Kun Turun yliopiston maantieteen osaston tutkijat Joni Mäkinen ja Kari Kajuutti kartoittivat Suomen jääkaudella syntyneitä maaperämuodostumia uusista lasertekniikalla saaduista aineistoista, heidän huomionsa kiinnittyi kummallisiin säännöllisen kolmion muotoisiin kumpareisiin.

Ihmetys oli suuri, koska suomalaiset maaperämuodostumat on tunnettu hyvin jo vuosikymmenien ajan.

"Pidimme niitä aluksi lasertekniikan virheinä, mutta kun niitä löytyi lisää ja ne muodostivat järkeviä kokonaisuuksia, alkoi näyttää selvältä, että tekniikan avulla oli löydetty aiemmin tunnistamattomia muodostumia", Kajuutti kertoo.

Uuden merkittävän geologisen löydön takana on laserteknologia. Kun lentämällä saaduista laserkeilausaineistoista opittiin poistamaan puusto, maanpinnasta pystyttiin saamaan erittäin yksityiskohtaisia maastomalleja.

"Siitä huolimatta on hämmentävää, ettei muodostumia ollut keksitty aiemmin. Kun ensimmäisen kerran lähdimme kentälle etsimään kolmioita, emme oikein tienneet, mitä odottaa", Mäkinen sanoo.

Tutkijoiden kenttähavainnot auttoivat ymmärtämään, miksi muodostumien löytäminen oli vaikeaa.

"Kumpareet ovat enimmäkseen matalia ja laaja-alaisia", Kajuutti avaa.

"Niiden korkeus on kahdesta viiteen metriä, pituus 100 – 200 metriä. Koska ne ovat metsän peitossa ja sijaitsevat lähes aina hyvin syrjäisillä seuduilla, vaatisi aikamoisen sattuman, että niihin törmäisi vahingossa ja hahmottaisi niiden kolmiomaisuuden."

Murtoo on vaikeasti havaittavissa oleva pitkänomainen kumpare. Kuva: Kari Kajuutti.
Murtoo on vaikeasti havaittavissa oleva pitkänomainen kumpare. Kuva: Kari Kajuutti.

Muodostumia löydetty myös Ruotsista

Kun tutkijoille selvisi, ettei vastaavia muodostumia ole aiemmin löydetty, piti niille keksiä nimi. Se osoittautuikin yllättävän vaikeaksi.

Pohdinnan jälkeen päädyttiin nimeen murtoo. Nimen takana on yksi ensimmäisistä muodostumien löytöpaikoista. Murtoo sijaitsee lähellä Nokian ja Vesilahden kuntien rajaa noin 30 km Tampereelta lounaaseen.

"Murtoo on sikäli oiva nimi, että sanahan viittaa murtuneeseen, ja maa kolmioitten esiintymisalueilla on todellakin ”murtunutta”, kivikkoista ja täynnä suuria lohkareita", Kajuutti sanoo.

Maanmittauslaitos ja geologian tutkimuskeskus (GTK) ovat panostaneet Suomen kartoittamiseen laserkeilauksella, jonka tuloksia jokainen voi tarkastella GTK:n verkkopalvelussa.

Lasermallia tarkastellessaan tutkijat löysivät kolmiot, joiden esiintymistä ja syntyprosessia he ovat selvittäneet. He ovat aloittaneet yhteistyön myös ruotsalaisten tutkijoiden kanssa, jotka ovat onnistuneet löytämään samanlaisia muotoja Ruotsista.

"Totta kai murtoita täytyi löytyä Ruotsista", Mäkinen kertoo.

"Samainen jääkausi siellä oli kuin meilläkin. Uusia löytöjä tullaan varmasti vähitellen tekemään kaikkialla, missä on ollut sulava mannerjäätikkö. Ilmaston lämmetessä jäätikkö sulaa ja syntyy valtavia määriä vettä. Vesi hakeutuu jään alle, jolloin jäätikön kuljettama maa-aines sopivissa olosuhteissa kasautuu murtoiksi."

*

Juttu on Turun yliopiston tiedote vain hieman editoituna.

Video: Tällainen on 12. tammikuuta laukaistava suomalainen vakoilusatelliitti

Suomalainen satelliittiyhtiö Iceye saa ensimmäisen satelliittinsa avaruuteen nyt 12. tammikuuta. Kyseessä on uudenlainen tutkasatelliitti, joka pystyy näkemään myös pilvien läpi ja pimeässä.


Iceye X1 ei tietenkään ole varsinainen vakoilusatelliitti, mutta aikanaan se olisi luokiteltu sellaiseksi. Se kun pystyy tekemään varsin tarkkoja havaintoja Maan pinnasta ja seuraamaan auton kokoisten kohteiden liikkumista missä päin tahansa maailmaa.

Useat kaupalliset yritykset tekevät nykyisin tällaisia tarkkoja havaintoja ja myyvät kuviaan asiakkaille, jotka kaipaavat tietoja vaikkapa maankäytön suunnitteluun, luonnonvarojen valvontaan, pelastustoimien organisointiin, tutkimukseen tai merenkulun helpottamiseen – sovelluksia niin sanotulle kaukokartoitusdatalle on vaikka kuinka muuallakin kuin sotilaallisen tiedustelun alalla.

Uudet, pienet ja näppärät pikkusatelliitit ovat tehneet havaintojen teosta paljon aiempaa helpompaa ja edullisempaa. Tähän saakka kuitenkin nämä pikkusatelliitit ovat olleet optisia, eli niissä on ollut vain erilaisia valoa havaitsevia kameroita. Ne eivät siis näe yöllä tai pilvien läpi.

Tutkasatelliitti sen sijaan näkee, tosin tähän saakka tutkalla varustetut satelliitit ovat olleet suuria ja kalliita. Iceye tuo tämän tekniikan nyt pikkusatelliittikategoriaan, sillä suomalaisyhtiön kehittämä tekniikka mahtuu pieneen tilaan ja vaatii vähän tehoa.

Ei ihme, että Iceye on kerännyt suuren potin kansainvälistä sijoittajarahaa ja suunnittelee jo kokonaista laivuetta tutkasatelliitteja. Satelliittiensa avulla Iceye voi tarjota tuoreen tutkakuvan mistä päin tahansa maapalloa parin tunnin varoitusajalla – usein jopa nopeammin.

Nyt laukaistava X1 on koesatelliitti, joka testaa tutkalaitteistoa ensimmäistä kertaa avaruudessa. Maan päällä, koelaitteissa ja lentokoneissa Iceyen tutkaa on koeteltu jo kovasti, mutta nyt ovat kyseessä todelliset olosuhteet ja oikea käyttö avaruudessa.

ICYE X1

Kyseessä on jo aivan kunnollisen kokoinen laite, sillä sen tutka-antennin kärkiväli on 3,2 metriä ja massaa sillä on lähes sata kiloa. Satelliitin sivuilla on aurinkopaneeleita.

Antenni on laukaisun aikaan taitettuna satelliitin sivuille ja avatuu vasta avaruudessa.

Tutka toimii mikroaaltojen aallonpituudella ja on tyypiltään ns. synteettisen apertuurin tutka. Tämä tarkoittaa sitä, että satelliitti käyttää hyväkseen liikettään kiertoradalla siten, että matemaattisesti tutka-antenni vaikuttaa paljon todellista suuremmalta.

Iceye on testannut tutkatekniikkaansa muun muassa asentamalla laitteiston lentokoneeseen. Yllä on Espoosta otettu testikuva, joka näyttää hyvin millaisia tutkakuvat ovat: kuin tarkkoja mustavalkokuvia.

Oikeasti kuvissa on hieman enemmän tietoa kuin tavallisissa valokuvissa, koska mikroaallot paljastavat myös sen, mitä on hieman pinnan alla.

Intialaisraketilla avaruuteen

Iceye X1 laukaistaan avaruuteen Intiasta PSLV-kantoraketilla, kuten varsin monet nano- ja mikrosatelliitit nykyisin. Kyseessä on samanlainen raketti, jolla Aalto-1 lähetettin kiertoradalle viime juhannuksena ja jolla Suomi 100 -satelliitti laukaistaan myöhemmin talvella.

Kyydissä tällä PSLV-C40 -lennolla on 31 satelliittia ja sen päähyötykuorma on intialaisten oma Cartosat-2 -kaukokartoitussatelliitti.

PSLV:n lento C34 nousee matkaan.

Laukaisu on ensimmäinen raketin lento sitten viime elokuun, jolloin lento meni pieleen ja raketin toimintahäiriön selvittämisen ajaksi lennot keskeytettiin. Tuolloin nokkakartio ei avautunut, jolloin satelliitit eivät päässeet ulos, vaan koko ylin vaihe putosi alas ilmakehään ja tuhoutui siinä.

Lentoa suunniteltiin jo viime joulukuuksi, mutta siirrettiin ensin tammikuun 10. päivään ja nyt se on tarkoitus tehdä 12. tammikuuta. Siis ensi perjantaina.

PSLV-C40:n laukaisupaikka on Andhra Pradeshin laukaisukeskus Sriharikotan niemimaalla noin 100 kilometriä pohjoiseen Chennain kaupungista Intian itäosassa.

Viime elokuun epäonnesta huolimatta intialaisraketti on osoittautunut hyvin luotettavaksi, joten todennäköisyys laukaisun onnistumiselle nyt perjantaina on varsin suuri.

Seuraavaksi X2 ja paljon satelliitteja lisää

X1 on nimensä mukaisesti vain ensimmäinen Iceyen satelliitti. Toinen koesatelliitti, yllättäen nimeltään Iceye X2 on jo valmiina ja se on tarkoitus lähettää avaruuteen myöhemmin keväällä Falcon 9 -raketilla.

Seuraavat satelliitit lähetetään näillä näkymin kokonaan uudenlaisella, pienten satelliittien laukaisuun tarkoitetulla Vector-kantoraketilla. Iceye ja Vector Space Systems tekivät vuonna 2016 sopimuksen peräti 21 satelliitin laukaisemisesta taivaalle Vector-R -raketeilla Alaskassa olevalta Kodiaksaarelta.

Vector ei ole tehnyt vielä yhtään täysin onnistunutta lentoa, mutta se on eräs lupaavimmista uuden sukupolven pikkuraketeista.

Juttuun on lisätty lisätietoja sitten ensimmäisen julkaisun.

Huima ehdotus: Tuhat mitta-asemaa tutkimaan maapallon kuntoa

Ma, 01/08/2018 - 10:43 By Toimitus
Hyytialan asemaa (Kuva: Helsingin yliopisto, ATM)

Tunnettu aerosolitutkija, akateemikko Markku Kulmala ehdottaa Nature-lehdessä maailmanlaajuisen mittausverkoston rakentamista planeettamme tilan selvittämiseksi ja jatkuvaksi seuraamiseksi. Tuhat asemaa riittäisi – esimerkkinä suomalaisten SMEAR.

Hyytiälässä, Juupajoella, on Helsingin yliopiston SMEAR II -asema, missä mitataan jatkuvasti yli 1200 erilaista muuttujaa ilmassa ja ympäristössä.

Kasvihuonekaasujen pitoisuudet, pienhiukkasten pitoisuudet ja koostumus, otsoni, typen oksidit, rikki- ja typpihappo, sadat erilaiset hiilivedyt, molekyyliklusterit, maaperän ominaisuudet, fotosynteesi ja puiden kaasuaineenvaihdunta – nämä kaikki ja paljon muuta kirjautuvat tietokoneisiin ympäri vuorokauden.

Mittaustiedot näyttävät miten Hyytiälän metsämaasto hengittää ja elää, sekä kuinka muualta tulleet ilmavirtaukset tuovat sinne aineita ympäröivästä maailmasta.

Markku Kulmala ehdottaa viime torstaina, 4. tammikuuta Nature -lehdessä olleessa artikkelissa Build a global Earth Observatory SMEAR:in ottamista esimerkiksi hankkeessa, joka rakentaisi maailmanlaajuisen mittausverkoston maapallon tarkan tilan kartoittamiseen ja seuraamiseen.

Ympäri maailman tehdään koko ajan paljon mittauksia, joten niistä ei sinällään ole pulaa, mutta yhtenäinen, samalla tavalla samoja merkkikaasuja pitkäaikaisesti ja luotettavasti mittaava järjestelmä, jonka tuottamat havainnot olisivat vapaasti kaikkien maailman tutkijoiden käytössä, olisi huima askel eteenpäin.

Tiedot auttavat erilaisten luonnonilmiöiden takaisinkytkentöjen ja vuorovaikutusten selvittämisessä.

Kulmalan ehdottama maapallonlaajuinen uusi Global SMEAR (Stations for Measuring Earth Surface Atmosphere Relations) -verkko tarvitsee noin tuhat Hyytiälän kaltaista asemaa.

"Investointikustannukset asemaa kohden ovat 10 miljoonaa euroa, joten investoinnit Global SMEAR -verkkoon olisivat samaa suuruusluokkaan kuin Trumpin muuri Meksikon rajalle", akateemikko Kulmala sanoo.

Global Observatory (Global SMEAR) mittaisi kasvihuonekaasuja, pienhiukkasia, hivenkaasuja, oksidantteja, pilvien ominaisuuksia, sadetta, ekosysteeminen tilaa ja yleisesti ottaen ympäristön muutoksia, ihan niin kuin Hyytiälässä jo tehdään.

Lisäksi mukaan olisi hyvä ottaa myös uutta teknologiaa, kuten massaspektrometria, joka pystyy ilmakehässä mittaamaan erittäin pieniä hiukkaspitoisuuksia.

"Global SMEARin toteuttaminen vaatii laajaa kansainvälistä yhteistyötä, jota voisi pitkällä aikavälillä johtaa esimerkiksi meteorologian kansainvälinen järjestö WMO yhdessä suomalaisten toimijoiden kanssa", Kulmala arvelee viitaten Hyytiälän SMEAR-asemalta saatuun korkeatasoiseen aineistoon.

Hyytialan asemaa (Kuva: Helsingin yliopisto, ATM)
Hyytiälän SMEAR II -asema. Kuva: Helsingin yliopisto.

Kes­tä­viä pää­tök­siä teh­dään vain riit­tä­väl­lä ai­neis­tol­la

Helsingin yliopiston ilmakehätutkijat ovat kehittäneet SMEAR-konseptia vuodesta 1989, jolloin professori Pertti Hari ja Markku Kulmala aloittivat ensimmäisen SMEAR-aseman suunnittelun. Konseptin oleellisena osana on avoin data ja datavirrat.

"Kun on riittävästi avointa dataa maapallon tilasta, se mahdollistaa riittävän monipuolisen analyysin. Näin saadaan tietoa esimerkiksi siitä, mitkä alueet maapallolla voivat vahvistaa hiilinieluja ja lisätä ilmakehää viilentävien pienhiukkasten syntyä."

Kulmala uskoo myös, että uusia ilmastonmuutosta hillitseviä takaisinkytkentöjä voi löytyä.

"Vain riittävällä datalla ja monipuolisella analyysillä päästään tekemään kestäviä päätöksiä, hän sanoo.

Se jo tiedetään kipeän hyvin, että ilmaston muuttuessa kaupungistuminen lisääntyy, ruoka ei riitä, ja puhdas vesi muuttuu yhä vaikeammin saatavaksi; ilma saastuu, biodiversiteetti kärsii, ympäristö kemikalisoituu, epidemiat globaalistuvat ja energia on käymässä niukaksi – kaikki ovat ilmiöitä, jotka liittyvät oleellisesti toisiinsa eikä niitä voi ratkaista yksitellen.

*

Juttu perustuu Helsingin yliopiston viestinnän tiedoteeseen.

Kiina aikoo luoda ekosysteemin Kuun pinnalle

Ma, 01/08/2018 - 01:01 By Jari Mäkinen

Kiina on laukaisemassa tämän vuoden lopulla Kuuta kiertämään luotaimen ja samalla myös Kuun pinnalle laskeutujan. Sen mukana on pieni kapseli, jonka perustaa luontaisen kiertolaisemme pinnalle pienen siirtokunnan – ja sen elämää voi todennäköisesti seurata netissä.

Chang'e 4 on samankaltainen lento kuin oli Chang'e 3 jo neljä vuotta sitten: kyseessä on luotain, joka jää kiertämään Kuuta, ja laskeutuja, joka asettuu Kuun pinnalle pieni kulkija mukanaan. 

Haastavaksi lennon tekee se, että laskeutuja suuntaa nähtävästi Kuun kääntöpuolelle, eli sinne, mikä ei näy koskaan Maahan. Kuuhan kääntää koko ajan saman puolensa kohti meitä ja siksi alus, joka on Maahan näkymättömällä puolella, ei voi olla suoraan radioyhteydessä maa-aseman kanssa. Tässä apuun tulee kiertolainen, joka voi toimia tietoliikennesatelliittina, mutta nähtävästi kiinalaiset lähettävät Kuuta kiertämään myös erityisen linkkisatelliitin, jonka tärkein tehtävä on vain viestien välittäminen.

Laskeutujan mukana on myös varsin erikoinen alumiinisäiliö. Sen sisällä on silkkitoukkia, perunaa ja lituruohon siemeniä, joiden elämää ja kasvamista Kuun olosuhteissa tullaan seuraamaan.

Maan päällä lituruohossa on kauniita kukkia. Saa nähdä, tuleeko myös Kuu kukkimaan.

Ekosysteemikapselin suunnittelija Zhang Yuanxun kertoi China Dailyn mukaan, että silkkitoukat ovat aluksi munina, jotka kehittyvät Kuussa toukiksi ja tuottavat luonnollisesti eläessään ja kasvaessaan hiilidioksidia. Samalla perunat ja lituruohot (jotka kasvavat myös siemenistä) tuottavat happea, ja ainakin teoriassa ne voivat kaikki tulla hyvin toimeen yhdessä. 

Ainakin jonkin aikaa.

Lituruoho (Arabidopsis thaliana) on yksivuotinen ristikukkaiskasvi, joka on klassinen biologian tutkimuskohde. Se lituruoho kasvaa 10–30 senttimetriä korkeaksi ohueksi kasviksi nopeasti, ja siksi se sopii hyvin kokeisiin. 

Se oli myös ensimmäinen kasvi, jolla tehtiin avaruudessa pitkäaikaisia kokeita. Vuonna 1982 niitä kasvatettiin 40 vuorokauden ajan venäläisellä Saljut 7 -avaruusasemalla.

Nyt kiinnostavaa on nähdä, miten silkkitoukat ja kasvit kehittyvät Kuun olosuhteissa. Vaikka miniekosysteemillä onkin suojanaan alumiinikapseli, on painovoima Kuussa noin kuudesosa Maan painovoimasta (tarkalleen 0,1654 g) ja siellä on runsaasti säteilyä.

Suunnitelmien mukaan silkkitoukkien, lituruohon ja perunoiden kuuseikkailua voi seurata netissä, minne kuvaa Chang'e 4:stä lähetetään lähes suorana.

Tästä saattaa tulla tosi nettihitti: äärimmäinen Selviytyjät -sarja!

Chang'e 3
Chang'e 3 -laskeutuja sen mukana Kuun pinnalle lentäneen Yutu-kulkijan kuvaamana. Chang'e 4 on pitkälti samanlainen. Otsikkokuvassa on Kansainvälisellä avaruusasemalla kasvatettua, noin 10 cm korkeaa lituruohoa.

Tulossa huima avaruusvuosi 2018

Ke, 01/03/2018 - 19:53 By Jari Mäkinen

Viime vuoden loppu antoi jo esimakua siitä, mitä on tulossa avaruuslentojen saralla vuoden 2018 kuluessa. Vuosi alkaa jättiraketin ensilennolla ja päättyy – näillä näkymin ihan oikeasti – avaruusturistien ensilentoihin.

Vaikka päättyneenä vuonna 2017 ei lähetetty matkaan huimia planeettaluotaimia tai laukaistu kiertoradalle erityisen erikoisia satelliitteja, jää vuosi 2017 historiaan varsin aktiivisena vuotena, joka hyvin todennäköisesti oli uuden ajan alkusoittoa.

Raketteja ja satelliitteja!

Raketteja laukaistiin kaikkiaan 90 kappaletta, joista 40 vei satelliitteja geostationaariselle radalle (siis noin 36 000 kilometrin korkeudessa Maata päiväntasaajan päällä olevalle kiertoradalle). Sitä kauemmaksi ei viime vuonna lennetty.

Näistä 90 laukaisusta kuusi epäonnistui joko kokonaan tai osittain. Yksi näistä oli elokuun lopussa laukaistu intialainen PSLV, jonka nokkakartio ei irtaantunut. Tämän onnettomuuden seurauksena Suomen satavuotisjuhlasatelliitti Suomi 100 -satelliitti ei päässyt matkaan suunnitellusti marras-joulukuussa, vaan joutunee odottamaan maaliskuuhun saakka kyytiä.

Suomalaisittain vuosi 2017 oli silti merkittävä, koska silloin laukaistiin avaruuteen ensimmäiset suomalaissatelliitit Aalto-1 ja Aalto-2. Näistä Kakkonen vaikeni vain parin päivän toiminnan jälkeen, mutta Ykkönen toimii edelleen hyvin ja siihen ollaan yhteydessä lähes päivittäin Aalto-yliopistosta.

Suomi 100:n lisäksi tänä vuonna taivaalle nousee useita muitakin suomalaisia satelliitteja. Ensimmäinen näistä on Iceye X-1, ja tämä suuressa nousukiidossa oleva suomalaisyhtiö on lähettämässä pari satelliittia lisää vielä kuluvan vuoden aikana. Lisäksi Reaktor Space Labin Hello World pääsee avaruuteen vielä nyt keväällä.

Mitä raketteihin tulee, niin vuoden alussa jyrisee: Kennedyn avaruuskeskuksessa on jo valmiina odottamassa SpaceX:n Falcon Heavy, joka on kuin kolme Falcon 9 -rakettia nipussa. Jättiläinen pystyy laukaisemaan periaatteessa lähes 70 tonnia painavan lastin matalalle kiertoradale ja raketti sopii myös planeettalentoihin – kuten ensilento jo osoittaa, koska kyydissä on lähelle Marsin rataa nousevalle radalle lähetettävä Teslan punainen urheiluauto.

Autosta ja sen lähettämisen järkevyydestä enemmän blogissa.

Lisäksi vuosi 2018 tuo mukanaan ainakin kaksi aivan toisen kategorian rakettia. Pienet, ennen kaikkea mikro- ja nanosatelliittien laukaisuun suunnitellut raketit Electron ja Vector tekevät – ainakin toivottavasti – ensimmäiset onnistuneet laukaisunsa tänä vuonna. Electron oli tarkoitus laukaista lennolleen jo joulukuussa, mutta lentoa lykättiin nyt tähän tammikuuhun.

Kaiken kaikkiaan ensi vuonna tehdään kenties ennätyksellisen paljon satelliittienlaukaisuita. SpaceX aikoo laukaista raketin noin joka toinen viikko, kiinalaiset tehdä 35 laukaisua ja muillakin haaveet ovat korkealla. Kenties vuoden 1967 ennätys menee rikki; silloin raketteja laukaistiin 140. Viime vuosikymmenet vuosittainen laukaisuluku on ollut alle sadan ja edellinen päälle sen ollut vuosi on 1990 111 laukaisullaan.

Luotaimia!

Vuosi 2018 alkaa kuulennoilla, sillä niin Intia aikoo laukaista Chandrayaan 2 -kuuluotaimen maalis-huhtikuussa. Se seuraa kymmenen vuotta sitten lähetettyä Chandrayaan 1 -luotainta, joskin nyt mukana on paitsi Kuun kiertolainen, niin myös laskeutuja ja siinä pieni kuukulkija.

Kiinan vuonna 2013 Yutu saa siis pian seuraa intialaiskulkijasta, mutta myös Kiina on lähettämässä uutta omaa kuulentoaan. Chang'e 4:n oli tarkoitus lähteä jo vuonna 2015, mutta nyt se on suunnitteilla tämän vuoden loppuun. Kyseessä on varsin kunnianhimoinen lento, sillä alus on tarkoitus lähettää laskeutumaan Kuun Maahan näkymättömälle puolelle lähelle etelänapaa, Siksi laskeutuja tarvitsee myös tietoliikennesatelliitin, joka välittää laskeutujan ja sen mukana olevan kulkijan tietoja Maahan.

Toukokuussa pääsee matkaan toinen hieman viivästynyt luotain: Nasan InSight -marslaskeutuja (kuva yllä) oli tarkoitus lähettää jo toissa vuonna, mutta silloin sen huipputarkkaan seismometriin haluttiin tehdä vielä tarkistuksia ja planeettojen välisen baletin sääntöjen mukaan lento piti siirtää myöhemmäksi, kun se ei ennättänyt alkuperäiseen laukaisuikkunaan.

InSight

Kyseessä on tämän vuoden ainoa lento Marsiin, koska Euroopan avaruusjärjestön tälle vuodelle suunniteltu ExoMars 2018 -laskeutuja on puolestaan myöhässä. Saattaa olla, että se pääsee matkaan vasta kahden vuoden päästä – eli kun seuraavan kerran Marsiin kannattaa lähettää luotaimia.

Heinäkuussa parrasvaloihin nousee japanilainen Hayabusa 2, joulukuussa 2014 matkaan lähtenyt luotain. Se saapuu nyt perille tutkimaan asteroidia 162173 Ryugu ja yrittää napata siitä näytteen Maahan tuotavaksi. Toivottavasti luotain onnistuu paremmin kuin sen edeltäjä Hayabusa 1, joka joutui vaikeuksiin Itokawa-asteroidin luona vuonna 2005 ja pystyi vain vaivoin tulemaan takaisin Maahan. Mutta se oli sitkeä – kuten japanilaiset lennonjohtajatkin – ja luotain onnistui tuomaan pikkuriikkisen hippusen pikkuplaneettaa maapallolle.

Elokuussa on vuorossa hyvin samanlainen tapaus kuin Hayabusa, sillä vuonna 2016 lähetetty Nasan OSIRIS-REx saapuu 101955 Bennun luokse. Tämänkin tarkoituksena on tutkia Bennua vuoteen 2021 saakka, napata siitä näyte ja tuoda se Maahan vuonna 2023.

Eurooppalainen BepiColombo päässee puolestaan lopulta matkaan nyt tämän vuoden lokakuussa. Moneen kertaan viivästynyt Merkuriusta tutkiva luotain on nyt valmis ja laukaistaan tuolloin Ariane 5 -kantoraketilla kohti aurinkokunnan sisintä planeettaa. Perille se pääsee vuonna 2025.

Kuvassa vasemmalla Chandrayaan 2, keskellä ylhäällä OSIRIS-REx, yläoikealla Hayabusa 2 ja oikealla alhaalla Chang'e 3, joka on samankaltainen kuin Chang'e 4.

Astronautteja!

Uudet amerikkalaiset avaruusalukset pääsevät näillä näkymin koelennoilleen tämän vuoden lopussa. Niin SpaceX:n Dragon-aluksen uusi, miehitetty versio, kuin myös Boeing CST-100 Starliner ovat jo lähes valmiina ja niillä on tarkoitus tehdä ensin miehittämättömiä koelentoja.

Kummankin aluksen koelennot ovat suunnitteilla elokuuksi ja jos kaikki sujuu hyvin, voisivat ensimmäiset lennot astronauttien kanssa Kansainväliselle avaruusasemalle tapahtua joulukuussa.
Kumpi sitten ehtineekään ensin, on se ensimmäinen miehitetyn avaruusaluksen laukaisu Yhdysvalloista vuoden 2011 jälkeen; sukkulat jäivät tuolloin eläkkeelle.

Nasan oma uusi Orion-avaruusalus ja sen suuri SLS-raketti ovat varmasti myös puheissa tänä vuonna paljon, koska niitä valmistellaan tiiviisti ensi vuonna tapahtuvaan koelentoonsa. Tuo lento kiertää Kuun ja tulee osaltaan nostamaan kuukuumetta.

Tulossa olevat avaruusalukset verrattuna nyt käytössä olevaan Sojuziin ja ammoiseen Apollo-kuualukseen.

Avaruusturisteja!

Vuosi 2018 saattaa olla vuosi, jolloin ensimmäiset hyppylennoille paikkansa ostaneet avaruusturistit pääsevät matkaan. Lentoja on suunniteltu aloitettavaksi jo pitkään, ja tuntuu siltä, että ensilennot ovat olleet aina noin vuoden päässä. Mutta nyt näyttää siltä, että pian lennot alkavat.

SpaceShip2 tekee milloin tahansa ensimmäisen koelentonsa avaruuteen, ja ellei mitään uusia viivytyksiä tapahdu, etenevät testit varsin nopeasti kohti ensimmäisten maksavien matkustajien lennättämistä hieman yli 100 kilometrin korkeuteen.

Aluksen testaaminen on edennyt varsin hitaasti pari vuotta sitten olleen onnettomuuden ja sen seurauksena tehtyjen muutosten vuoksi. Virgin Galactic ja alusta rakentava Scaled Compiosites ovat hyvin tietoisia siitä, että pienetkin vastoinkäymiset – saati sitten onnettomuudet – lentojen alussa voisivat olla hankkeen kannalta kohtalokkaita, joten työtä tehdään varmasti ja kiirehtimättä.

Voi olla, että Virgin Galacticin kilpailija Blue Origin ennättää aloittamaan lentonsa jo ensin. Yhtiön New Shepard -raketti teki juuri joulukuussa onnistuneen koelennon lähes lopullisen avaruusaluksen kanssa ja lupaa nyt asiakkaiden pääsevän kyytiin jo loppuvuonna.

Alukset eroavat toisistaan siten, että SpaceShip2 on lentokone, joka nousee lentoon suuremman lentokoneen kyydissä ja laskeutuu alas kiitoradalle, kun taas New Shepard laukaistaan raketilla korkeuksiin, mistä se tulee alas laskuvarjon varassa.

Kiertoradalle ei näillä aluksilla siis päästä, mutta jos Starliner ja Dragon pääsevät vauhtiin pian, on tarkoitus käyttää näitä aluksia myös turistien lennättämiseen lähivuosina.

Käy miten tahansa, on tästä vuodesta siis tulossa avaruusrintamalla kiireinen ja kiinnostava!

Miksi SpaceX haluaa lähettää urheiluauton Marsiin?

Kyllä: Falcon Heavyn koelennolla on kyydissä urheiluauto, joka soittaa laukaisun aikaan stereoistaan Space Oddityä. Ja ei: auton sijaan matkaan ei olisi kannattanut lähettää tieteellistä luotainta.

Otsikkokuvassa on Tesla Roadster -sähköauto SpaceX:n Falcon Heavy -kantoraketin nokkaan asennettavana. Kuva näyttää studiossa otetulta, hieman omituiselta mainoskuvalta, mutta paikka on satelliittien laukaisuvalmistelutila Kennedyn avaruuskeskuksessa ja auton ympärillä olevat seinät ovat kantoraketin nokkakartion osia.

Osat ovat suuria, ja yksi kuvan tärkeimmistä viesteistä liittyykin juuri niihin: Falcon Heavy ei ole vain voimakas raketti, vaan myös sen nokassa oleva rahtitila on suuri. Tämä avaa uusia mahdollisuuksia tulevaisuudessa, koska avaruuteen voidaan lähettää myös kookkaita kappaleita ilman, että ne täytyy suunnitella transformerin tapaan monimutkaisella mekanismilla avautuviksi kiertoradalla.

Pieni urheiluauto oltaisiin voitu lähettää helpostikin avaruuteen monilla muillakin raketeilla, mutta kukaan ei ole tullut ajatelleeksi moista aikaisemmin. Miksi kukaan lähettäisi tuliterän urheiluauton avaruuteen?

Avaruus on aina ollut vakavaa, ja kalliilla raketeilla on lennätetty mieluummin rautakimpaleita tai betonin palasia – kun hyötykuorma on kevyt tai sitä ei ole (kuten koelennoilla usein ei ole), pitää raketin nokkaan joka tapauksessa laittaa jotain massaa.

Ares 1:n koelennolla oli rahtina teräslevyjä.

Mitä tulee ensilentoihin, niin harva asiakaskaan ottaisi kyydin satelliitilleen sellaiselta edes ilmaiseksi. 

Elon Muskin ajatus auton lähettämisestä Marsiin jättiraketin ensilennolla on tyypillinen hänelle, sillä kyseessä on vitsi, jolla on kuitenkin laajempia ja syvällisempiä tasoja.

Video: Täällä syntyi psykoanalyysi

Nyt niitä tulee: Jari Mäkisen aikanaan Prisma Studioon tekemiä pikkujuttuja saadaan Tiedetuubiin. Ensimmäisenä vuorossa on sarja tieteenhistorian tärkeistä paikoista.

Psykoanalyysin kehittäneen Sigmund Freudin työhuone Wienissä on nykyisin museo, missä voi tutustua paitsi kuuluisaan tutkijalääkäriin, niin myös hänen työhönsä, elämäänsä ja psykologiaan. Osoite on Bergstraße 9. 

Mikäli et ennätä käymään paikalla, niin tällä videolla sinne pääsee etäkäynnille kätevästi. Paikasta voi myös lukea lisää Tiedetuubin tiedekiinnostavuuskartan jutussa.

Juttu on lähetetty YLEn Prisma Studiossa vuonna 2011 ja julkaistaan uudelleen luvan kanssa Tiedetuubissa.

Keinonenä kertoo: pian suunnistetaan hajun avulla

Ti, 01/02/2018 - 14:40 By Toimitus

Ei enää toimistosokkeloiden ja ostoskeskusten karttakuvien tavaamista! Tamperelaistutkijoiden mukaan voit nimittäin pian haistella tiesi oikeaan paikkaan. Hajupaikannus perustuu paikoille ominaisiin ainutlaatuisiin tuoksuihin. 

Miten lohi löytää kotijokeensa kutemaan vietettyään vuosia kaukana merellä? Kuinka kirjekyyhky suunnistaa kotilakkaansa jopa tuhansien kilometrien päästä?

"Eläinten sisäisen kompassin toiminta perustuu muun muassa hajuaistiin. Ryhmä tutkijoita osoitti jo vuonna 1978, että lohet tunnistavat kotijokensa tuoksun."

Näin toteaa Tampereen teknillisen yliopiston tutkijatohtori Philipp Müller, joka innostui tuoksuista professori Robert Pichén kanssa. He tutkivat miten tuoksut voivat auttaa meitä suunnistamaan julkisilla paikoilla, kuten ostoskeskuksissa ja toimistorakennuksissa.

"Jotta tuoksujen avulla olisi mahdollista suunnistaa, eri tiloissa tyypillisesti havaittavat tuoksut täytyy pystyä mittaamaan ja kartoittamaan tarkasti", Müller sanoo.

Müller käyttää tarkoitukseen keinonenää eli kädessä kannettavaa elektronista laitetta, joka haistelee ilmaa ja raportoi havaitut tuoksut käyttäjälleen. 

Idea on yksinkertainen ja muistuttaa WLAN-signaaleihin ja magneettikenttiin perustuvaa sisätilapaikannusta. Keinonenä haistelee ilmaa tuntemattomassa sijainnissa ja vertailee aiemmin kerättyjä tuoksuhavaintoja tunnistaakseen paikan.   

"Hajupaikannus perustuu ajatukseen, että kaikilla tiloilla olisi niille ominainen, ainutlaatuinen tuoksu. Halusimme nähdä, olisiko mahdollista määrittää paikalle ominaishaju, samoin kuin ihmiselle yksilöllinen sormenjälki. Ensimmäisten testien tulokset ovat lupaavia, mutta joitakin ongelmakohtia on vielä ratkaistavana."

Smell Sensing 2.0 -tuoksusensori
Itävaltalaistutkijat ovat kehittäneet jo hyvin pienikokoisen keinonenän, "Smell Sensing 2.0" -hajusensorin.

Haistaa ihmistä tarkemmin

Useimmat meistä tunnistavat työpaikan kahvihuoneen, henkilöstöravintolan tai tutun kuntosalin ominaistuoksun.

On helppoa paikantaa itsensä tällaisissa paikoissa ilman teknisiä apuvälineitä, mutta monissa paikoissa ominaistuoksu on heikompi ja vähemmän yksilöllinen.

"Keinonenä havaitsee hajuja, joita ihmiset eivät kykene aistimaan. Se kehitettiin alun perin nuuskimaan kemiallisia aseita, joita ihmisen hajuaisti ei erota. Siksi arvelimme, että sitä voisi käyttää paikannukseen sellaisissa tiloissa, joita ihminen ei voi tunnistaa tuoksun perusteella. Haluamme myös lisätä hajutietoja karttoihin, jotta ihmiset voisivat helpommin suunnistaa heille entuudestaan tuntemattomissa paikoissa."

Nuuhkimmeko pian tiemme kokoushuoneeseen tai tiettyyn kauppaan ostoskeskuksessa?

"Tulevaisuuden älypuhelimissa voisi olla keinonenäsovellus", ehdottaa Müller. 

"Itse asiassa markkinoilla on jo hajuantureita, jotka voisi helposti integroida mobiililaitteisiin. Kunhan hajuantureita löytyy massatuotteista, olemme toivon mukaan valmiina hyödyntämään niitä olemassa olevissa paikannus- ja navigaatiojärjestelmissä. Hajun avulla voidaan merkittävästi parantaa niiden tarkkuutta. Olemme kuitenkin vasta aloittaneet tutkimustyön ja monta avointa kysymystä on vielä ratkaistava, ennen kuin paikannus onnistuu luotettavasti hajusormenjälkien avulla."

Juttu perustuu Tampereen teknillisen yliopiston tiedotteeseen. Otsikkokuva: Flickr / Maggie A-Day.