joulukuu 2019

Tiedetöppäysjoulukalenteri 24: Kosmonauttien peruutettu kuumatka

Ti, 12/24/2019 - 10:32 Jari Mäkinen
N1-raketti ja Neuvostoliiton avaruusjohtajia

51 vuotta sitten jouluna Apollo 8 kiersi Kuuta. Kolmen astronautin kuumatkan myötä Yhdysvaltain ja Neuvostoliiton kiihkeä avaruuskilpa päättyi, vaikka vasta Apollo 11:n lento heinäkuussa 1969 toi "voiton" Amerikkaan. Rautaesiripun toisella puolella oli tapahtunut kenties kalleimmaksi tullut tieteellistekninen töppäys ikinä.

Neuvostoliitto oli avaruusajan alussa aivan omassa luokassaan. Se onnistui lähettämään ensimmäisenä avaruuteen niin satelliitin kuin ihmisenkin, ja ero oli suuri paitsi ajassa, niin myös teknisesti: itänaapurin raketti oli voimakkaampi ja avaruuslaitteet parempia.

Kahdesta nolosta häviöstä suivaantunut presidentti John F. Kennedy päätti lähettää vuonna 1961 amerikkalaiset ensinnä Kuuhun, ja polkaisi käyntiin massiivisen Apollo-ohjelman. Sen säikäyttämänä Neuvostoliitto puolestaan päätti myös lähettää kosmonautit kohti Kuuta. 

Tosin Kennedy tarjosi Neuvostoliitolla mahdollisuutta lentää Kuuhun yhdessä; on vaikea sanoa oliko kyse teatterista vai aidosta tarjouksesta, mutta ulos oli selvä. Nikita Hruštšov totesi Neuvostoliiton avaruussaavutukset mielessään, että “jos amerikkalaiset lähettävät astronautin avaruuteen, me lähetämme kaksi kosmonauttia, jos hekin lähettävät kaksi, niin me lähetämme kolme, ja jos he lentävät Kuuhun, niin me lennämme ennen heitä”.

Neuvostoliitossa käynnistettiinkin oma kuulento-ohjelma. Avaruusohjelmaa johtanut Sergei Korolev (otsikkokuvassa alhaalla keskellä) suunnitteli jo suurta N1-nimistä rakettia, ja hahmotteli samalla myös nopeammin toteutettavaa ratkaisua, missä Sojuz-raketeilla voitaisiin toteuttaa lento Kuuhun: kuualukset ja laskeutumiskapselit lähetettäisiin omilla raketeillaan.

Mutta sitten politiikka ja henkilösuhteet astuivat peliin. Korolevia ei nimettykään kuuhankkeen pääsuunnittelijaksi. 

Korolevin kilpakumppani oli jo aiemmin ollut Valentin Glusko (otsikkokuvassa alhaalla oikealla). Eräs hänen parhaimmista työtovereistaan oli sotilaallisia ohjuksia kehittänyt Vladimir Tselomei (otsikkokuvassa vasemmalla), jonka hyvä ystävä oli Hruštšovin poika Sergei. Tämä varmaankin vaikutti siihen, että Korolev joutui Kremlin epäsuosioon, ja niin kuulennot annettiin työparin Glusko & Tselomei tehtäväksi.

He alkoivat suunnitella miehitettyä lentoa Kuun ympäri jo lokakuuksi 1967, vallankumouksen 50. vuosipäivän kunniaksi. Ensimmäisen avaruuskävelyn tehneen, kokeneen kosmonautin Aleksei Leonovin johtama pilottiryhmä lähetettiin riskialttiiseen kuulentokoulutukseen. 

Tarkoituksena oli kehittää nykyisin Proton-nimisenä tunnettava kantorakettia UR-500, joka olisi kyennyt sinkoamaan Korolevin tiimin suunnitteleman kuualuksen, Sojuzin, juuri ja juuri ympäri Kuun. Kuuhun laskeutumista vasten olisi tarvittu toinen rakettilaukaisu, jonka kyydissä oli kuumoduuli. Alukset olisivat telakoituneet Maan kiertoradalla.
 

N1:n mallikappale laukaisualustalla vuonna 1967

N1:n mallikappale laukaisualustalla vuonna 1967.

 

Politbyroo antoi kuitenkin Hruštšoville kenkää syksyllä 1964, jolloin Korolevin asema parani jälleen. Työ N1:n kanssa saattoi jatkua. Jättiraketti olisi hieman kuten amerikkalaisten kuuraketti Saturnus V; hieman matalampi, mutta leveämpi, mutta periaatteessa samantapainen.

N1:n käyttöä kuuohjelmassa ei kuitenkaan hyväksytty, mutta kun kahden raketin menetelmä osoittautui liian hankalaksi ja vaaralliseksi, katseet kääntyivät N1:n suuntaan. 

Sen kehittäminen oli kuitenkin hankalaa, koska pätevänä rakettimoottorien suunnittelijana tunnettu Glusko ei suostunut yhteistyöhön. Niinpä Korolev joutui tyytymään enemmänkin suihkumoottoreita suunnitelleen Nikolai Kuznetsovin apuun. Tuloksena oli heikompitehoiset ja epäluotettavammat moottorit, joita tarvittiin peräti 30 kappaletta N-1:n ensimmäiseen aiheeseen.

Tarina sai kuitenkin saanut yllättävän käänteen jo tammikuussa 1966, kun Korolev kuoli moskovalaisen sairaalan leikkauspöydälle. Kuuohjelman johtoon asetettiin Valeri Mishin, jolla oli kuitenkin jatkuvia vaikeuksia Politbyroon kanssa, minkä ansiosta Tselomei onnistui pitämään myös omaa suunnitelmaansa koko ajan esillä.

Kuuhanke meni kuitenkin eteenpäin. Nykyisin Sojuzina tunnettu alus oli aluksi tarkoitettu kuulentoihin, tosin hieman erikoisvarusteltuna. Itänaapurien kuumoduuli oli vähän kuin amerikkalaisten kuumoduuli, paitsi että vain yhdelle kosmonautille mitoitettu miehistöosa oli pienempi ja muodoltaan pallomainen, minkä lisäksi moduulin päällä oli suuri asennonsäädöstä huolehtiva osa.  

Siinä missä Apollot olivat kolmepaikkaisia ja Kuuhun laskeutui kaksi astronauttia, oli neuvosysteemissä vain kaksi matkalaista.  Heistä toinen siirtyisi Kuun kiertoradalla avaruuspuvussa ulkokautta kuumoduuliin ja laskeutuisi sillä Kuun pinnalle, missä hän vuoden 1969 suunnitelmien mukaan viipyisi vain neljä tuntia.  Alukset telakoituisivat toisiinsa Kuun kiertoradalla ja Kuun pinnalla käynyt kosmonautti siirtyisi Sojuziin, mikä palaisi Maahan. 

Ajatuksena oli myös – turvallisuuden vuoksi – miehittämättömän kuumoduulin lähettäminen etukäteen Kuun pinnalle. Miehitetty moduuli laskeutuisi sen luokse, ja paluumatka voitaisiin tehdä tyhjänä laskeutuneella aluksella.  Käytännössä laskeutuminen kävelymatkan etäisyydelle miehittämättömästä aluksesta on hyvin vaikeata, lähes mahdotonta, minkä vuoksi ajatuksesta luovuttiin. 

Ensimmäisellä N1:n koelennolla oli kyydissä Zond L1S-1 -salanimen saanut Sojuz ja tarkoitus oli tehdä ilman kosmonautteja automaattinen lento Kuun ympäri. Helmikuun 21. päivänä vuonna 1969 tehty laukaisu kuitenkin epäonnistui, kun raketti mäsähti moottoririkkojen vuoksi Baikonurin maankamaraan kolmen minuuttia kestäneen lennon päätteeksi.

Jos lento olisi mennyt hyvin, olisi Neuvostoliitolla ollut vielä mahdollisuus voittaa kuukilpailu, mutta nyt se näytti jo epätodennäköiseltä.

N1:n toinen koelento päättyi räjähdykseen

Lopullisesti kisa menetettiin 3. heinäkuuta, kun toinenkin koelento päättyi onnettomuuteen (kuva yllä). Nyt suuri raketti räjähti laukaisualustalla, joten laukaisualustan vaurioituminen teki tapauksesta vieläkin vakavamman takaiskun.

Kun kaksi muutakin koelentoa kesäkuussa 1971 ja marraskuussa 1972 päättyivät räjähdyksiin, vuodelle 1974 suunniteltu viides lento peruutettiin. Samoin koko N1-ohjelma peruutettiin lopulta toukokuussa 1974. Haaveet siitä, että kosmonautit olisivat käyneet Kuussa 1970-luvulla haudattiin. Neuvostoinsinöörit olivat jo muokanneet aluksiaan siten, että Kuussa olisi voitu olla kenties parikin viikkoa, mahdollisesti jopa kuukauden ajan. Kuussa olisi voinut olla samanaikaisesti useampia aluksia.  Jos nämä suunnitelmat olisivat toteutuneet, eli kosmonautit olisivat olleet Kuussa esimerkiksi vuonna 1980, olisi avaruuslentojen kehitys saattanut muodostua hyvinkin erilaiseksi.

Nyt kuitenkin voi sanoa, että N1-hanke oli kenties ihmiskunnan kallein tieteellistekninen harha-askel. N1:n kehittäminen ja siihen liittyneet kustannukset olivat arviolta 115 miljardia nykyeuroa, kun koko Yhdysvaltain Apollo-hankkeen hinta oli noin  140 miljardia euroa nykyarvon mukaan laskettuna.

Ihan hukkaan N1:n parissa tehty työ ei kuitenkaan mennyt, koska kokemuksia voitiin käyttää hyväksi 1980-luvulla lentäneen suuren Enegria-raketin ja sen kuljettaman Buran-sukkulan kanssa. Ne toimivat hyvin: Energia teki kaksi lentoa ja Buran yhden, ennen kuin ne laitettiin koipussiin Neuvostoliiton lopun koittaessa.

Buran ja Energia

Energia-rakettia Buran selässään kuljetetaan laukaisualustalle Baikonurissa.

Tiedetöppäysjoulukalenteri 23: Ydintalvi peruttu

Ma, 12/23/2019 - 08:32 Jari Mäkinen
Carl Sagan ja hiroshiman räjähdyksen sienipilvi lentokoneesta kuvattuna

Vuonna 1983 viisi tutkijaa julkaisi artikkelin Science-lehdessä. "Nuclear Winter: Global Consequences of Multiple Nuclear Explosions" koetti arvioida sitä, millainen olisi maailmanlaajuisesta ydinsodasta tuleva ydintalvi.

 

Tutkimus oli paitsi aiheeltaan raflaava, niin sen teki tunnetuksi eräs kirjoittajista. Tähtitieteilijä Carl Sagan oli aikansa TV-kuuluisuus, 80-luvun Brian Cox – tai jopa enemmänkin, koska julkisuudessa olevia tutkijoita oli vähemmän, TV:n vaikutus vielä suurempi ja Sagan oli lisäksi todella pätevä tutkija. 

Tuossa artikkelissa Sagan, astrofyysikko James Pollack sekä ilmastotieteilijät Richard Turco, Owen Toon ja Thomas Ackerman sovelsivat aiemmin massiivisten tulivuorten purkausten seurauksia käsitelleitä tutkimuksia tilanteeseen, missä suuri määrä ydinräjähdyksiä tapahtuisi eri puolilla maapalloa.

Vaikka heti artikkelin johdannossa tutkijat selittävät suuria epävarmuustekijöitä, he päätyvät kuitenkin dramaattisiin johtopäätöksiin.

Räjähdysten ja tulipalojen ilmakehään nostama savu ja pöly saisivat aikaan maailmanlaajuisen katastrofin. Parissa viikossa planeetta olisi usvan peitossa, valoa pääsisi maan kamaralle vain pari prosenttia normaalista ja lämpötilat olisivat monin paikoin alle -15°C. 

Tätä kestäisi kuukausia, mikä johtaisi nälänhätään, kun tuotantokasvit kuolevat tai kärsivät suuresti, satoja menetetään ja eläimet menehtyvät. 

Sana "ydintalvi" viittaa juuri tähän: jopa keskellä kesää lämpötila laskisi reippaasti alle nollan, sade tulisi lumena ja vedet jäätyisivät. Voi vain kuvitella, mitä trooppisilla alueilla tapahtuisi ihmisille, jos pakkanen tulisi ja kestäisi kuukausia. 

Näin tapahtuisi jo kevyen luokan ydinsodassa, missä "vain" satakunta megatonnia räjäytettäisiin suurimpien kaupunkien päällä. 

Massiivisessa sodassa, missä yhteensä noin 5000 megatonnia räjähtäisi myös asuttujen alueiden ulkopuolella, tuloksena olisi vielä pitempään kestävän ydintalven lisäksi tappavaa radioaktiivisuutta laajoilla alueilla.

Sen jälkeen, kun pöly, savu ja tomu putoavat maahan ilmasta, ja Aurinko pääsee jälleen paistamaan, olisi sen säteily myös vaarallista, koska räjähdysten seurauksena otsonikerros olisi kärsinyt. Se, mitä säteily ja kylmyys ei olisi tappanut, Auringon voimakas ultraviolettisäteily surmaisi. 

Tuloksena olisi dinosaurusten häviämiseen verrattavissa oleva joukkotuho. Kauheaa tekstiä, ällistyttävän ikävä tulevaisuudenkuva. Ei mikään ihme, että ydinsodan pelossa olevassa maailmassa se sai osakseen paljon huomiota.

"Ydintalvi", Xavier Laviron

Xavier Lavironin kuva (Flickrissä), mikä antaa viitteitä vähän siitä, miltä ydintalvi voisi näyttää.

 

Heti artikkelin julkaisun jälkeen monet muut tutkijat löysivät päättelystä muutamia heikkouksia. Esimerkiksi sateet vähentäisivät pölyn määrää ilmassa nopeammin kuin tutkijaviisikko oli arvioinut. 

Mitä kunnollinen tutkija tekee tässä tilanteessa? Myöntää erehtyneensä ja tekee uuden arvion esiin nostettujen faktojen pohjalta. Sagan et al. kirjoittivatkin samaiselle Science-julkaisulle vuonna 1990 uuden artikkelin, missä ne esittivät ydintalven korjatun version.

Sen mukaan olennaisin eroavaisuus on se, että lämpötila ei laske aivan niin paljon kuin alkuperäisessä laskelmassa esitettiin. Arvio olisi keskileveysasteilla 10-20°C, eli kesällä keskimääräinen lämpötila ei laskisi pakkasen puolelle.   Paikallisesti lämpötila voisi kuitenkin pudota jopa 30°C, mikä tarkoittaisi tukevaa pakkasta.

Lisäksi artikkelissa oli nyt mukana arvioita sademäärien kehityksestä. Kyllä: nekin menisivät sekaisin.

Jos siis alkuperäinen kauhukuva ydintalvesta oli hieman väärä, ei tarkennettu kuvakaan ole mitenkään mieltä ylentävä. Tämä kannattaa pitää mielessä, kun pohtii sitä, että maailmassa on edelleen riittävästi ydinaseita saamaan aikaan maailmanlaajuisen tuhon. 

Tiedetöppäysjoulukalenteri 22: Talidomiditapaus

Su, 12/22/2019 - 12:49 Jari Mäkinen
Talidomidin aiheuttamia epämuodostumia lapsen jaloissa

Onko tämä huijaus vai sellaisen lavastus? Joka tapauksessa australialastohtori William McBride paljasti 1950-luvun unilääke Talinomidin haitalliset vaikutukset sikiöihin ja teki suuren palveluksen monille syntymättömille lapsille.

 

Talidomidi, eli C13H10N2O4 olikin aivan liian mainio yhdiste ollakseen totta.

Se oli unilääke, joka ei aiheuttanut riippuvuutta. Se oli myös rauhoittava lääke, jonka huomattiin myös hillitsevän tehokkaasti tulehduksia. Se oli lisäksi turvallinen siinä mielessä, että päinvastoin muut unilääkkeet, se ei ollut myrkyllinen yliannostettuna.

Lääkettä tehtiin ensimmäisen kerran Länsi-Saksassa vuonna 1953, ja se tuli myyntiin neljä vuotta myöhemmin. Suomessa se oli kaupan syksystä 1959 alkaen, eli 60 vuotta sitten siis sitä napsittiin myös Suomessa.

Lääkkeen myynti loppui kuitenkin loppui kuin seinään vuonna 1961. Australialainen synnytyslääkäri William McBride esitti ensimmäisenä epäilyksiä siitä, että talidomidi aiheuttaa vakavia epämuodostumia etenkin raajoihin.

McBride auttoi keväällä 1961 synnytyksissä, joissa vauvat olivat hyvin erikoisia. Kaikkien lapsien äidit olivat käyttäneet talidomidia tyypillisesti aamupahoinvoinnin hoitoon.

Kädet ja jalat olivat vinoon kasvaneita, muistuttivat hylkeen eviä, ne olivat epäsymmetrisiä, liian lyhyitä ja niissä saattoi olla liikaa tai liian vähän varpaita tai sormia – kuten otsikkokuvan lapsella.

Monet lapsista olivat sokeita tai kuuroja, ja heillä saattoi olla epämuodostumia sydämessä, munuaisissa, ruoansulatuskanavassa ja sukupuolielimissä.

Samaan aikaan myös saksalainen Widukind Lenz teki kesällä samanlaisia havaintoja, mutta laajempaan tietoon asia tuli McBriden arvostettuun lääketieteen julkaisuun The Lancetiin tekemästä artikkelista. Nyt ympäri maailman kiinnitettiin asiaan huomiota ja tehtiin tutkimuksia talidomidin vaikutuksista. 

Pahaksi onneksi lääkettä oli käytetty varsin paljon juuri odottavien äitien raskauspahoinvointiin, ja kun naiset ottivat lääkettä 3. – 8. raskausviikolla, olivat seuraukset kohtalokkaat: juuri tuolloin ihmisalkioille kehittyvien elinten muodostuminen oli vauhdikkaimmillaan, ja lääke haittasi tätä dramaattisesti.

Proteeseja ja talidomidilääkkeitä Science Museumissa

Proteeseja ja talidomidilääkkeitä Science Museumissa.

 

Lääkkeen poisvetoa markkinoilta seurasi oikeudenkäyntien suma, missä potilaat vaativat rahoja lääkeyhtiöltä ja lääkeyhtiö koitti kyseenalaistaa lääkkeen saaneen aikaan väitetyt vaikutukset.

Selvittelyissä paljastuikin, että talidomidin vaikutusmekanismit olivat varsin tuntemattomat, ja sen käyttöä ihmisillä alettiin pohjustaa heti sen jälkeen, kun lääke oli osoittautunut hiirikokeissa harmittomaksi. Sen oletettiin siis olevan sopiva myös ihmisille. Myöhemmin kokeita tehtiin myös apinoilla ja kaneilla, joille lääke sai aikaan samankaltaisia epämuodostumia kuin ihmisille.

Oikeudenkäynneissä kävi myös ilmi, että osa näistä talidomidin haittoja selvittäneistä tutkimuksista oli tehty puutteellisesti tai tuloksia oli jopa väärennetty.

Kun McBriden perustama tutkimussäätiö osoitti 1980-luvulla toisen lääkkeen, Bendectin, haittoja, McBride joutui pitkälliseen taisteluun lääketeollisuutta vastaan: teollisuuden uskottiin salakuuntelevan ja vakoilevan häntä koettaessaan kerätä materiaalia, jolla hänen maineensa voitaisiin pilata.

Tässä saattoi olla perääkin, mutta McBriden säätiön riippumaton tutkimuskomitea lausui vuonna 1988, että osa McBriden tuloksista oli joko sellaisia, joihin hän itsekään ei uskonut tai ei luottanut täysin niiden todenmukaisuuteen, joten "tässä mielessä hän syyllistyi tieteelliseen huijaukseen."

McBride erosi pian tämän jälkeen säätiönsä johdosta ja säätiön toiminta lakkasi.

William McBride

Vaikka talidomidin haittoja ei olisikaan aikanaan todistettu täysin tieteellisen tarkasti, oli lääkkeen haittavaikutukset täysin selviä ja siksi sen käytön lopettaminen oli tärkeää. Lääkkeen turvallisuuttakaan ei todistettu aukottomasti – esimerkiksi Yhdysvaltain elintarvike- ja lääkevirasto ei haluttut aluksi myöntää myyntilupaa talidomidia sisältävälle lääkkeelle turvallisuusepäilyksien vuoksi.

Sittemmin lääkkeen tutkimusta on tosin jatkettu, ja se on havaittu toimivaksi monien varsin yllättävien sairauksien ja oireiden hoidossa. Tällaisia ovat mm. reuma, leikkauksen jälkeiset hylkimisreaktiot, haavautumat ja hankalat ihotaudit. 

Nykyään talidomidia käytetään joissakin tapauksissa esimerkiksi seuraavien sairauksien ja oireiden hoitoon.

Talidomidille myönnettiin uusi myyntilupavuonna 2008 mm. plasmasolusyövän hoitoon. Raskaana oleville naisille sitä ei kuitenkaan saa missään nimessä antaa.

Talidomidilapset Suomessa

Terveyden ja hyvinvoinnin laitoksen tutkimusprofessori Mika Gissler toteaa Tiedetuubin Facebook-sivulla, että Suomessa arvioidaan syntyneen 50 lasta, joilla oli talidomidin aiheuttamia sikiövaurioita. Talidomidivaurioon sopivia raajapuutoksia todettiin tuolloin yli 20 lapsella. Näistä kymmenkunta sai lääkevalmistajalta korvauksia; muilla ei pystytty osoittamaan yhteyttä talidomidialtistukseen.

Lisätietoja talidomidista Suomeksi: Talidomidi eilen ja tänään

Tiedetöppäysjoulukalenteri 21: Liian vallankumouksellinen kalenteri

La, 12/21/2019 - 10:55 Jari Mäkinen
Vallankumouskalenteri ja Marianne

Moni asia voitaisiin tehdä nykyisin paljon paremmin ja suoraviivaisemmin, jos taakkana ei olisi historian painolastia ja vuosisatojen aikana tulleita perinteitä. Toisaalta tapaukset, jolloin näin on tehty, eivät ole menneet aina ihan putkeen. Kuten esimerkiksi Ranskan vallankumouksen aikaan käyttöön otettu uusi, tieteellinen kalenteri.

 

Nykyisin käytössä oleva kalenteri on niin sanottu gregoriaarinen kalenteri, joka on parannettu versio juliaanisesta kalenterista ja nimistöltään sekoitus roomalaista jumalista ja kristillisistä pyhimyksistä sekä latinalaisen kielialueen ulkopuolella paikallisista jumaltarinoista.

Esimerkiksi perjantai on Venus-jumalan päivä (Veneris dies, viernes, vendredi, venerdì) tai meillä lainautuneena Freija-aasajumalattaren nimestä. Pian alkavan tammikuun nimi tulee suomalaisittain tammesta, joka on tarkoittanut talven sydäntä tai kalevalaisten runojen isoa tammea. koko taivaan peittävää maailmanpuuta. Latinalaisessa maailmassa Ianuarius tai Januarius merkitsee Janukselle, kaiken alkamisen jumalalle, pyhitettyä kuukautta.

Kalenterin ydin on kuitenkin tähtitieteessä, sillä tarkoituksena on pitää kirjaa ajan ja vuodenaikojen kulusta. Vuosi on jaettu monennäköisistä historiallisista syistä 12 kuukauteen, joissa on 30 tai 31 vuorokautta. Vuorokaudessa on 24 tuntia ja tunnissa 60 minuuttia ja minuutissa 60 sekuntia. 

Hankaluutena kaikissa kalentereissa on se, että kuukaudet ja päivät on hankala saada toimimaan siten, että ne pysyvät tahdissa vuodenaikojen kanssa. Vuoden tarkka pituus on 365,2422 päivää, ja gregoriaanisessa kalenterissa on päästy hyvin lähelle sitä, 365,2425 päivään. Virhettä kertyy siis vain 0,3 päivää vuosituhannessa, koska sitä korjataan karkauspäivin joka neljäs vuosi.

Lisäksi maapallon pyöriminen hidastuu ja tätä täytyy kompensoida karkaussekunnein aina silloin tällöin.

Gregoriaaninen kalenterissa vuosi vaihtuu 1. tammikuuta, ja ajanlaskun alku on laitettu munkki Dionysius Exiguuksen 500-luvulla laskemaan Jeesuksen syntymävuoteen. Nimensä kalenteri on saanut paavi Gregorius XIII:lta, joka määräsi aiempaa Julius Caesarin aikana tehtyä kalenteria parannettavaksi.

Syynä oli lähinnä se, että pääsiäisen aika oli siirtynyt kalenterin mukaan kauaksi alkuperäisestä ajankohdastaan: pääsiäinen kun on määritelty kevätpäiväntasauksen jälkeisen täydenkuun jälkeineksi sunnuntaiksi, ja kun kevätpäiväntasaus 21. maaliskuuta oli 1500-luvulle tultaessa vähitellen siirtynyt kymmenisen päivää myöhemmäksi, pelättiin keväisen pääsiäisen siirtyvän lopulta kesään.

Uusi kalenteri otettiin käyttöön vuonna 1582. Vähitellen se omaksuttiin koko Euroopassa, ja Suomessa (ja Ruotsissa) sen käyttöön siirryttiin 1753.

Vallankumouskalenteri

Ranskassa noudatettiin 1700-luvun lopussa myös gregoriaanista kalenteria. Kun vallankumoukselliset voimat alkoivat ravistella maata 1792, haluttiin eroon paitsi kuninkaasta, aatelistosta ja feodaaliyhteiskunnan rakenteista, niin myös kaikesta niihin ja kirkkoon liittyvistä traditioista.

Uusi, uljas tasavalta piti perustaa järjen ja tieteen avulla. Siksi myös kalenteri haluttiin uudistaa – tosin syynä oli myös se, että uuden kalenterin haluttiin heijastavan uuden ajan alkua.

Calendrier républicain, eli tasavaltalaiskalenteri (tai calendrier révolutionnaire, vallankumouskalenteri) otettiin käyttöön toisen vuoden viinisatokuukauden 14. päivänä, eli 4. lokakuuta 1793, jolloin kalenteri määrättiin alkavaksi takautuvaksi 22. syyskuuta 1792, eli päivänä, jolloin Ranska julistettiin tasavallaksi.

Olennaisin osa kalenteria oli muuttaa kaikki mahdollinen kymmenjärjestelmän mukaiseksi. Vuodessa oli 12 kuukautta, joissa oli tasan 30 päivää. Kuukaudessa oli kolme kymmenpäivästä viikkoa, eli dekadia.

Aivan aluksi kuukausiin viitattiin vain numeroin, mutta pian niille annettiin runolliset nimet, jotka liittyivät vuodenaikoihin. Päivät nimettiin työkalujen, kasvien ja eläinten mukaan.

Nimet olivat itse asiassa kovin kauniita (lista muokattuna Wikipediasta):

Syksy:
Vendémiaire (pohjana sana sato tai viinisato) alkoi 22. syyskuuta
Brumaire (usva) alkoi 22. lokakuuta
Frimaire (kylmyys) alkoi 21. marraskuuta

Talvi:
Nivôse (luminen) alkoi 21. joulukuuta
Pluviôse (sateinen) alkoi 20. tammikuuta
Ventôse (tuulinen) alkoi 19. helmikuuta

Kevät:
Germinal (siemen) alkoi 20. maaliskuuta
Floréal (kukka) alkoi 20. huhtikuuta
Prairial (niitty) alkoi 20. toukokuuta

Kesä:
Messidor (elonkorjuu) alkoi 19. kesäkuuta
Thermidor (kuuma) alkoi 19. heinäkuuta
Fructidor (hedelmäinen) alkoi 18. elokuuta

Kahdessatoista 30-päiväisessä kuukaudessa oli se huono puoli, että jäljelle jäi vuoden lopussa aina viisi tai kuusi vuorokautta. Niille keksittiin kätevä käyttö siten, että ne määrättiin vapaapäiviksi.

Jos kalenterin muuttamisessa oli jo muutosta kerrakseen, niin niiden lisäksi myllättiin myös tunnit ja minuutit. Vuorokauteen tuli kymmenen tuntia, joissa oli sata minuuttia, joissa oli sata sekuntia.

Kellojärjestelmä muutettiin takasin vanhaksi lähes saman tien, koska sitä vastustettiin kaikkialla ja voimakkaasti. Kalenteri kesti kuitenkin 14 vuoden ajan, sillä Napoleon palautti vanhan gregoriaanisen kalenterin käyttöön vuonna 1802. Sitä ennen vallankumoukselliset olivat kuitenkin ennättäneet monien muiden mukana mestata valtaosan uuden kalenterin kehittäjistä.

Nyt tasavaltalaiskalenteria voi käyttää muun muassa hupiin: oman syntymäajan voi muuttaa esimerkiksi tasavaltalaispäivämääräksi tai kuukausien sekä päivien nimiä voi ihailla runollisessa mielessä.

Ihan pelkkää historiaa ei kalenteri kuitenkaan ole vielä, sillä joihinkin vallankumouksen tapahtumiin viitataan niiden vallankumouskalenterin mukaisilla päivämäärillä (kuten Thermidor-käänne tai Brumairekuun vallankaappaus).

Housujenkäyttölupa

Tasavaltalaiskalenterin päivämääriin törmää edelleen myös esimerkiksi lainsäädännössä, koska monet edelleen käytössä olevat lakipykälät ovat peräisin vallankumouksen ajalta.

Suurin osa niistä on kuitenkin jo kumottu, kuten esimerkiksi vuonna 2012 kuopattu laki siitä, että naisten pitää anoa lupa housujen käyttämiseen julkisella paikalla. Lakia ei koskaan sovellettu, mutta poliisi antoi lupalappuja niitä pyytäneille lainkuuliaisille naisille. Lapussa lukee päivämäärä vallankumouskalenterin mukaan. 

Housulaki on myös kiinnostava siksi, että vuonna 2012 siitä keskusteltaessa huomattiin, että se oli laiton laki. Se kun oli räikeässä ristiriidassa ihmisten tasa-arvon ja vapauden kanssa, mitkä olivat perustuslain eräitä kulmakiviä. 

Venäjän vallankumouskalenteri

Myös Neuvostoliitossa oli käytössä vallankumouskalenteri. Lenin määräsi kalenterit vaihdettavaksi vuonna 1929 Ranskan vallankumouskalenterin kaltaiseksi, tosin kuukausien romanttisrunolliset nimet unohdettiin ja korvattiin väreillä. Tarkoituksena oli sielläkin näyttä keskisormea uskonnolle ja ottaa perustaksi kymmenjärjestelmä ajanlaskussakin. 

Tarkoitus oli lisätä työtehoa, joten työläiset jaettiin viiteen ryhmään, joista kullakin oli vapaapäivänään yksi viikon päivistä. Näin tehtaat pyörivät koko ajan, paitsi että niin ei käynyt: tuotanto ei tehostunut. Kalenteri haittasi elämää, ja oli hyvin epäsuosittu. Siitä luovuttiinkin vuonna 1931, tosin virallisesti vasta 1940. Siksi esimerkiksi yllä oleva vuoden 1933 kalenteri painettiin, vaikka niitä ei enää käytetty.

Tiedetöppäysjoulukalenteri 20: Penisilliini

Pe, 12/20/2019 - 17:28 Jari Mäkinen
Alexander Fleming

Jos et siivoa kunnolla pöytääsi – tai laboratoriotasi – niin älä ota turhia paineita: saatat olla kuten Alexander Fleming, joka löysi penisilliinin. Joskus töppäys tuottaa hyödyllisen yllätyksen.

Jos asian ilmaisee poliittisen korrektisti, niin Alexander Flemingillä oli varsin rento ote työympäristönsä siisteyteen.

Hän oli tutkijana Lontoossa St. Mary's Hospitalissa, Pyhän Maarian sairaalassa, ja hänen tärkein kiinnostuksen kohteensa olivat antibakteeriset aineet. Hän oli vuoteen 1927 mennessä saanut jo mainetta muun muassa stafylokokki-bakteerien ominaisuuksien selvittämisestä, ja hän oli edennyt sairaalan rokotusosaston johtajaksi.

Fleming oli tunnettu siitä, että hänen työhuoneensa ja tutkimuslaboratorionsa oli yleensä varsin sekaisin. Ei siksi ollut mikään ihme, että hän lähti kesälomalleen vuonna 1928 siten, että laboratorioon jäi paljon pesemättömiä bakteerikasvatuslaseja. Siivoamisen sijaan hän vain vei ne labran kulmaan, ja lomille lomps.

Kun hän tuli takaisin 3. syyskuuta 1928, hän tutkiskeli pesemättä jääneitä kasvatusmaljoja ja huomasi, että yhdessä niistä oli sienirihmastoa, jonka ympäriltä kaikki bakteerit olivat kuolleet. Muissa laseissa sen sijaan oli stafylokokkeja totuttuun tapaan.

 

Flemingin petrilasi

Fleming näytti kummallista petrilasia aiemmin hänen apulaisenaan olleelle Merlin Prycelle, joka muistutti heti Flemingiä siitä miten hän oli löytänyt vuonna 1921 lysotsyymin, antiseptisen entsyymin. Se näytti tappavan kaiken läheltään.

Tarkemmin homepesäkettä tutkiessaan Fleming totesi sen kuuluvan Penicillium-sukuun ja että se eritti ympärilleen ainetta, joka häiritsi bakteerien kasvua. Tarkemmissa tutkimuksissa home määrittettiin Penicillium moratumiksi, ja siitä erittyvä aine nimettiin penisilliiniksi. 

Fleming ounasteli jo tuolloin, että siitä saattaisi tulla varsin tehokas lääke monien sairauksien hoitamiseen, mutta ei uskonut sen suurempiin mahdollisuuksiin. Ongelmana kun oli se, että aineen tekeminen puhtaana oli vaikeaa. Se osoittautuikin todella hankalaksi. Penisilliiniä ei onnistuttu tuottamaan suuria määriä, minkä vuoksi sitä ja sen ominaisuuksia lähinnä tutkittiin. 

Toisen maailmansodan aikaan Yhdysvalloissa tarvittiin kuitenkin paljon antiseptisiä aineita, minkä vuoksi myös penisilliinin massatuotantoa alettiin pohtia tarkemmin. Teollinen tuotanto alkoi vuonna 1943, kun oli löydetty Penicillium notatum -laji, jonka kasvatus elatusaineessa onnistui hyvin. 

Vuoden 1944 aikana tuotantomäärät kasvoivat olennaisesti, ja sodan päätyttyä penisilliiniä saatiin myös siviilikäyttöön muuallakin kuin Yhdysvalloissa ja sen liittolaismaissa.

Nyt penisilliini katsotaan ensimmäiseksi moderniksi antibiootiksi.

Tämä laboratoriohygienian laiminlyöntiin liittyvä töppäys palkittiin vuonna 1945 Nobelin fysiologian ja lääketieteen palkinnolla. Fleming sai sen yhdessä Oxfornin yliopistossa penisilliiniä tutkineiden Howard Floreyn ja Ernst Boris Chainin kanssa.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri 19: Agakonnat tuholaistorjujina

To, 12/19/2019 - 08:34 Jarmo Korteniemi
Agakonna käsissä

Hyvää tarkoittava biologinen tuholaistorjunta aiheuttaa joskus itsessäänkin merkittäviä ympäristöongelmia. Näin kävi agakonnien kanssa Australiassa ja vähän muuallakin.

Tämänkertainen tiedemoka ei ole sataprosenttisen tieteellinen, sillä hommassa on vain hutkittiin kunnolla ennen kunnollista tutkimusta. Tulokset ovat kuitenkin sitä luokkaa, että moka sopinee sarjaan.

Australialaisilla sokeriruokoviljelmillä oli 1900-luvun alkupuolella paha ongelma. Sadot tuhoutuivat, koska sikäläiset kovakuoriaislajit Dermolepida albohirtum ja Lepidiota frenchi olivat ikävän persoja sokeriruo’oille. Kuoriaisten toukat popsivat viljelyskasvien juuria, ja eloon jääneiden ruokojen lehdet päätyvät aikuisten kuoriaisten suihin.

Kuoriaisista oli päästävä jotenkin eroon.

Ongelma on yksinkertainen, ja niin ratkaisunkin luultiin olevan. Helpointa oli tuoda alueelle jokin otus syömään tuholaiset pois, tai ainakin vähentämään iljetyksiä sen verran etteivät sadot täysin tuhoudu.

Viljelmille päätettiin tuoda agakonnia (Rhinella marina). Ne ovat alunperin Keski- ja Etelä-Amerikan manneralueelta kotoisin olevia suuria rupikonnan sukulaisia. Isoimmat 24 cm pitkät yksilöt painavat lähes puolitoista kiloa. Ja konnat ovat tunnetusti oikeita petoja popsimaan hyönteisiä.

Agakonnat olivat tuolloin muotia, sillä otukset olivat vastikään poistaneet kuoriaiset tehokkaasti Puerto Ricon sokeriruokoviljelmiltä. Asiasta kirjoitettiin oikein Nature-tiedelehdessäkin, otsikolla ”Toads save sugar crop”. Tämän innoittamana otuksia siirrettiin vastaaviin tehtäviin monille monille Karibian ja Tyynenmeren saarille, Floridaan, sekä Australiaan.

Kuulostaako hyvältä? Niin myös australialaisista. Vuonna 1935 Queenslandin viljelmille vapautettiin 102 agakonnaa. Otusten syömiskäyttäytymistä tutkittiin vuoden ajan, minkä jälkeen niitä istutettiin alueelle 62 000 lisää. Konnat alkoivat viihtyä alueella hyvin. Aivan liian hyvin.

Agakonnat kyllä söivät ruokojen tuholaisia, mutteivät isoina ja kömpelöinä otuksina oikein osanneet kiivetä aikuisten kuoriaisten luo sokeriruokojen lehdille. Lisäksi ruokoviljelmät olivat konnille liian avonaista ja kuumaa maastoa. Ne levittäytyivät ympäristöön.

Agakonna

Agakonnan englanninkielinen nimi cane toad eli ”ruokokonna” viittaa myös tuholaistorjuntakäyttöön. Lajin tieteellinen nimi R. marina sopisi sinällään myös tiedetöppäykseksi, koska se viittaa merelliseen elinympäristöön, vaikka todellisuudessa agakonna ei sellaisessa ollenkaan viihdy. Tästä oudosta väärinkäsityksestä saamme kiittää Carl von Linnéä, joka perusti näkemyksensä vielä aiemman eläintutkijan Albertus Seban piirrokseen. Tieteilijöiden toisinaan harrastamista toisen käden tulkinnoista saisi aikaiseksi todella monta lisäluukkua! Kuva: Flickr / Sam Fraser-Smith.

 

Agakonnat syövät mitä ikinä kiinni saavatkin: hyönteisiä, jyrsijöitä, liskoja, mutta myös kasveja, koiranruokaa, kotitalousjätettä ja raatoja. Kun jokainen naaras lisäksi tuotti vuodessa tuhansia munia, joista noin 50–100 saavuttaa sukukypsyyden, konnien populaatio lähti pian lähes eksponentiaaliseen kasvuun.

Kyllä luonto hoitaa, sanottiin. Ja tokihan australialaiset pedot oikein mielellään söivätkin tätä uutta yleistyvää ja näennäisen helppoa saalista. Seuraukset tosin olivat tuhoisat, sillä agakonnien selässä ja niskassa on myrkkyrauhasia. Myös munat ja nuijapäät ovat tappavan myrkyllisiä. Ainoastaan nuoret konnat ovat jonkin aikaa myrkyttömiä lähestyessään sukukypsyyttä.

Useimmat agakonnan syöntiä yrittäneet otukset kuolivat. Australiassa ei luontaisesti elä muita konnalajeja, joten pussipedoilla ei ollut mitään mahdollisuuksia agakonnien vahvan myrkyn edessä. Pahiten kärsi pirunkissa (oikealta nimeltään siirohäntäkvolli), jonka kannasta tuhoutui 97 prosenttia. Samoin kävi monille käärme- ja varaanilajeille sekä yhdelle krokotiilille. Kyseisten petojen aiemmat saaliseläimet pääsivät samalla yleistymään ongelmaksi asti. Toiset lajit taas taantuivat kun konnat tulivat kilpailemaan niiden ruuista.

Tätä nykyä Australiassa arvioidaan olevan yli 200 miljoonaa agakonnaa.

Kun otusten tiheys on Amerikoissa enimmillään 20 yksilöä sadalla metrillä, Australiassa se voi olla 2000–4000 yksilöä. Nykyään konnia löytyy pitkältä pätkältä Australian pohjois- ja itärannikolta. Esiintymisalueen länsirajan konnille on lisäksi kehittynyt normaalia suuremmat jalat, mikä mahdollistaa pidemmät kulkumatkat. Konnarintama etenee tällä haavaa länteen noin 60 kilometriä vuodessa.

Agakonnia yössä

Konnien leviämistä on vaikea estää. Aikuisten pyydystämiseen tai tappamiseen keskittyminen on liian hidas keino, ja loukkuihin jää muitakin eläimiä. Konniin tarttuvat taudit taas saattaavat levitä myös paikallisiin sammakkolajeihin. Geenimanipulaation kautta voisi ehkä puuttua konnien lisääntymismenestykseen, mutta tätä ei vielä olla käytännössä testattu.

Paikallisia petoja on nyt alettu kouluttamaan pysymään erossa agakonnista. Opetuskeino on maastoon levitetty myrkytön konnanliha, johon on sekoitettu oksennusrefleksin käynnistäviä kemikaaleja. Muutamat lintulajit taas ovat oppineet itsenäisesti kääntämään konnat selälleen ja näin välttämään myrkyllisen selkäihon, toiset taas syövät vain konnien sisäelimiä.

Myös jotkut Australian alkuperäisetkin eläimet ovat joutuneet tulilinjalle konnapelon varjolla. Agakonnien väritys vaihtelee hyvin paljon, joten myös aussisammakoita on usein luultu nuoriksi agakonniksi. Näin on tehty jopa alueilla, jossa agakonnia ei esiinny (vielä).

Agakonna ei missään nimessä ole Australian ainoa vieraslajivitsaus. Se on kuitenkin harvinaisen hyvä esimerkki siitä, kuinka vieraslaji – alueelta toiselle ihmisen avulla nopeasti siirretty eliö – saattaa uudessa paikassa alkaakin toimia aivan eri tavalla kuin kotonaan.

Miten agakonnille on käynyt muissa paikoissa joihin niitä on istutettu? Lähes samalla tavoin kuin Australiassa, tietysti. Agakonna on yksi maailman tuhoisimmista vieraslajeista. Niin, ja se siirtobuumin liikkeelle saanut Puerto Ricon tuholaiskuoriaisten kannan romahduskaan ei olla agakonnien ansiota, vaan johtui tiettävästi vuosia kestäneistä saaren historian mittavimmista sateista.

Entäs ne Australian tuholaiskuoriaiset sitten?

Ne on saatu kuriin suhteellisen hyvin hyöneismyrkyillä, joilla tosin jokaisella on omat haittapuolensa.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri 18: Linus Pauling ja helixmoka

Ke, 12/18/2019 - 07:05 Jari Mäkinen
Linus Pauling

Linus Pauling on varmasti eräs viime vuosisadan suurimpia tutkijoita. Hän sai kaksi Nobelin palkintoa, ja jos ei olisi töpännyt pahasti DNA:n rakenteen selittämisessä, olisi kolmaskin saattanut olla hänelle tarjolla.

 

Deoksiribonukleiinihappo, eli lyhyesti DNA, pitää sisällään kemiallisesti koodattuna kaikkien eliöiden solujen ja joidenkin virusten geneettisen perimätiedon. Sen periaatteet ja DNA:n  kaksoiskierreketjumaisen rakenteen löysivät Francis Crick ja James Watson vuonna 1953 ja saivat siitä Nobelin vuonna 1962.

Monilahjakkuus Linus Pauling oli 1950-luvulle mennessä ennättänyt jo keksimään paitsi nimeään kantavat ionisesti sidottujen materiaalien rakennetta määräävät säännöt, niin myös atomien orbitaalit ja elektronegatiivisuuden. Vaikka näillä oli suurta merkitystä fysiikankin puolella, oli Pauling ennen kaikkea kemisti – hänen ensimmäinen Nobelinsakin oli kemian palkinto, ja se annettiin silikaattien kaltaisten suurten epäorgaanisten rakenteiden rakenteen selvittämisestä.

Toinen Nobel oli rauhanpalkinto, mutta se olisi oman tarinansa väärti.

Pauling oli assistenttinsa Robert Coreyn kanssa tutkinut myös orgaanisen kemian puolella proteiinin osien ja aminohappojen molekyylirakenteita.

Yleisesti ottaen ennen 1950-luvun alkua tutkijat eivät välittäneet juurikaan DNA:sta. 20-luvulta alkaen tiedettiin, että geenit sijaitsevat kromosomeissa, jotka ovat soluissa olevia aminohappoja ja proteiineja. Useimmat ajattelivat, että proteiinit ovat tärkeämmässä osassa, koska vain ne voivat olla tarpeeksi monipuolisia. Yksinkertaiset aminohapot tuntuivat niihin verrattuna aivan liian primitiivisiltä.

Myös Pauling oli sitä mieltä, että juuri proteiinit ovat avain geenien ymmärtämiseen. Hän julkaisi keväällä 1951 samanaikaisesti seitsemän artikkelia, joissa hän kuvasi proteiinien rakenteita molekyylitasolla.

Tärkein niistä oli alfa-helix, kolmikierteinen perusmuoto.

Linus Paulingin DNA-malli

Pauling oli ensimmäinen tutkija, joka mallinsi nämä perusproteiinirakenteet molekyylitasolla. Hänen pitkäaikainen kilpailijansa Sir William Lawrence Bragg jäi juuri toiseksi. Myöhemmin Bragg nousi jälleen esiin, tosin vain siksi, että Watson ja Crick tulivat hänen laboratoriostaan.

Kiinnostavaa tämän tarinan kannalta on kuitenkin se, että Pauling päätyi ehdottamaan alfa-helix -rakennetta geeneille vastoin havaintojen antamia vinkkejä.

Oswald Avery oli julkaissut jo vuonna 1944 artikkelin pneumokokkibakteereilla tekemistään kokeista. Ne viittasivat siihen, että geenit olisivat aminohappoja. Pauling oli tietoinen näistä tuloksista, mutta päätti olla hyväksymättä niitä. Hän oli niin innostunut proteiineista ja halusi selittää geenit niillä.

Oli röntgenkuvia, jotka osoittivat selvästi kaksoiskierteen suuntaan, mutta Pauling tulkitsi ne liian epäselviksi. Sitten hän tulkitsi DNA:n tiheyden väärin, koska selvästikin ei halunnut uskoa siihen. 

Pauling oli kauniisti kolmoiskierteenä kuvailemiensa proteiinien sokaisema.

Ironista on se, että hän itse oli jo 40-luvulla miettinyt sitä, että geenit voisivat olla kaksi toisiaan tukevaa rakennetta, jotka voisivat kopioida toisiaan hieman samaan tapaan kuin Watson ja Crick myöhemmin selittivät.

Yksi asia on kuitenkin varmaa: Paulingin merkitys DNA:n rakenteen löytämisessä on merkittävä, koska kaikilla sen selvittämiseen osallistuneilla henkilöillä oli työpöydällään vuonna 1939 julkaistu Paulingin kirja The Nature of the Chemical Bond.

Paulingin muistiinpanoja

Paulingista ja DNA:n olemuksen selvittämisestä on netissä kerrassaan mainio sivusto: Linus Pauling and The Race for DNA. Yllä oleva sivu Paulingin muistiinpanoista on sieltä.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri 17: Nylanderin jäkäläpäähänpinttymä

Ti, 12/17/2019 - 07:49 Jari Mäkinen
William Nylander ja jäkälää joulukehyksessä

Simon Schwendener (1829 – 1919) oli sveitsiläinen kasvitieteilijä, joka esitti ensimmäisenä kunnollisen ja oikeaksi osoittautuneen selityksen jäkälistä. Hän ei ole tämän tarinan päähenkilö.

-

Jäkälät (Lichenes) on symbioottinen eliöryhmä, joka koostuu sienestä ja mikroskooppisista viherlevistä tai syanobakteereista. Jäkälälajeja arvioidaan olevan noin 17 500–20 000, joista Suomessa esiintyy noin 1 500 lajia.

Jännää jäkälissä on se, että niiden sieniosakkaat voivat lisääntyä suvullisesti. Itiöt syntyvät kotelomaljoissa tai -pulloissa. Koska oikean leväosakkaan muodostaminen uudeksi jäkäläksi voi olla varsin vaikeaa, suosivat useat jäkälät suvutonta lisääntymistä: tyypillinen lisääntymistapa on jäkälän pienten palasten leviäminen tuulen mukana. Näissä paloissa on sienirihmastoa ja leväsoluja, jotka voivat jatkaa elämäänsä ja kasvaa muualla.

1800-luvun puolivälissä jäkälät olivat kuitenkin mysteeri. Simon Schwendener tutki mikroskoopilla suuren määrän erilaisia jäkäliä, leviä ja sieniä sekä seurasi niiden kehittymisestä, kunnes päätyi hypoteesiinsa jäkälien kaksijakoisesta olemuksesta vuonna 1867.

Se ei saanut aikanaan paljoakaan suosiota, vaikka se on jälkikäteen todettu oikeaksi.

Tämän tarinan töppäys ei siis ole Schwendenerin ajatus siitä, että jäkälä koostuu levästä tai syanobakteerista ja sienestä, vaan se, kuinka ponnekkaasti tunnetutkin tutkijat vastustivat aikanaan Schwendenerin hypoteesia.

Eräs nimekkäimmistä vastustajista oli Helsingin yliopiston ensimmäinen kasvitieteen professori William Nylander, aikansa jäkälätuntija-auktoriteetti.

Nylander tutki jäkälien esiintymistä eri puolilla maailmaa ja erikoistui trooppisten alueiden jäkäliin. Kaikkiaan hänen arvioidaan kuvanneen noin 3 000 jäkälälajia tai -muotoa. Hänen julkaisujensa kokonaismäärä on yli 300, ja julkaisut käsittävät yli 4 000 sivua.

Kasvitieteellinen museo Kaisaniemen kasvitieteellisessä puutarhassa

Nylander muutti 1863 vapaaksi tutkijaksi Pariisiin, missä hän keräsi valtavan jäkäläkokoelman. Nyt sitä säilytetään Helsingin yliopiston alaisen Luonnontieteellisen keskusmuseon Kasvimuseon (kivirakennus taka-alalla) sieniosastolla, ja se käsittää yli 51 000 näytettä.


 

Kaikesta erinomaisuudestaan huolimatta Nylander ei siis suostunut uskomaan Schwendenerin teoriaa jäkälistä, koska se oli niin maalaisjärjen vastainen. Suomalaistutkija ei itse asiassa vain vastustanut teoriaa, vaan myös katkaisi pitkätkin yhteytensä kollegoihinsa, jotka kannattivat Schwendenerin teoriaa tai eivät vastustaneet sitä riittävän selvästi.

No, Nylander oli muutenkin hieman hankala tyyppi, sillä hän oli muissakin asioissa kahnauksissa lähes kaikkien muidenkin kanssa. Hän oli omahyväinen askeetti, joka eli hyvin vähällä ruoalla eikä kuunnellut musiikkia tai lukenut kirjallisuutta.

Tunnetuin Nylanderin vihan kohteeksi joutunut tutkija oli ranskalainen Louis Pasteur.

Hänen kerrotaan todenneen, että ”jos minulla olisi itsestäni yhtä huono käsitys kuin muilla ihmisillä on minusta, ehkä en jaksaisi elää päivääkään, mutta jos he taas tietäisivät, että olen älykkäämpi, etevämpi ja miellyttävämpi kuin he kuvittelevat, he hämmästyisivät ja inhoaisivat minua vielä enemmän, koska tulisivat kateellisiksi.”

Tämän tarinan opetus on kuitenkin se, että vaikka nimekäskin tutkija asettuu poikkiteloin monien muiden hyväksymää teoriaa vastaan, niin totuus voittaa lopulta.

Tässä tapauksessa monet muut kasvitieteilijät, kuten Heinrich Anton de Bary, Albert Bernhard Frank, Melchior Treub ja Hermann Hellriegel suhtautuivat aluksi epäillen Schwendenerin hypoteesiin, mutta huomasivat pian sen pitävän paikkansa. 

Viimein vuonna 1939 kaikki epäilykset hälvenivät, kun Eugen Thomas julkaisi tuloksensa jäkälillä tekemistään lisääntymistutkimuksista.

Kenties silloin Nylanderkin kääntyi haudassaan.

-

Lue lisää jäkälistä Suomen jäkäläoppaasta, joka voitti Tieto-Finlandian vuonna 2011. Kirjasta on myös englanninkielinen versio. Kirjan voi tilata kätevästi vaikkapa täältä.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri 16: Valoakin nopeammat neutriinot

Ma, 12/16/2019 - 06:41 Jari Mäkinen
Gran Sasson OPERA-koelaitteistoa joulukehyksissä

Vuonna 2011 kansainvälisen OPERA-kokeen tutkijat ilmoittivat havainneensa merkkejä siitä, että neutriinot voisivat kulkea valoakin nopeammin. Ilmoitus sai aikaan tietysti suuren haloon, koska periaatteessa mikään ei voisi kulkea nopeammin kuin valo. Havainto paljastui sittemmin vääräksi, mutta opettavaiseksi: piuhat kannattaa kiinnittää kunnolla.

-

Jos Italiassa haluaa ajaa Roomasta nopeasti Adrianmeren rannalle, kannatta käyttää Gran Sassossa vuorten läpi vievää moottoritietunnelia.

Jotakuinkin tunnelin puolivälissä, syvällä vuoren uumenissa, on tiessä yllättäen risteys ja sen kohdalla tienviitta. Viitassa lukee "Laboratori Nazionali del Gran Sasso".

Gran Sasson kansallinen laboratorio on maanalainen tutkimuslaitos, missä tehdään pääasiassa neutriinoihin liittyvää tutkimusta. Hyvin huonosti aineen kanssa vuorovaikuttavat neutriinot kulkevat kätevästi suurtenkin kivimassojen läpi, jopa planeettamme läpi, ja paras paikka tutkia niitä on mennä syvälle Maan alle.

Eräs tällainen tutkimushanke oli OPERA, eli Oscillation Project with Emulsion-tRacking Apparatus. Suuri neutrinoita havaitseva koeasema valmistui vuonna 2008 Gran Sasson laboratorion C-halliin, ja se oli toiminnassa vuoteen 2012 saakka.

Se havaitsi Genevessä sijaitsevasta Euroopan hiukkastutkimuskeskus CERNistä lähetettyjä neutriinoita, ja tarkoitus oli havaita oskilloituneita taun neutriinoita.

OPERA-koe

Yksinkertaistettuna koe oli sellainen, että CERNissä tuotettiin 10,5 mikrosekunnin neutriinopulsseja, jotka havaittiin Gran Sassossa 730 kilometrin päässä olevassa ydinemulsiofilmejä käyttävässä koeasemassa. 

Neutriinoiden matka-aika mitattiin tarkasti moninkertaisesti varmennetulla ja tarkistetulla laitteistolla, missä oli kummassakin päässä atomikellot ja GPS-vastaanottimet. Paikannussatelliiteista saadaan erittäin tarkka aikasignaali, ja tätä itse asiassa käytetään arkisemmissakin sovelluksissa (kuten parkkimittareissa ja pankkitoiminnassa).

Ja sitten kävi niin, että maaliskuussa 2011 huomattiin neutriinojen vipeltävän matkan noin 60 nanosekuntia nopeammin kuin valolta kuluisi samaan matkaan. Neutriinot siis näyttivät kulkevan tunnetun fysiikan vastaisesti valoa nopeammin.

Tarkistusten jälkeen tutkijat uskalsivat julkistaa asian syyskuussa 2011. Tätä neutriinojen nopeuteen liittyvää "anomaliaa" ei pystytty selittämään laitteistoon liittyvillä asioilla, vaan tutkijat – tietoisena löytönsä merkityksestä – kehottivat tutkimusyhteisöä kiinnittämään asiaan huomiota ja tarkistamaan olisiko muualla saatu samankaltaisia tuloksia.

Jos havainto olisi pitänyt paikkansa, kyseessä olisi tosiaankin ollut mullistus. Suhteellisuusteoria olisi mennyt uusiksi, ja samoin paljon muutakin fysiikassa.

Tutkijat kävivät kiinni haasteeseen. Ensiksi työhön otettiin Gran Sassossa myös olleet neutriinokoeasemat ICARUS, BOREXINO ja LVD, eikä niissä havaittu merkkejä ylinopeudella kiitävistä neutriinoista. Muuallakaan ei löydetty merkkejä kummallisuuksista.

Myös OPERA:n laitteistoja syynättiin tarkasti, ja kävikin ilmi, että GPS-vastaanottimen signaalia tietokoneeseen syöttävä valokuitu oli ollut vähän löysällä. Kun kaapeli kiinnitettiin kunnolla, niin tulokset muuttuivat normaaleiksi: neutriinojen matka-aika piteni sen verran, että ne eivät enää kulkeneetkaan ylivalonnopeutta.

Heinäkuussa 2012 OPERA-tutkimisryhmä julkisti kokeensa tulokset vuosilta 2009–2011, ja näissä virheelliset tulokset oli kalibroitu ja yhdistetty tiukasti kiinni olleella valokuidulla tehtyihin kokeisiin. Nyt neutriinojen nopeus oli hyvin tarkasti odotetun kaltainen.

-

Otsikkokuvassa on OPERA:n tietokoneita ja kaapeleita. Kuva: S. Schiavon/LNGS-INFN.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 15. Einsteinin suurin moka

Su, 12/15/2019 - 12:31 Jari Mäkinen
Einstein näyttää kieltä

Albert Einstein oli eräs 1900-luvun suurimmista tiedemiehistä, mutta ei hänkään ollut erehtymätön. Niin sanottu kosmologinen vakio oli hänen suurin harha-ajatuksensa.

-

Kosmologinen vakio on kummajainen, jonka Einstein vuonna 1916 julkaisema Yleinen suhteellisuusteoria pitää sisällään. Kun suhteellisuusteoria johti eittämättä siihen tilanteeseen, että maailmankaikkeus romahtisi kasaan ainetiheytensä vuoksi, oli kätevin tapa "korjata" vika lisätä kaavoihin vakio, joka pitäisi maailmankaikkeuden staattisena. Se olisi ikäänkuin antipainovoimaa.

Sen tausta on kuitenkin ymmärrettävä, sillä 1900-luvun alussa kuvamme maailmankaikkeudesta oli hieman erilainen kuin nykyisin. Emme tietäneet kunnolla esimerkiksi etäisyyksiä selvästi Aurinkokunnan ulkopuolella oleviin kohteisiin, kuten galakseihin, emme tietäneet paljonko kaikenkaikkiaan on ainetta, ja koko käsitys siitä, millainen maailmankaikkeus on, oli epäselvä.

Tilanne oli kuitenkin muuttumassa jo Einsteihin pohtiessa suhteellisuuttaan.

Vesto Slipher havaitsi vuonna 1912 galaksien punasiirtymän, ja kun punasiirtymän tiedettiin syntyvän suhteellisesta nopeuserosta, ymmärrettiin galaksien etääntyvän meistä. Alexander Friedmann osoitti vuonna 1922 (Einsteinin kaavoilla!), että maailmankaikkeus laajenee. Vuonna 1927 Georges Lemaître ehdotti, että galaksien etäisyys on verrannollinen niiden etääntymisnopeuteen. Kaksi vuotta myöhemmin Edwin Hubble osoitti tämän todeksi havainnoillaan.

Kun kaikki viittasi siihen, että maailmankaikkeus laajenee, ei Einstein sätkinyt vastaan, vaan totesi kosmologisen vakion olevan "elämänsä suurimman virheen". 

Se ei kuitenkaan ollut sitä, sillä vuonna 1998 päädyttiin jo aiemmin olleisiin havaintoihin ja ajatuksiin perustuen siihen ajatukseen, että maailmankaikkeus ei olekaan vain laajenemassa, vaan laajeneminen vain nopeutuu ajan kuluessa. Mitä kauemmaksi tulevaisuuteen mennään, sitä nopeammin universumi laajenee.

Siis: jonkinlainen kosmologinen vakio onkin tarpeen, mutta juuri päinvastoin kuin Einstein aikanaan oletti. Sen tarkoitus ei ole pitää maailmankaikkeus vakiokokoisena, vaan kuvata sen kiihtyvää laajenemista.

Voisi siis sanoa, että Einsteinin suurin virhe oli olettaa kosmologisen vakion olleen virhe.

Einsteinin liitutaulu

Oxfordin yliopiston tieteenhistorian museossa on liitutaulu, jota Einstein käytti toukokuussa 1931 pitäessään Oxfordissa kolme kuuluisaa luentoa. Keskimmäinen niistä käsitteli kosmologiaa, ja vaikka kirjoitukset eivät ole aitoja, tuolta luennolta säilyneitä, on liitutaulu esillä museossa kosmologian esitelmän kaavat pintaansa kirjoitettuina. 

Esitelmässään Einstein käsitteli tuoreinta maailmankaikkeuden olemusta kuvaavaa malliaan, joka tunnettaan Friedmann-Einsteinin mallina. Siinä Einstein yhdistää omat suhteellisuusteorian pohjalta tulevat ajatuksensa vuonna 1922 Alexander Friedmannin esittämään teoriaan, missä maailmankaikkeus voi laajentua ja supistua ajan myötä. 

Taulussa on muutama jännä yksityiskohta.

Ensinnäkin Einstein piti esitelmänsä saksaksi, ja siksi toiseksi alimmalla rivillä oleva valovuosi on kirjoitettu kirjaimin LJ, eli Lichttjahr.

Toiseksi taulussa on virhe – siis taas yksi Einsteinin töppäys!

Neljännellä rivillä oleva D on Hubblen vakio (jolla kuvataan maailmankaikkeuden laajenemisvauhtia) jaettuna valon nopeudella. Sen neliön arvoksi Einstein merkitsee tässä 10−53 cm−2, vaikka sen olisi pitänyt olla 10−55 cm−2. Nähtävästi Einstein on erehtynyt muuttaessaan megaparsekeja senttimetreiksi, jolloin tuloksena on varsin suuri virhe.

Einstein korjasi sen myöhemmin, mutta se on jäänyt elämään mm. tässä liitutaulussa.

Kirjoitimme liitutaulusta Tiedetuubissa vuonna 2013.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 14. Superlahjakkuudesta hylkiöksi

La, 12/14/2019 - 07:07 Jari Mäkinen
John Hughes-Darseen twitterkuva

Ei ole mikään salaisuus, että monet kirjoittavat CV:n näyttämään lievästi todellisuutta paremmalta. Toiset pudottelevat tunnettujen ja/tai arvostettujen henkilöiden nimiä antaen ymmärtää, että he ovat hyviäkin tuttuja. Jotkut tutkijatkin innostuvat listaamaan ansioikseen töitä ja tutkimuksia, joita ovat joko suunnitelleet, tehneet vain osittain tai ovat olleet mukana tekemässä.

-

Harva kuitenkaan menee niin pitkälle kuin John Darsee, entinen kuuluisan Harvardin yliopiston tutkija. Kaikesta päätellen hän oli ihan pätevä tyyppi, mutta innostui tavoittelemaan suurempaa mainetta vippaskonstein.

Hän tehtaili väärennettyjä tutkimustuloksia.

Darsee opiskeli Notre Damen yliopistossa (Indianassa, Yhdysvalloissa, ei Pariisissa) ja valmistui lääkäriksi Indianan yliopistosta vuonna 1974. 

Hän oli erinomainen opiskelija ja aloitti uransa tutkijana Emory-yliopistossa, Atlantassa. Vuonna 1979 hän siirtyi Harvardiin, missä hän erikoistui sydäntautien tutkimukseen. Vähän yli vuoden aikana hän teki viisi upeaa artikkelia, jotka otettiin arvostettuihin tutkimusjulkaisuihin. Ei ihme, että Harvardin sydäntutkimuslaboratorion johtaja Eugene Braunwald piti nuorta tutkijalupausta kiinnostavimpana kaikista 130 tutkijatohtorista, joita laboratoriossa oli ollut.

Braunwald tarjosi Darseelle pysyvää tutkijanpaikkaa Harvardissa 1981.

Samaan aikaan kuitenkin muutamat Darseen kollegat olivat epäileväisiä. Voi olla, että kyseessä oli osin kateus, mutta nähtävästi takana oli myös pieni epäilys siitä, että uskomattoman nopeasti tehdyissä tutkimuksissa oli jotain hämärää.

Pian kävi ilmi, että Darsee oli vähän käsitellyt päiväkirjoja siten, että muutaman tunnin työ näytti useamman viikon työltä. Kun tämä kävi ilmi, Braunwald erotti Darseen, mutta ei kertonut tapauksesta Yhdysvaltain kansalliselle terveysinstituutille (National Institutes of Health, NIH), joka rahoitti tutkimusta.

Braunwald ja laboratoriota johtanut Robert Kroner tekivät nähtävästi varsin ylimalkaisen selvityksen Darseen töistä, sillä he eivät löytäneet muuta huomautettavaa kuin päivämäärien väärentämiset. Se nimittäin oli  vasta alkua.

Vuoden 1981 lopussa epäilykset Darseen tutkimuksia kohtaan nousivat uudelleen esille, ja nyt NIH teki niistä virallisen selvityksen. Se paljasti, että Darsee oli väärentänyt suuren määrän tutkimustukoksia kokeista, joita hän ei ollut tehnyt.

NIH rankaisi Darseetä eväämällä häneltä oikeuden tutkimusrahoitukseen kymmenen vuoden ajaksi, minkä lisäksi hänen tutkimuslaboratorionsa joutui palauttamaan 122 371 dollaria saamaansa rahoitusta.

Kun Darseen toimia tutkittiin vielä tarkemmin, kävi ilmi, että hän oli väärentänyt tuloksia jo aikaisemmin. Harvard veti takaisin kaikkiaan 30 Darseen tekemää julkaisua, ja lisäksi Emory ilmoitti, että 52 Darseen siellä tekemää artikkelia ja abstaktia ovat virheellisiä.

Kaikki kritisoivat toisiaan valvonnan puutteesta alkaen Notre Damen yliopistosta päätyen tutkimusartikkeleita hyväksyneeseen The New England Journal of Medicine -julkaisuun.

Aluksi Darsee koetti selittää, ettei ollut tietoinen mistään mahdollisesti tekemästään huijauksesta, mutta lopulta hän  julkaisi The New England Journal of Medicinessä anteeksipyynnön \"kaikista epätarkkuuksista ja valheista\".

Hän jätti tutkijanuran ja siirtyi hoitavaksi lääkäriksi. Nykyisin hän toimii bloggaajana – tosin käyttäen nimeä John Hughes-Darsee. Häntä voi seurata mm. twitterissä.

Vastaavia tarinoita on maailma pullollaan, ja niitä on myös Suomestakin. Darseen tapaus on kuitenkin yksi räikeimmistä ja tunnetuimmista.

Toinen laajaa julkisuutta saanut huijari on Diederik Stapel. Hän oli Groningenin ja Tilburgin yliopistojen kunnioitettu sosiaalipsykologian professori aina vuoteen 2011 saakka, milloin hän jäi kiinni siitä, että oli väärentänyt tutkimustuloksiaan ainakin 13 vuoden ajan. 

Kiinnostavaa Stapelin ja Darseen tapauksissa on se, että kumpikaan ei jäänyt kiinni siksi, että heidän artikkelinsa eivät läpäisseet vertaisarviointia. Kun artikkeli on muodollisesti hyvin tehty kiinnostavasta aiheesta, eikä se herätä kummastusta, niin se todennäköisesti julkaistaan, koska julkaisusysteemi hyödyttää niin tutkijoita kuin julkaisijoitakin.

Olennaista on myös se, että artikkelien tapauksessa tutkijoihin luotetaan.

Sen sijaan yleensä kollegoiden tai alaisten epäilykset johtavat huijarien jäämiseen kiinni. Lopulta näin käy aina.

Pienempää huijaamista (ja tämän hiljaista hyväksyntää) esiintyy koko ajan, mistä esimerkiksi voi nostaa erään Brysselissä nykyisin olevan poliitikon gradun.

Tiedetöppäysjoulukalenteri: 13. Edisonin 10 000 epäonnistumista

Pe, 12/13/2019 - 10:41 Jari Mäkinen
Thomas Alva Edison ja fonografi

Eilisessä Nikola Teslan vähemmän hohdokkaista ideoista kertoneessa kirjoituksessa mainittiin myös hänen kilpailijansa Edison. 

Thomas Alva Edison (1847 – 1931) oli keksijän stereotyyppi: lahjakas, työteliäs ja ennen kaikkea näppärä yhdistämään eri asioita uusiksi keksinnöiksi. Hän keksi kyllä valtavasti itsekin, mutta myös "lainasi" muiden keksintöjä ja kehitteli niitä paremmiksi sekä käytännöllisemmiksi. 

Joka tapauksessa Edison on eräs historian tuotteliaimpia keksijöitä, sillä hänen nimissään on lähes 1100 patenttia. Merkittävimpiä ovat fonografi (ensimmäinen äänentallennuslaite) ja sähkövalo.

Sähkölampun keksimiseen liittyy myös hänen tunnetuin lausahduksensa, joka liittyy lampun sisällö olevaan hehkulankaan. Edison testasi lukemattomia eri materiaaleja yrittäessään löytää sopivan langan lampun sisälle. Hän päätyi lopulta hiiltyneeseen bambuun, joka hohti valoa, kun sen läpi johdettiin sähköä.

Tarinan mukaan hän totesi jälkikäteen tästä materiaalin etsinnästä, että "en suinkaan epäonnistunut 10 000 kertaa. En epäonnistunut kertaakaan, sillä onnistuin löytämään 10 000 erilaista tapausta, jotka eivät toimineet. Ainoastaan testaamalla toimimattomia ratkaisuita pystyin löytämään sen, joka toimi."

Edisonin sähkölamppu

Edisonin sähkölampussa hehkulankana oli hiiltynyt bambutikku. Lamput tulivat myyntiin vuonna 1879. Viisi vuotta myöhemmin Alexander Just ja Franjo Hanaman Itävalta-Unkarissa keksivät käyttää volframia  mikä oli paljon kestävämpi ja jonka hyötysuhde oli parempi.


 

Edison siis keksi kaikenlaista ja kehitteli monenlaisia etenkin sähköön liittyviä laitteita. Ei ole mikään ihme, että osa niistä oli etenkin nykynäkökulmasta hulluja. Osa ei toiminut lainkaan, ja osa oli yksinkertaisesti liian edellä aikaansa.

Hän tiesi, että jotkut ideat olivat parempia kuin toiset, ja hylkäsi huonot tai toimimattomat nopeasti. Hän ei myöskään harmitellut jälkikäteen näihin "epäonnistumisiin" kulutta aikaa tai vaivaa, koska piti niitä olennaisina keksintöprosessissa.

Yksi töppäyksistä oli automaattinen ääntenrekisteröintilaite vaaleja varten. Lennätinperiaatteella toiminut laite ei saanut Yhdysvaltain päättäjiltä kannatusta, koska he pelkäsivät, etteivät voisi enää huijata vaaleissa. Vaikka tekniikka on muuttunut, nähtävästi tässä suhteessa ei ole mitään uutta poliittisella puolella.

Edison kehitti myös sähköisen kynän, laitteen, jonka avulla pystyi tekemään saman tien monta kopiota käsinkirjoitetusta paperista. Laite oli kiinnitetty kynään, jolla kirjoitettiin, ja se pystyi seuraamaan kynän kärjen liikkeitä ja monistamaan sen useille papereille sähkömoottorien avulla.

Ongelmana oli kuitenkin se, että kirjoittamiseen käytettiin mustekynää, eivätkä kopiointilaitteiden kyniä pystytty kastamaan musteeseen samaan tapaan kuin alkuräistä kynää. Niinpä Edison keksi käyttää vahapaperia, jonka pintaan kirjoitusta kopioivat kynät tekivät selvän jäljen. Se saatiin sitten näkyviin kastamalla paperi musteeseen.

Tämä osoittautui liian hankalaksi. Lisäksi sähkökynät olivat kömpelöitä ja pitivät suurta meteliä. 

Myöhemmin sähkökyniin kehitettyä tekniikkaa käytettiin nimikirjoituksia kopioiviin laitteisiin ja – yllättäen – tatuointikynissä.

Fonografi, eli äänentallennuslaite, on sähkölampun ohella Edisonin toinen kuuluisin keksintö. Sen ensimmäinen versio kuitenkin oli harmillisen epäkäytännöllinen.

Laitteessa oli tötterö, jonka pohjassa oli äänikalvo ja siinä pieni neula, joka tötteröön tulevan äänen täristämänä raaputti rullalla olevan tinapaperin pinnalle uran. Kun rulla pyöri koko ajan eteenpäin, tallentui ääni kaiverruksena tinapaperin pintaan. Ääni voitiin saada jälleen kuuluviin pyörittämällä tinapaperia pinnallaan pitävää rullaa uudelleen, jolloin neula tärähteli, sai äänikalvon värisemään ja tötteröstä kuului ääntä.

Tinapaperi oli kuitenkin haurasta ja sen pinnalle kaiverrettu ura oli hyvin herkkä. Vasta kun tinapaperin sijalle otettiin vaha, joka kuivui kovaksi äänittämisen jälkeen, laite muuttui kätevämmäksi. Myöhemmin äänilevyt käyttivät täsmälleen samaa ideaa, mutta rullan sijaan ääni oli levyn pinnalla olevassa urassa.

Ensimmäinen nauhoitus vuodelta 1877.

Ääneen liittyy myös puhuva nukke. Edison hankki Saksasta nukkeja, joiden sisälle laitettavaksi hän kehitti pienen version fonografista. Tarkoituksena oli tuottaa niitä joulumarkkinoille vuonna 1888, mutta myyntiin nuket pääsivät vasta seuraavana keväänä.

Niistä ei kuitenkaan tullut suosittuja. Lapset pelkäsivät metallista ääntä, ja lisäksi fonografin koneisto oli hyvin herkkä iskuille. Ne menivät rikki helposti. Lisäksi toimiessaankin äänen voimakkuus hiipui hädin tuskin kuultavaksi jo lyhyen käytön jälkeen.

Nuket vedettiin markkinoilta vain noin kuukauden myynnin jälkeen.

Edison kehitti myös kotiteatterin. Se perustui Edisonin aiempaan keksintöön, kinetoskooppiin, jolla pystyttiin katselemaan elävää kuvaa. Edison keksi tämän vuonna 1888. Se ei ollut projektori, vaan laite näytti filminauhan yhdelle henkilölle kerrallaan laitteen kotelossa olevan aukon kautta. Vuonna 1912 Edison teki tästä version, joka pystyi myös heijastamaan kuvaa valkokankaalle. Se oli siis eräänlainen yksinkertainen filmiprojektori, joka oli pienempi ja kevyempi kuin elokuvateattereissa käytetyt.

Itse laitteet olivat silti liian kömpelöitä kotikäyttöön, ja lisäksi kalliita. Laitteita tehtiin vain 2500 ja niistä ainoastaan 500 ostettiin.

Ongelmana oli myös se, että Edisonin laitteisiin sopi vain sitä varten tehdyt filmit. Valikoima ei ollut suuri, joten Edisonin yhtiö alkoi tuottaa filmejä. Ne olivat kuitenkin ennen kaikkea dokumentteja ja opetusohjelmia, ja suuri yleisö halusi hauskoja elokuvia. Niinpä kinetoskooppin kehitys  ja elokuvatuotanto lopetettiin vuonna 1915.

Kinetoskoopilla oli kuitenkin suuri vaikutus elokuvateollisuuden kehittymiseen, sillä sitä varten Edisonin yhtiössä kehitettiin ensimmäiset käyttökelpoiset selluloidifilmit ja omaksuttiin standardiksi muodostunut 35 mm:n kinofilmikoko.

Kinetofoni

Kun kinetoskooppiin liitettiin fonografi, saatiin kinetofoni. Kuva vuodelta 1895.


 

Kaikkein suurin Edisonin pieleen mennyt keksintö liittyi malmin käsittelyyn. Hän kehitti rautamalmin murskaamista ja seulomista varten laitteiston, missä oli suuret sähkömagneetit nappaamassa ei-rautapitoisen aineksen seasta rautapitoisen aineen.

Edison laski kykenevänsä käsittelemään laitteellaan 5000 tonnia malmia päivässä, mutta tavoitteesta jäätiin kauaksi heti alussa. Laite otettiin käyttöön Ogdensburgissa, New Jerseyssä, ei kovinkaan kaukana New Yorkista, vuonna 1894. Suuret murskaimet eivät toimineet kunnolla, joten Edison muokkasi niitä useampaan kertaan huomatakseen vain, että myös malmin kuljettimet ja kuivaimet kaipasivat suuria muutoksia, ennen kuin magneetit pystyivät toimimaan.

Laite ei koskaan toiminut kunnolla, ja tätä episodia Edison harmitteli toistuvasti jälkikäteen, vaikka se ei ollut hänen tapamaan. Kenties malmibisneksestä tulleet suuret tappiot vaikuttivat asiaan.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 12. Paniikkikohtauksella painottomaksi

To, 12/12/2019 - 06:23 Jari Mäkinen
Nikola Tesla

Nikola Tesla oli Yhdysvaltoihin vuonna 1884 asettunut serbialainen keksijä, jonka nimi on nykyisin kaikkien huulilla Tesla-sähköautojen ansiosta.

Tesla on eräs jännittävimmistä tieteen ja tekniikan historian henkilöistä, eräänlainen hullun keksijän perikuva, ja hänen monien onnistuneiden oivallustensa rinnalla on aika paljon sellaisia aivoituksia, joita voi vain nyt ihmetellä.

Kuten moni muukin, oli Tesla aikanaan nuori ja innokas. Hän oli jopa niin vilkas, että hän sai aina välillä paniikkikohtauksia ja hyperventilaatiota.

Kohtauksien aikana hän huomasi mielensä muuttuvan kevyeksi ja kuvitteli jopa leijuvansa. Kerran hän tuli ajatelleeksi, että ylihengitys voisi saada hänet painottomaksi – hyperventilaation aikaan saama keveys voittaisi painovoiman.

Koska Tesla oli tutkijaluonne, hän halusi testata tuoretta teoriaansa. Hän kipusi vajan katolle ja alkoi hengittää niin kiivaasti, että sai jonkinlaisen hyperventilaatiokohtauksen. Silloin hän hyppäsi alas katolta.

Teslalla oli mukanaan sateenvarjo siltä varalta, että painovoima olisi hyperventilaatiota voimakkaampi. Hän toivoi sateenvarjon toimivan kuten laskuvarjon. Siitä ei kuitenkaan ollut paljoa iloa tai apua, sillä vähemmän yllättäen Tesla putosi päistikkaa alas.

Hän menetti tajuntansa.

Paikalle kiitänyt äiti laittoi rasavillin keksijäpoikansa vuoteeseen, ja kesti useamman viikon, ennen kuin pikku-Nikola oli toipunut koejärjestelystään. 

Hyperventilaatio ei ollut Teslan ainoa vaiva. Hän kärsi pakkomielteistä ja esimerkiksi pelkäsi bakteereita sekä helmikoruja käyttäviä naisia. Elämänsä loppupuolella hän innostui elämään pulujen kanssa ja nimesi erään niistä vaimokseen. Ihmisvaimoa hänellä ei koskaan ollut, vaan hän totesi usein naimattomuuden ja selibaatin olleen luovuutensa ja energiansa lähde.

Tesla pohtii

 

Tesla olikin tuottelias. Hän teki teki noin 300 patentoitua keksintöä, joista tärkein on vaihtovirtaoikosulkumoottori.

Teslan kehittämä vaihtovirtatekniikka kilpaili 1880-luvun lopulla Thomas Edisonin käyttämän tasavirran kanssa. Edison oletti vaihtovirran olevan tasavirtaa vaarallisempaa, mutta koska sen avulla voitiin siirtää tehoa pitemmän etäisyyden päähän, alkoi se yleistyä. Siksi myös nykyisin töpselistä tulee vaihtovirtaa.

Lisäksi hän kehitti teslakäämin sekä puuhasi valon, radiotekniikan, langattoman sähkönsiirron, robotiikan ja lentokoneiden parissa. Tarinan mukaan hän löysi röntgensäteet samoihin aikoihin Wilhelm Röntgenin kanssa. Hän myös visioi satelliitteja ja planeettainvälistä tiedonvälitystä.

Mukaan mahtuu myös muutamia todellisia töppäyksiä. Eräs niistä oli sähkömekaaninen höyryvoimalla toimiva oskillaattori, värähtelijä, jonka oli tarkoitus mullistaa sähköntuotanto. Laite ei toiminut ihan halutulla tavalla, vaan alkoi täristä niin voimakkaasti, että Tesla pelkäsi laitteen saavan aikaan maanjäristyksen Manhattanilla, New Yorkissa. 

Hän hajotti laitteen moukarilla ennen kuin se sai aikaan vahinkoa. Jälkikäteen on laskettu, ettei laite olisi saanut aikaan haittaa kuin itselleen. 

Toinen hullu idea oli valaista koko maapallo, eli saada myös yöpuolinen osa planeetasta valoisaksi. Ideana oli käyttää tähän ilmakehän yläosissa olevia kaasuja, joita hän oletti voivansa virittää valoa hohtamaan ylöspäin suunnatulla korkeataajuuksisella sähkövirralla. Teslan ajatuksena oli näin auttaa esimerkiksi merenkulkijoita, jotka voisivat purjehtia turvallisesti myös yöaikaan.

Hanke jäi ideatasolle, ja on varsin kyseenalaista, että voisiko idea edes toimia. Periaatteessa kaasun saisi sähkövirralla hohtamaan, kuten loisteputken sisällä tapahtuu, mutta ilmakehän virittäminen valoa tuottavaksi vaatisi kenties niin paljon energiaa, että se ei ole mahdollista, ja jos olisi, niin tempulla olisi massiivisia haittavaikutuksia.

Teslan salamakone

Tesla testasi vuonna 1899 Colorado Springsissä laitetta, jonka avulla hän toivoi voivansa siirtää sähköä langattomasti. Hän synnytti keksimällään teslakäämillä suuria jännitteitä, jotka purkautuivat lopulta valtavina keinotekoisina salamoina, jotka kuuleman mukaan pelästyttivät hevosia, saivat ihmiset häkeltymään ja synnyttivät ilmassa lentävien perhosten ympärille aavemaisesti valoa hohtavia Elmon tulia. Kokeet myös saivat aikaan laajoja sähkökatkoksia, kun sähkölaitosten generaattorit menivät rikki.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 11. Mars-luotaimen kova kohtalo

Ke, 12/11/2019 - 08:55 Jari Mäkinen
Mars Climate Orbiter joulukehyksissä

Tämä, jos mikä, on aika ison luokan töppäys: täysin toimintakuntoinen, 200 miljoonaa dollaria maksanut Mars-luotain menetettiin vuonna 1999 hyvin yksinkertaisen virheen vuoksi.

Tänään 21 vuotta sitten, joulukuun 11. päivänä 1998, laukaistiin Cape Canaveralista matkaan Mars Climate Orbiter -niminen luotain. 640-kiloinen avaruuslaite lähti matkaan iltapäivällä paikallista aikaa ja aloitti 9,5 kuukautta kestäneen lentonsa kohti punaista planeettaa.

Kohtalaisen pienen luotaimen tarkoituksena oli tutkia Marsin kaasukehää, ilmastoa ja säätä. Marsin kaasukehä oli tärkeässä roolissa myös luotaimen saapumisessa perille: tarkoituksena oli käyttää ilmajarrutusta hidastamaan luotaimen nopeutta siten, että se asettuisi kiertämään sopivalle radalle Marsin ympärille.

Ilmajarrutus on hyvin kätevä temppu, mutta vaatii tarkkaa ohjaamista. Siinä luotain suunnataan lentämään kaasukehän yläosien läpi siten, että siellä oleva harva kaasu jarruttaa vastuksellaan luotainta. Mutta jos luotain kulkee liian korkealta, ei ilmanvastusta ole tarpeeksi, ja liian syvälle kaasukehään menevä luotain tuhoutuu kitkakuumennuksessa. 

Koska ilmajarrutus toisella planeetalla oli uusi menetelmä, haluttiin Mars Climate Orbiterin kanssa olla varovaisia. Se oli tarkoitus ohjata  lentämään planeettainvälisestä avaruudesta Marsin ohi 226 kilometrin korkeudelta. Siellä oleva ilmanvastus riittäisi rakettimoottorin polton lisäksi hidastamaan ratanopeutta sen verran, että luotain jäisi kiertämään Marsia. Tämän jälkeen rataa olisi voitu säätää uusien ilmajarrutusten ja rakettimoottorien avulla.

Ainoa MCO:n ottama kuva


Mars Climate Orbiter otti tämän kuvan Marsista sitä lähestyessään. Tämä jäi ainoaksi luotaimen ottamaksi kuvaksi.


 

Luotain – tuttavallisesti MCO – saapui perille 23. syyskuuta 1999. Se kääsi aurinkopaneelinsa suojaan (ettei ilmajarrutus rikkoisi paneelia) ja kääntyi sopivaan asentoon jarrutuspolttoa varten. Rakettimoottori hörähti käyntiin suunnitellusti hieman yli klo 12 Suomen aikaa. Moottori jarrutti menoa 16 minuutin ja 23 sekunnin ajan, minkä kuluttua luotaimen oli tarkoitus osua juuri sopivasti kaasukehään.

Suunniteltu rata kulki Marsin taakse Maasta katsoen siten, että radioyhteyden odotettiin olevan poikki noin 20 minuutin ajan. Yhteys katkesi kuitenkin noin minuuttia laskettua aikaisemmin, mikä herätti jo pientä huolta lennonjohdossa.

Kun yhteys ei sitten palautunutkaan silloin kuin olisi pitänyt, eikä sen jälkeenkään, pieni huoli muuttui suureksi suruksi. Nähtävästi luotain oli menetetty Marsiin saapumisen aikana.

Kaksi päivää myöhemmin 25.9.1999 Mars Climate Orbiter julistettiin virallisesti menetetyksi, eikä siihen enää yritetty ottaa yhteyttä. Onnettomuutta tutkimaan perustettiin työryhmä.

Luotaimen rata Marsiin saapumisen aikana

Työryhmä julkisti karun raporttinsa jo marraskuun 10. päivänä, vain hieman yli kuukauden tutkimusten jälkeen.

Työ sujui nopeasti, koska syy onnettomuuteen oli yksinkertainen ja nolo: luotaimen radan laskelmissa olivat menneet sekaisin angloamerikkalaiset yksiköt ja SI-standardin mukaiset yksiköt. 

Nasa on koettanut käyttää kansainvälisiä SI-yksiköitä, mutta se ei ole helppoa paunojen, mailien ja tuumien kyllästämässä maassa. Tässä tapauksessa luotaimen rakentaneen Lockheed-Martin -yhtiön tekemä tietokoneohjelma, jota käytettiin rakettimoottorien impulssin laskemiseen, antoi tuloksensa paunasekunneissa. Nasan lennonjohdossa luotaimen ratamuutosten laskemiseen käyttämä ohjelma puolestaan oletti saavansa luvun newtonsekunneissa.

Vaikka nämä yksiköt eroavat tosistaan peräti 4,45 -kertaisesti, ei kukaan huomannut lukujen olevan omituisia. Nasan ohjelmaan syötettiin siis vääriä lukuja.

Tämän seurauksena luotain ohjattiin tekemään Marsin ohilento vain 57 kilometrin korkeudella, mikä oli aivan liian vähän. Luotain joko hajosi kitkakuumennukseen ja syöksyi saman tien alas, tai sinkoutui takaisin planeettainväliseen avaruuteen.

Onnettomuutta tutkinut työryhmä huomasi, että jo ennen Marsiin saapumista tehdyt ratakorjaukset olivat vieneet luotainta liian alas. Kaksi lennonjohtajaa oli itse asiassa huomannut luotaimen lasketun ja havaitun radan olleen jo tuolloin toisistaan selvästi eriäviä, mutta heitä ei kuunneltu, koska he eivät raportoineet huomiostaan proseduurin mukaisesti.

Työryhmä myös päätteli, että mikäli ratakorkeus olisi ollut 80 kilometriä tai enemmän, niin luotain olisi voinut selvitä toimintakunnossa, mutta 57 kilometriä oli ehdottomasti liikaa.  

Periaatteessa syyllinen onnettomuuteen oli Lockheed-Martin, joka käytti ohjeistuksen vastaisesti amerikkalaisyksiköitä SI-yksiköiden sijaan, mutta käytännössä vikaa oli myös Nasan lennonjohdossa, missä lukuja ei tarkistettu kunnolla.

Huono onni jatkui vielä samana vuonna, sillä samoihin aikoihin kohti Marsia lentänyt Mars Polar Lander -laskeutuja syöksyi alas liian suurella nopeudella ja tuhoutui joulukuun 3. päivänä. Tässä tapauksessa luotain sammutti rakettimoottorinsa liian aikaisin laskeutuessaan todennäköisesti ohjelmistovirheen vuoksi.

Sittemmin kaikki Nasan Mars-luotaimet ja laskeutujat ovat onnistuneet tehtävissään. Yleensä ne ovat jopa ylittäneet odotukset.

Silti vuosi 1999 kummittelee edelleen Mars-tutkimuksen historiassa katastrofaalisena vuotena. Se on myös eräs noloimmista töppäyksistä avaruuslentojen historiassa.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 10. Ilokaasu

Ti, 12/10/2019 - 06:02 Jari Mäkinen
Ilokaasua juhlissa

Itse asiassa tämä on hyvin jouluinen tarina, sillä se alkaa tapaninpäivänä vuonna 1799, ja hyvän joulukertomuksen tapaan pitää sisällään iloa ja draamaa.

Kaksikymmenvuotias kemisti Humphry Davy astui lämpömittari kainalossaan höyrykoneen keksineen Jamess Wattin suunnittelemaan kaasuhengityskammioon. Vieressä lääkäri Robert Kinglake vapautti pulloista kammioon dityppimonoksidia joka viides minuutti aina siihen saakka, kunnes Davy menetti tajuntansa.

Koe meni mönkään, koska Davy ei pyörtynyt, vaan käkätti laboratoriossa niin hervotomasti, että koe piti keskeyttää. 

Paikka oli Pneumaattinen instituutti Englannissa, lähellä Bristolia. Kyseessä oli eräänlainen kylpylä, kaasukylpylä, jonka tarkoituksena oli hoitaa sairauksia uusilla, vast'ikään keksityillä kaasuilla.

Yksi näistä oli vuonna 1772 keksitty dityppimonoksidi, eli typpioksiduuli (N2O). Se on väritön, hajuton ja syttymätön kaasu huoneenlämmössä ollessaan. Nyt tiedämme, että se on myös merkittävä kasvihuonekaasu, joka on vaikutuksiltaan noin 300 kertaa hiilidioksidia voimakkaampi. Sen elinikä ilmakehässä on noin 110 vuotta, ja se aiheuttaa myös otsonikatoa. Sen on todettu olevan 2000-luvun merkittävin otsonikerrosta heikentävä aine.

Ilokaasun valmistuslaite

Mutta 1700-luvun lopussa se oli yksi lupaavista, uusista, terveyden kannalta mahdollisesti hyödyllisistä kaasuista. Sitä synnytettiin ammoniumnitraattia kuumentamalla. Siitä irronnut kaasu otettiin talteen ja laitettiin talteen. Ensin tähän käytettiin öljyllä kyllästettyjä silkkipusseja, sitten metallisia painepulloja.

Myöhemmin kuuluisaksi tullut ja jopa aateloitu Davy sai kokea, miten kaasu sai aikaan mielihyvän tunnetta. Kaikki tuli kirkkaammaksi ja selvemmäksi, hän tuntui leijailevan. Tässä ei ollut mitään uutta, sillä ilokaasua oli toki testattu jo aikaisemminkin, mutta nyt koetta vain jatkettiin. 

Davy näki silmissään ympärillä olevien tavaroiden loistavan ja tanssivan. Kaikki näytti hassulta, ja niinpä hän halusi vain nauraa.

Kun kaasua tuli vain lisää, hän muuttui sekavaksi, kunnes tohtori Kinglake keskeytti koneen. Davyn henki alkoi olla selvästi vaarassa, vaikka hän oli erittäin iloinen ja lähes leijui ilmassa.

Ilokaasu tanssittaa

Hoidoksi ei ilokaasusta ollut siinä mielessä kuin toivottiin, mutta sitä käytettiin tunnelman kohottajana juhlissa. Se sai aikaan automaattisesti naurua, mistä se sai myös nimen ilokaasu.

Sitten kävi niin, että vuonna 1844 Yhdysvalloissa hammaslääkäri Horace Wells oli mukana juhlissa, missä käytettiin varsin reippaasti ilokaasua. Eräs juhlija oli kovasti kevytmielisenä ja kaasuissaan, kun hän kaatui ja sai syvän viiltohaavan jalkaansa. Hän, eikä kukaan muukaan ympärillä huomannut vammaa, ennen kuin joku äkkäsi haavasta pulppuavan veren.

Wells tajusi heti, että ilokaasua voitaisiin käyttää esimerkiksi juuri kivuliaissa hammashoidoissa oloa helpottamaan. Hän ryhtyi itse koekaniiniksi, ja pyysi hammaslääkärikollegaansa poistamaan hampaan suustaan siten, että hän oli ilokaasun vaikutuksen alainen.

Operaatio ei tuntunut juuri missään – kaasu toimi kuin toimikin hyvänä kivunlievittäjänä.

Wells näki varmaankin jo dollarit mielessään, kun hän järjesti näytöksen hammaslääkärikollegoilleen. Massachusettsissa pidetty näytös ei kuitenkaan mennyt ihan nappiin, sillä Wells poisti hampaan vapaaehtoisen potilaan suusta jo ennen kaasun vaikutuksen alkamista, ja potilas huusi kuin palosireeni.

Tuloksena Wellsin maine meni, hän joutui jättämään työnsä hammaslääkärinä ja teki pian itsemurhan. 

Mutta hän keksi ilokaasun sopivan erinomaisesti hammaslääkäreiden käyttöön ja nukutusaineeksi leikkauksissa. Sitä käytetään yhä edelleen, tosin yleensä yhdessä muiden nukutusaineiden kanssa.

Ilokaasua on myös elintarvikkeiden aerosolipakkauksissa ja se on hyvä ponneaine. Kun autokilpailuissa polttomoottoreiden tehoa halutaan lisätä väksi aikaa, suihkutetaan ilman ja polttoaineen mukaan ilokaasua. Kitä olisikaan kiihdytysajo ilman typpioksiduulia! 

Ilokaasua on käytetty myös alkoholin vieroitushoitoon.

Ja kyllä, sitä on myös monissa keittiöissä käytettävien sifoneiden kaasupatruunoissa. Niitä ostettiinkin aikanaan (ja ostettaneen edelleenkin) puhtaasti viihdekäyttöön; ilokaasu sinällään ei ole vaarallista (paitsi ympäristölle), mutta sen käyttö puhtaana voi olla hyvin vaarallista, koska sen hengittämiseen etenkin päihtyneenä liittyy suuri tukehtumisriski. Kaasussa ei ole mukana happea, joten holtiton ilokaasun imppaaminen voi johtaa kuolemaan.

Tukes on siksi kieltänyt (ihan aiheesta) selvästi vain pään sekoittamiseen tarkoitetun ilokaasun myynnin.

Ilokaasupullo vuodelta 1850
Ilokaasupullo 1800-luvun puolivälistä.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 9. Maapallon ikä

Ma, 12/09/2019 - 11:06 Jari Mäkinen
Lordi Kelvin

Pätevätkin tutkijat tekevät virheitä, kun päätelmiä tehdään vajavaisten tietojen perusteella tai jotain seikkaa ei osata ottaa huomioon. Se, miten Lordi Kelvin arvioi maapallon iän, on hyvä esimerkki tästä.

Lordi Kelvin, eli Sir William Thomson, oli 1800-luvulla toiminut (26.6.1824 – 17.12.1907) fyysikko ja insinööri, jonka nimi elää nykyisin absoluuttisen lämpötilan yksikkönä. Kelvin päätteli ensimmäisenä, mikä on absoluuttisen nollalämpötilan arvo, eli −273,15°C.

Hän tutki myös sähköä ja matemaattista analyysiä, laati modernin fysiikan periaatteita ja oli mukana kehittämässä merenkulkutekniikkaa sekä osallistui lennätinkaapelin laittamiseen Euroopan ja Yhdysvaltain välille. Parhaiten hänet kuitenkin tunnetaan termodynamiikan tutkijana.

Siihen liittyy myös hänen arviointinsa maapallon iästä. Hän arvioi – sinänsä aivan oikein silloisen tiedon perusteella – maapallon syntyneen kuumana, sulana kivimetallipallona, joka on viilentynyt ajan kuluessa. Hän esitti koko maailmankaikkeuden noudattavan termodynamiikan lakeja, ja kuvaili miten aurinkokunta sekä kaikki muu avaruudessa kokee lopulta lämpökuoleman. Siis kaikki viilenee, kun lämpötila koko universumissa tasaantuu. 

Nykynäkökulmasta tämä ei ole mitenkään radikaalia, mutta 1800-luvulla se oli. Monet ajattelivat maapallon olosuhteiden olleen samanlaisia oikeastaan aina, mutta Kelvin mukaan Maa olisi ollut aikanaan liian kuuma asuttavaksi ja olisi tullut sopivaksi elämälle kehittyä vasta myöhemmin.

Charles Darwin julkaisi kirjansa Lajien synty vuonna 1859, ja osin sen innostamana Kelvin arvioi maapallolle ikää juuri tämän viilenemisen perusteella. Näin maapallon kehittyminen saataisiin  tukemaan evoluutiota.

Vuonna 1864 hän esitti ensimmäisen arvionsa: 20 – 400 miljoonaa vuotta. Kelvin itse totesi, että haarukka on varsin suuri siksi, että hän ei ollut varma eri kivilajien sulamislämpötiloista ja ominaislämpökapasiteeteista.

Kolmea vuosikymmentä myöhemmin (1897) Kelvin rohkeni esittää uuden, tarkennetun arvion: 20 – 40 miljoonaa vuotta.

Nyt tiedämme, että arvio oli aika tavalla pielessä, sillä maapallo on noin viisi miljardia vuotta vanha. Siis 5000 miljoonaa vuotta, eli noin 200 kertaa vanhempi kuin Kelvin laski.

Kelvinin päättelyssä meni pieneen ensinnäkin se, että hän oletti lämpötilan kulkevan tasaisesti joka puolella maapalloa, myös eri syvyyksillä.

Toiseksi hän ei tiennyt mitään radioaktiivisuudesta, joka löydettiin vuonna 1903.

Maapallon iän suhteen radioaktiivisuudella on todella suuri merkitys, koska radioaktiivisten aineiden hajoaminen on tuottanut lämpöä ja "hidastanut" viilenemistä.

Lisäksi maapalloon on törmännyt aurinkokunnan ollessa nuori paljon pienempiä kappaleita, ja painovoima on puristanut nuorta maapalloa kasaan. Aivan aluksi Maa oli varsin löyhä ja viileä massamöykky.

Vaikka Kelvin ennätti kuulemaan radioaktiivisuudesta ja muista ikäarvioista maapallolle ennen kuolemaansa, hän ei muuttanut näkemystään. Hän oli yleensä oikeassa ja hyvin itsevarma, ja todennäköisesti tässäkin tapauksessa vakuuttunut siitä, että hänen teoriansa oli paras.

Hän kuoli vuonna 1907, eli samana vuonna kun radiometrinen iänmääritys keksittiin, ja kenties hän olisi lopulta muuttanut mieltään vanhempaa maapalloa tukevan massiivisen todistusaineiston edessä.

Mitä maapallon ikään tulee, niin yhä edelleen on yllättävän paljon kreationisteja, jotka vastoin kaikkia todisteita uskovat maapallon olevan alle 10 000 vuoden ikäisen. Mutta se on jo ihan toinen juttu...

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 8. Kylmäfuusio

Su, 12/08/2019 - 11:23 Jari Mäkinen
Stanley Pons (vas) ja Martin Fleischmann (oik).

Huhtikuussa 1989 kerrottiin mullistava uutinen: Utahin yliopiston tutkijat Stanley Pons ja Martin Fleischmann ilmoittivat onnistuneensa saamaan aikaan kylmäfuusion. Maailman energiaongelmat oli ratkaistu kertaheitolla!

Nykyisin ydinvoimalat toimivat siten, että raskaat atomit hajoavat ja hajoamisessa vapautuu energiaa. Kyse on fissiosta.

Vetypommissa ja Auringossa (sekä muissakin tähdissä) tapahtuu kuitenkin fuusioreaktio, missä kevyet atomiytimet yhtyvät tuottaen energiaa. Fissioon verrattuna fuusio olisi paljon parempi, koska raaka-aineita on kätevämmin saatavilla, tuloksena ei ole juurikaan radioaktiivista jätettä ja kaikki häiriöt reaktiossa pyrkivät sammuttamaan reaktion.

Fuusio olisi periaatteessa huippukätevä tapa tuottaa lähes rajattomasti energiaa.

Ongelmana vain on se, että fuusiota ei ole saatu toimimaan vielä kunnolla siinä mittakaavassa, että siitä olisi energialähteeksi. Reaktion aloittaminen vaatii paljon energiaa, ja tuloksena on ollut parhaimmillaan vain hieman enemmän energiaa mitä reaktion synnyttäminen vaati. 

Ranskaan ollaan rakentamassa ensimmäistä teollisen mittakaavan koevoimalaa, ITERiä, ja erilaisia pienempiäkin ratkaisuita tutkitaan ympäri maailman.

Mikään näistä ei kuitenkaan perustu Fleischmannin ja Ponsin vallankumoukselliseen kokeeseen. Mikä meni pieleen?

John Bockrisin kylmafuusiolaite

Fleischmann ja Pons väittivät saaneensa aikaan ydinfuusion yksinkertaisesti laboratoriossaan pöydälle mahtuvalla koejärjestelyllä, missä oli raskasta vettä (deuteriumoksidia), palladiumia ja platinaa.

Palladiumpuikko oli upotettu raskaaseen veteen, joka oli lasiastiassa, jonka reunalla oli platinasta tehty anodi. Kun anodin ja katodin välille kytkettiin sähkövirta, alkoi raskaassa vedessä tapahtua elektrolyysi – deuteriumia alkoi kerääntyä katodille ja kuplia ulos astiasta.

Sähkövirtaa ylläpidettiin yhtäjaksoisesti useita viikkoja, ja raskas vesi vaihdettiin aina välillä uuteen. 

Suurimman osan ajasta koelaitteen lämpötila pysyi ennalta arvattavasti tasaisessa noin +30 °C:ssa, mutta välillä lämpötila nousi äkillisesti +50 °C:een ilman, että laitteeseen syötettyä tehoa lisättiin.

Nämä korkeamman lämpötilan vaiheet kestivät kaksi päivää tai kauemminkin ja toistuivat useita kertoja, kun sellainen kerran oli tapahtunut.

Tutkijakaksikko teki varsin nopeasti johtopäätöksen: ylimääräinen energia ei voinut olla peräisin kemiallisesta reaktiosta, vaan syynä oli ydinreaktio. He julkistivat löytönsä 23. maaliskuuta 1989 ja kertoivat onnistuneensa synnyttämään fuusioreaktion lähes huoneenlämmössä ja ”lukiotason välineillä”.

Kuten aina tieteessä, muut tutkijat riensivät toistamaan Fleischmannin ja Ponsin koetta. Se osoittautui kuitenkin hankalaksi. Tai kokeen tekeminen ei ollut hankalaa, mutta reaktiosta ei saatu missään enempää energiaa kuin siihen laitettiin. Fuusiota, tai mitään muuta ylimääräistä lämpöä tuottavaa reaktiota ei saatu aikaan. 

Fleischmann ja Pons selittivät tätä olettamalla, ettei muilla ollut samanlaista koeympäristöä kuin heillä. He eivät kuitenkaan halunneet auttaa muita toistamaan koettaan, mikä herätti luonnollisesti epäilyksiä 

Kaikista yrityksistä huolimatta kylmäfuusiosta ei ole olemassa ainuttakaan todennettua ja toistettavaa koejärjestelyä, joten Fleischmannin ja Ponsin väitteet olivat joko huijausta – tai sitten he töppäsivät mittauksissaan, jokin koejärjestelyn laite sai aikaan lämpötilan nousua tai jokin tuntematon reaktio tuotti energiaa, eivätkä rohjenneet tunnustaa tätä.

Ei ihan ilmasta temmattu idea

Ajatus kylmäfuusiosta on peräisin 1800-luvulta. Wikipedia kertoo, että Thomas Graham osoitti, että palladium voi sitoa itseensä runsaasti vetyä. 

Itävaltalaissyntyiset kemistit Friedrich Paneth ja Kurt Peters väittivät 1920-luvun lopulla, että vety muuttuisi spontaanisti heliumiksi, kun se absorboituu huoneenlämpötilassa hienojakoiseen palladiumiin. Myöhemmin he itse peruuttivat väitteensä todettuaan, että heidän havaitsemansa helium oli peräisin ympäröivästä ilmasta.

Ruotsalaiskemisti John Tandberg väitti puolestaan vuonna 1927, että hän olisi saanut vedyn fuusioitumaan heliumiksi sähkö­kemiallisessa parissa, jossa elektrodit olivat palladiumia. Järjestely oli siis varsin samankaltainen kuin Fleischmannilla ja Ponsilla, mutta utahilaistutkijat eivät olleet tietoisia Tandbergin tutkimuksista.

Sana "kylmäfuusio", eli "cold fusion" tuli käyttöön vuonna 1956, kun New York Times kertoi  Luis W. Alwarezin aihetta koskeneista kokeista.

Kylmäfuusio on ollut esillä ihan viime aikoinakin, sillä Google päätti yrittää kylmäfuusion synnyttämistä vuonna 2015. Yhtiö käytti kymmenen miljoonaa dollaria tutkimusohjelmaan, jonka tulos oli hyvin selvä: kylmäfuusiosta ei löytynyt minkäänlaista näyttöä.

Periaatteessa fuusioreaktio voitaisiin saada aikaan muutenkin kuin vain korkeassa lämpötilassa, mutta mitkään tiedossa olevat ja koetetut menetelmät eivät ole tuottaneet energiaa enempää kuin reaktion käynnistäminen ja ylläpito vaativat.

-

Yllä olevassa kuvassa on Texas A&M -yliopistossa kylmäfuusiokoetta yrittäneen John Bockrisin laitteisto. Vaikka aluksi koe näytti tuottaneen ylimääräistä lämpöä, näin ei ollutkaan.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 7. DDT

La, 12/07/2019 - 11:21 Jari Mäkinen
DDT-myrkkypurkin etikettiä

Sveitsiläinen Paul Müller äkkäsi vuonna 1938, että saksalaisen Othmar Zeidlerin vuonna 1874 keksimä aine toimi aivan erinomaisena hyönteismyrkkynä.

Diklooridifenyylitrikloretaani, eli DDT tappoi tehokkaasti kerralla monia eri lajeja, mutta kokeiden mukaan oli käytännössä vaaratonta ihmiselle.

Ihmeainetta käytettiinkin paljon, ja sillä esimerkiksi onnistuttiin hallitsemaan malariaa ja montaa muuta hyttysten levittämää tautia monissa osissa maapalloa. Numerot olivat erinomaisia: esimerkiksi Intiassa malariaan sairastuneiden määrä putosi 75 miljoonasta vuodessa noin viiteen miljoonaan. Samalla intialaisten elinaikaodote nousi 32:sta 47 vuoteen. 

Ei ihme, että Müller sai siitä Nobelin palkinnon varsin pikavauhtia, sillä se annettiin vain kymmenen vuotta keksimisen jälkeen vuonna 1948. Koska DDT oli erittäin tepsivä ase tauteja vastaan, tuli keksijän Nobel kemian sijaan juuri lääketieteestä. 

DDT:tä lentolevitetään Orgonissa vuonna 1955.
Tulokset hyttystautien vähentämisessä olivat erityisen hyviä Yhdysvalloissa, missä myrkkyä levitettiin muun muassa lentokoneista laajoille alueille. Tässä kuvassa lentokone (Ford Trimotor) suihkuttaa DDT:tä Oregonissa vuonna 1955 osana kampanjaa, jonka tarkoituksena oli hävittää koiperhosia.

Kuten tässä vaiheessa tarinaa sopii jo arvata, aine ei ollut ihan niin auvoisa kuin oletettiin. Pian nimittäin havaittiin, että DDT on erityisen vaarallinen linnuille, koska ne söivät hyönteisiä, joita DDT:llä myrkytettiin. 

DDT kerääntyy eliöiden rasvakudokseen ja mitä ylöspäin mentiin ravintoketjussa, sitä tappavammaksi se tuli ainemäärän kumuloituessa. Kokonaisia lintulajeja kuoli sukupuuttoon ja voimme ihailla niitä enää eläinmuseoissa. 

Otavan Iso Tietosanakirja vielä vuodelta 1960 kertoo, että DDT:tä käytettiin tuolloin “yleisesti hyönteismyrkkynä kodeissa ja maataloudessa”. Jo tuolloin kuitenkin aineen haitat alkoivat olla tiedossa.

Vuonna 1962 biologi Rachel Carson kirjoitti kirjan "Silent spring", "Äänetön kevät", missä hän kuvailee kevään, jolloin linnut eivät enää laula. 

Kirja kertoo laajemmin ympäristömyrkyistä ja siitä, miten niitä käytettiin aikanaan varsin leväperäisesti. Äänetön kevät on monessa mielessä nykyaikaisen ympäristöliikkeen liikkeelle panija. Joka tapauksessa kirja nosti viimeistään DDT:n haitat julkisuuteen, ja lopulta aine kiellettiin läntisessä maailmassa 70-luvun alussa. Nyt keskustelu käy kuumana DDT:n sijaan sen erään korvaajan, glyfosaattisuolan ympärillä, jonka käyttö näyttää tappavan mehiläisiä.

DDT on yhä edelleen käytössä kuitenkin kehitysmaissa, koska se on halpaa ja tehokasta. Sen haitat on joissain tapauksissa katsottu pienemmiksi verrattuna harmiin, mitä esimerkiksi malaria aiheuttaa.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 6. Silvo Sokan rakettilento

Pe, 12/06/2019 - 18:42 Jari Mäkinen
Silvo Sokka ja Silverstar.

Itsenäisyyspäivän tiedetöppäyskalenterin luukku pitää takanaan supisuomalaisen tieteellishenkisen huijauksen, missä tosin oli hieman saksalaista makua. Silvo Sokan kuvitteellisesta rakettilennosta oli hieno sarja radiossa (ja on edelleen YLE Areenassa), mutta alla on tarina lyhyesti.

Silvo Sokka oli vuonna 1948 jopa kansainvälinen mediapersoona, sillä häntä tulivat Suomeen haastattelemaan jopa monet ulkomaiset tiedotusvälineet.

Syynä oli hänen tekemänsä rakettilento. Tai siis lento, jonka hän kertoi tapahtuneen.

Jos tarinassa on jotain tiedettä tai tekniikkaa, niin se on ennen kaikkea psykologiaa. Nimittäin Sokan kehittämä tarina rakettilennosta avaruuteen oli täyttä puppua, mutta monet uskoivat sitä. Syynä olivat toisen maailmansodan aikaan saksalaisten tekemät rakettikokeet sekä yleinen tietämättömyys avaruusasioista.

Lyhyesti: 17-vuotias Sokka lähti kotoaan polkupyörällä 7. lokakuuta 1948 noin kello 15. Hän postitti kirjeen Savo-sanomalehteen ja jatkoi fillarointia Suonenjoen suuntaan. Kolmen ja puolen tunnin ajon jälkeen hän oli jo nälkäinen ja väsynyt, joten hän päätti tehdä tempun: hän kasteli itsensä Suonteen järvessä ja upotti pyöränsä järveen. Hän käveli läheisen talon pihaan, mistä hänet löydettiin. Hänelle annettiin kuivia vaatteita ja vietiin saunaan lämmittelemään.

Sokka kertoi lähteneensä Kuopiosta lentoon itse tekemällään raketilla, jonka pituus oli seitsemän metriä ja massa noin kaksi tonnia. Lento kesti noin kolme ja puoli minuuttia, kun noin seitsemän kilometrin korkeudessa polttoainesäiliö oli hajonnut. Siksi Sokka ja rakettikone olivat pudonneet järveen noin 50 kilometrin päähän laukaisupaikalta.

Tarinaa tuki sanomalehden julkaisema juttu. Siinä hän kertoi kirjoittaneensa saksalaisen ”insinööri Ganzeugen” nimissä; saksalainen oli auttanut häntä tekemään rakettilentokoneen, joka kuitenkin oli räjähtänyt kesken lennon. 

Ganzeuge ylisti jutussa Sokkaa ja hänen keksintöjä. 

Todennäköisesti Sokka oli halunnut saada sukulaisensa ja kuopiolaiset uskomaan, että hän oli kuollut. Hänen aikomuksenaan kun oli ajaa pyörällä Ruotsiin, eikä olisi ollut hyvä, jos muut olisivat tulleet sotkemaan suunnitelmia. 

Sokan isä kuitenkin kävi nyt hakemassa poikansa takaisin kotiin. Järvestä etsittiin rakettilentokoneen jäänteitä, mutta sieltä löytyi vain polkupyörä.

Valehtelun tunnustamisen sijaan Sokka päätti jatkaa sepittelyä. Hän kertoi Savo-lehdelle tehneensä Silverstar-nimisen rakettilentokoneen yhdessä Ganzeugen kanssa. Raketti olikin lähtenyt Sokan mukaan erittäin hyvin matkaan: se nousi 60° kulmassa laukaisualustaltaan, kunnes sitten räjähti lyhyen lennon jälkeen.

Tarinaan toi uskottavuutta se, että Sokka oli selvästi tutkinut saksalaisten rakettikokeista tehtyjä juttuja ja tiesi paljon lentämisestä.

Juttu herätti paljon huomiota myös siksi, että jos se olisi ollut totta, olisivat raketti sekä lento olleet Pariisin rauhansopimuksen vastaisia. Lisäksi Sokka olisi syyllistynyt moniin tavallisempiin rikoksiin, sillä raketti- ja ilma-aluksen tekeminen sekä lentäminen vaati (ja vaatii edelleen) suuren määrän lupia ja tarkastuksia.

Kun epäilyt kasvoivat, tunnusti Sokka viimein 11. lokakuuta keksineensä koko jutun.

Hän välttyi kuitenkin seuraamuksilta, mutta perhe otti tapauksen varsin raskaasti ja muutti mielestään kokemansa häpeän vuoksi sukunimensä Silvosta Salkeksi.

Silvo kuoli 79-vuotiaana Uudessakaupungissa tammikuussa 2010.

Kuuntele Sakari Silvolan toimittama sarja erinomainen kolmiosainen sarja Silvo Sokasta ja Silverstarista YLE Areenassa!

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Merissä miljoona kertaa enemmän mikromuovia kuin aiemmin arvioitu

Pe, 12/06/2019 - 15:25 Jarmo Korteniemi
Kuva: Salpayhdyskunta Punaiseltamereltä (Lars Plougmann / Wikimedia Commons)

Tutkijat perehtyivät ensimmäistä kertaa merten kaikkein pienimpiin muovihiukkasiin. Aiemmin lähes täysin huomiotta jäänyt kokoluokka saattaakin olla kaikkein merkittävin mikromuovien kokoluokka maailman merissä.

Tutkijat perehtyivät kaikkein pienimpiin mikromuovin hitusiin, sillä tuo kokoluokka on jäänyt aiemmin huomiotta. He kutsuvat näitä hiukkasia "mini-mikromuoviksi".

Merten muoviongelman määritys on jo vuosikymmeniä perustunut lähinnä verkoilla kerättyihin näytteisiin. Verkoissa on erittäin pieni, mutta silti rajallinen silmäkoko. Kaikkein pienimmät muovinpalat ja -kuidut – tyypillisesti alle kolmannesmilliset – pääsevät niistäkin läpi.

Tuoreen tutkimuksen tekijät huomasivat puutteen ja päättivät perehtyä mini-mikromuovin määrään. Perinteinen verkkokeräys ei kuitenkaan enää tullut kysymykseen, ilmeisistä syistä.

Tutkijat tukeutuivatkin asiassa eläinten apuun. Salpat ovat meressä vapaana uivia vaippaeläimiä, tyypillisesti muutaman sentin pituisia. Vaikka ne muistuttavat meduusoita sekä ulkomuodoltaan että elintavoiltaan, salpat ovat itse asiassa pidemmälle kehittyneitä ja evolutiivisesti lähempänä selkärankaisia.

Salpoilla on merissä tärkeä rooli. Niitä esiintyy ympäri maailmaa, ja niitä on lisäksi hyvin paljon. Hyvin suuri osa merenpohjaan päätyvästä biomassasta kulkeekin juuri niiden ruuansulatuksen kautta, sillä sekä niiden ulosteet että ruhot ovat riittävän suuria ja kiinteitä vajotakseen alas. Salpat lienevätkin hyvin tärkeä lajiryhmä kun pohditaan kuinka ilmakehän ylimääräinen hiili päätyy pois biosfäärin kierrosta.

Salpat liikkuvat ottamalla vettä sisäänsä ja purskauttamalla sen uudelleen ulos. Samalla ne keräävät vedestä ravintoa. Vatsalaukkuihin päätyy samalla myös muovia. Ja tuoreen tutkimuksen perusteella sitä on paljon.

Tutkijat löysivät pieniä mikromuovin palasia (pääasiassa muovikuituja) jok'ikisen löydetyn salpan vatsalaukusta. Hitusten kokoluokka oli 5–333 mikrometriä. Pienimmät palaset ovat paksuudeltaan siis C-kasetin nauhan tai hämähäkin seitin paksuisia. Suuremmat taas vastaavat tomuhiukkasia, tai ihmishiuksen ja erilaisten vaatekuitujen paksuutta.

Asia tarkistettiin myös vapaasta vedestä otetuista näytteistä. Määrät täsmäsivät.

Löydön mittakaava häkellytti jopa tutkijoita. He nimittäin arvioivat mini-mikromuovit lukumäärältään 100 000 – 10 000 000 kertaa isompien kokoluokkien mikromuovia yleisemmiksi. Toisaalta ne ovat kuitenkin niin pieniä, että niiden yhteinen pinta-ala ei ole yhtä suuri kuin suuremmilla muovinpaloilla.

Mini-mikromuovien yleisyys saattaa selittää osaltaan sen, miksi aiemmin löydetty mikromuovi ei ole läheskään vastannut teoreettisten mallien ennustuksia. Valtaosa meressä olevasta muovista on paljon pienempää kuin on osattu kuvitellakaan.

Löydön merkittävyyttä on toistaiseksi vaikea arvioida. Parhaassa tapauksessa salpat siirtävät mini-mikromuovia tehokkaasti pois kierrosta. Osa päätyy niiden avulla meren pinnan tuntumasta pohjaan sedimentoitumaan. Toisaalta monet niin pohjassa kuin ylempänäkin elävät suuremmat eläimet - kalat, meduusat, merilinnut, kilpikonnat, ym. - popsivat suuria määriä salpoja. Osa salpojen suodattamasta mikromuovista päätyy eittämättä takaisin kiertoon. Eri prosessien suhteesta ei ole vielä mitään tietoa.

Tutkimuksessa kerättiin näytteitä sekä rannikon tuntumasta että avomereltä. Kaikki analysoidut paikat sijaitsivat kuitenkin itäisellä Tyyneltämerellä. Tulevissa tutkimuksissa perehdyttäneen sekä muiden merien että merenpohjan sedimenttienkin mini-mikromuovin määriin.

Lähde: Brandon ja kumpp.: "Patterns of suspended and salp‐ingested microplastic debris in the North Pacific investigated with epifluorescence microscopy." (Limnology and Oceanography Letters, 2019)

Aloituskuvassa salpayhdyskunta Punaiseltamereltä (Lars Plougmann / Wikimedia Commons)

Bennu-asteroidin pintakivet sinkoutuvat oudosti avaruuteen

Pe, 12/06/2019 - 03:10 Jarmo Korteniemi
Kuva: Sinkoutuneiden kivien ratoja.

OSIRIS-REx -luotain on tutkinut Bennu-asteroidia kohta vuoden ajan. Yksi sen kiehtovimpia löytöjä on pikkukivien irtoaminen asteroidin pinnasta. Tutkijoiden mukaan syy lienee suurissa lämpötilaeroissa yö- ja päiväpuolen välillä.

OSIRIS-REx -luotain saapui vuoden 2018 lopulla asteroidi 101955 Bennun kiertoradalle. Pian sen jälkeen laitteen navigointikamerat havaitsivat, että lähiavaruudessa liikkuu lukuisia outoja kohteita.

Lentoratojen analyysi osoitti, että ne ovat kaikki peräisin Bennusta – palasia useista yksittäisistä paikoista. Irronneet palat olivat halkaisijaltaan tyypillisesti 1–10 -senttisiä. Niiden nopeudet vaihtelivat 5 sentistä jopa kolmeen metriin sekunnissa (10,5 km/t).

Suurienergisin havaittu palasten avaruuteen sinkoutumistapahtuma sattui 6.1.2019 asteroidin eteläisellä pallonpuoliskolla. Arvioiden mukaan tapaus vastasi noin 60 TNT-kilon räjäyttämistä. Tapahtuman seurauksena asteroidia ympäröivästä avaruudesta havaittiin ainakin noin 200 pikkukiveä. Osa putosi tuntien tai päivien jälkeen takaisin, osa pakeni planeettojenväliseen avaruuteen.

"Palasten irti sinkoutuminnen herätti mielenkiintomme. Viime kuukaudet olemme tutkineet tätä mysteeriä. Tämä on oiva mahdollisuus laajentaa näkemystämme siitä miten asteroidit toimivat", kuvailee Dante Lauretta, luotaimen päätutkija.

Tutkijat analysoivat etenkin kolmea merkittävintä tapausta. Niiden "laukaisupaikat" sijaitsevat eri puolilla Bennua, eivätkä vaikuta mitenkään ympäristöstään poikkeavilta. Paikalla ei myöskään näy tuoreita törmäysjälkiä. Kukin tapahtuma kuitenkin sattui myöhään paikallisen iltapäivän aikaan.

Ajankohta antaakin oivan vinkin mahdollisesta syyllisestä: lämpötilaerot yön ja päivän välillä.

Video palasten lentoradoista erään tapahtuman jälkeen.

Bennun vuorokausi – eli aika jona se pyörähtää kerran akselinsa ympäri – kestää 4,3 tuntia. Se on riittävän pitkä aika jotta pinnan lämpötila vaihtelee merkittävästi. Varjon kylmyydestä suoraan päivänpaisteeseen joutuva pinta-aines lämpölaajenee, mikä aiheuttanee kivissä ja lohkareissa suuria sisäisiä jännityksiä. Tutkijoiden mukaan kiviaineksen "laukaisu" avaruuteen saattaakin tapahtua jos jännitys johtaa suuren lohkareen halkeamiseen.

Prosessia saattaa tehostaa myös veden sublimoituminen.

Bennun pinta koostuu osaksi hienojakoisista verkkosilikaateista, joiden rakenteessa on myös vettä. Kun tuo aines kuumenee, vesi saattaa alkaa kiehumaan ja aiheuttaa paineen nousua pienissä rakosissa. Myös tämä prosessi voi johtaa spontaaneihin räjähdyksiin Bennun kivissä.

Kuva: Bennun pintaa. NASA/JPL/OSIRIS-REx
Kuva: Bennun pintaa. Yläoikealla oleva lohkare on n. 15 m korkea.

Tutkijoiden mukaan monet pienemmät "laukaisut" lienevät toissijaisia. Etenkin sellaisten tapausten, jotka sattuvat yöaikaan, uumoillaan johtuvan pinnalle takaisin putoavista heittelekivistä. Törmäykset sinkoavat lisää materiaa ylös.

Tutkijat eivät kuitenkaan voineet sulkea pois tavallisia mutta satunnaisia meteoroiditörmäyksiä. Moisia kappaleita sattuu Bennun kiertoradalle varmasti.

Bennu ei varmastikaan ole ainut asteroidi, jolla tällaista tapahtuu. Yleisyys kuitenkin riippuu siitä, mikä prosessi tarkalleen sinkoaa kiviä ylös.

Lämpötilamuutokset saattavat murentaa kiviä pienemmiksi murskeeksi, mikä helpottaisi satunnaisia meteoroiditörmäyksiä nostamaan pikkukiviä avaruuteen. Moinen prosessi toistuisi aivan kaikilla pienillä asteroideilla.

Jos kyse taas on lähinnä veden aiheuttamasta rakojen paineennoususta, pikkukiviä voi odottaa löytyvän ainoastaan niiden asteroidien ympäriltä, joiden mineraaleissa on merkittävästi vettä mukana.

OSIRIS-REx kartoittaa tällä hetkellä Bennun pintaa. Laitteen lopullinen tarkoitus on kuitenkin tuoda Maahan 60–2000 grammaa Bennun pintamateriaalia. Näytteenoton on määrä tapahtua ensi kesänä. Paluumatka alkaa maaliskuussa 2021 ja näytteiden on tarkoitus olla Maassa syyskuussa 2023.

Hyvällä tuurilla näytteeseen sattuu mukaan myös avaruuteen sinkoutuneita ja takaisin pinnalle pudonneita kiviä. Niiden tunnistaminen voi tosin olla hankalaa.

Bennu kiertää Aurinkoa elliptisellä radalla, joka hipoo sekä Maan että Marsin ratoja. Se on myös yksi niistä harvoista asteroideista, joille on määritetty aivan todellinen törmäysuhka.

Nykytietojen mukaan Bennu saattaa törmätä Maahan ensi vuosisadan loppupuolella (vuosina 2175–2199). Osuessaan Bennu synnyttäisi noin 4,5-kilometrisen kraatterin ja tuhoaisi kaiken kymmenien kilometrien säteeltä. Törmäysenergia vastaisi runsasta 1100 megatonnia TNT:tä.

Törmäysuhka on kuitenkin vain 1/2700, eli alle 0,04 prosenttia. On siis runsaan 99,96 prosentin todennäköisyys ettei se osu Maahan - ainakaan tuolla aikavälillä.

Bennu on nimetty muinaisen Egyptin myyttisen jumallinnun mukaan. Lintu kuvataan usein harmaahaikarana, ja edustaa Aurinkoa, luomista ja uudelleensyntymistä.

Lähteet: Lauretta ja kumpp.: "Episodes of particle ejection from the surface of the active asteroid (101955) Bennu" (Science 2019, maksumuurin takana); Jet Propulsion Laboratoryn tiedote

Tiedetöppäysjoulukalenteri: 5. Nollaosoitin

To, 12/05/2019 - 20:05 Jari Mäkinen
Tony Hoare puhumassa (oikealla)

Tony Hoare (kuvassa oikealla) ei ollut pahantahtoinen mies, vaikka hän sai aikaan erään tietokoneajan historian suurimmista ongelmista. Hän halusi ratkaista ongelman, mutta loi samalla uuden, vielä suuremman – tosin se muodostui hankalaksi vasta myöhemmin.

ALGOL on tietokoneiden ohjelmointikieli, jonka kehittäminen alkoi 1950-luvun lopussa. Joukko amerikkalaisia ja eurooppalaisia tiedonkäsittelytieteen tutkijoita piti seminaarin Zürichissä ja kehitti siellä ALGOL 58 -nimellä tunnetun ohjelmointikielen. 

Se ei tullut koskaan laajempaan käyttöön, mutta oli 1960-luvulla hyvin suosittu tutkijoiden parissa. Matematiikassa ja tietokonetieteessä sitä ja sen johdannaisia käytettiin 1990-luvulle saakka, joskin kaikkein tärkein ALGOLin merkitys oli sen vaikutus muihin ohjelmointikieliin.

Näitä ovat Simula, Pascal, Ada ja C, joka on suora esivanhempi esimerkiksi tämän nettisivun näyttämisessä tarvittavalle PHP-koodille. Netti – sellaisena kun sen nyt tunnemme – kiittää ALGOLia, sillä lähes kaikki serverit hyrräävät PHP:n ystävällisellä myötävaikutuksella.

Yksi ALGOLin variantti oli ALGOL W, jonka tekemiseen osallistui brittiläinen Tony Hoare. Hänen keksintönsä oli ohjelmointikieleen lisätty niin sanottu nollaosoitin, eli "tyhjä" -osoitin.

Osoitin on tietotyyppi, joka viittaa tietokoneen keskusmuistissa sijaitsevaan arvoon. Ja kun osoittimelle annetaan arvoksi null, eli "tyhjä", niin osoitin ei osoita minnekään. Kun tietokoneet eivät olleet kovin suorituskykyisiä, oli sen avulla kätevää kertoa esimerkiksi se, että muisti on loppumassa.

int *p = nullptr; (*p) = 42; // vikatilanne: osoitin ei ole validi osoite

Sittemmin tämä nollaosoitin on aiheuttanut paljon harmia ja lisätyötä, koska ohjelmat kaatuivat osoittimen osoittaessa ei minnekään.

Tony Hoare muisteli vuonna 2009 – nyt aateloituna ja palkittuna alan guruna –  tätä legendan mukaan miljardien dollarien menetyksiä aiheuttanutta keksintöään:

"Keksin nollaosoittimen vuonna 1965, ja tavoitteenani oli se, että kaikki osoittimet olisivat ehdottoman turvallisia siten, että kääntäjä tarkistaisi ne automaattisesti."

"En kuitenkaan voinut välttää kiusausta laittaa mukaan nollareferenssiä, viittausta ei minnekään, koska se oli niin helppo toteuttaa."

Hoaren tavoitteena oli saada tietokoneet toimimaan nopeammin. Tuohon aikaan hän oli työssä Elliot Brothers -yhtiössä kehittämässä ALGOLista mahdollisesti pankeissa, vakuutusyhtiöissä ja muuallakin kaupallisessa maailmassa käytettyä ohjelmointikieltä, jonka kirjoittaminen olisi aiempaa helpompaa.

Osana tätä olivat kikat, joiden avulla tavallisten käyttäjien ei täytynyt keskittyä konekielisen ohjelmoinnin yksityiskohtiin. Tämän vuoksi ohjelma tarkisti sitä minne koodissa olevat osoittimet osoittivat keskusmuistissa, mutta tähän kului aikaa ja kallista (tuolloin aivan konkreettisen kallista) tietokonekapasiteettia.

Niinpä Hoare keksi nollaosoittimen, käskyn, joka sanoi ettei se osoita mihinkään. Yleistäen kyse oli siitä, että kone saatiin toimimaan nopeammin, mutta se saattoi myös kaatua joskus.

Suo siellä, vetelä täällä.

"Nollaosoittimen vuoksi on tullut lukemattomia virheitä, haavoittuvuuksia ja systeemien kaatumisia, jotka ovat saaneet aikaan 40 vuoden aikana miljardien dollarien edestä vahinkoja ja harmia."

Suurin yksittäinen haitta oli CodeRed -nimellä tunnettu mato, jonka nollaosoitin teki mahdolliseksi. Sen leviäminen alkoi vuonna 2001 ja se sai aikaan maailmanlaajuisesti noin neljän miljardin dollarin edestä vahinkoja servereissä ympäri maailman.

Nyttemmin nollaosoittimet on luonnollisesti korjattu, mutta harmina ovat puolestaan muut vastaavat.

Toinen todella kallis tietokonetöppäys on kuuluisa Y2K, vuosituhannen vaihtuminen. Tietokoneiden päivämäärätiedot oli alkujaan tehty muistitilaa säästäen siten, että ne olivat automaattisesti 1900-luvulla. Eli vuosi 1985 kirjoitettiin vain 85, tai vastaavasti. Tämän korjaamiseen (Hoaren mukaan) on käytetty myös noin neljä miljardia dollaria.

CodeRedin saastuttama tietokone

 

Jos haluat heittäytyä ammoisten tietokonekielien maailmaan, niin John Backusin ammoinen artikkeli ALGOL kieliopista (PDF) on kiinnostava.

PS. Tämän kalenteriluukun julkaisu lykkääntyi siksi, että tietokoneohelmasta kertovan jutun julkaisu sai aikaan häiriöitä systeemissämme. Onkohan näillä joku yhteys?

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 4. Lysenko & vernalisaatio

Ti, 12/03/2019 - 23:43 Jari Mäkinen
Lysenko (vas) puhuu ja Stalin (oik) kuuntelee.

Tässä tekstissä mennään vaarallisille vesille, sillä se käsittelee politiikkaa ja tiedettä. Kun ideologia alkaa määrätä tieteen suuntaa, ei tuloksena ole yleensä kuin harmia.

Käsittelyssä on nimittäin tapaus Lysenko.

Trofim Denisovitš Lysenko oli maatyöläisen oloinen ja näköinen agronomi Karlovkasta Poltavan läheltä Venäjältä. Hän syntyi vuonna 1898 valmistui 1925 Kiovan maatalousinstituutista ja sai varsin pian mainetta. 

Pravda kertoi vuonna 1927 Lysenkon keksineen, kuinka pellot voidaan lannoittaa ilman lannoitteita ja mineraaleja. Hänen kerrottiin myös todistaneen, että Azerbaidžanissa voitaisiin kasvattaa talvisatoa tekeviä papuja. Eksentrisen tutkijan maine alkoi kasvaa ja laajeta, mistä hän innostui ennestään kehittämään erilaisia teorioitaan.

Niitä Lysenko kehitteli ilman minkäänlaista tieteellistä pohjaa. Hän jopa sanoutui irti monista yleisesti hyväksytyistä ajatuksista, koska ne eivät "sopineet dialektisen materialismin doktriiniin", kuten hän kirjoitti. Evoluution, eli darwinismin sijalle Lysenko kehitteli "sosiaalisen darwinismin", missä ei tarvittu perintötekijöitä ja muista sellaisia läntisiä hapatuksia.

Lajien talvikestävyyden parantamiseen Lysenko kehitti niin sanotun vernalisaation, eli ajatuksen, jonka mukaan lajit oppivat esimerkiksi sietämään olosuhteita, joille ne altistetaan. Eli kun toisiaan seuraavat viljasukupolvet pidetään koko ajan kylmässä, niin ne oppivat sietämään lopulta kylmyyttä. 

Valtaan juuri sopivasti 1920-luvun lopussa noussut Josif Stalin piti Lysenkon ajatuksista kovasti – ei vähiten sen vuoksi, että viljan paleltumiset olivat Neuvostoliitossa kovin yleisiä, ja tässä näytti olevan siihen ratkaisu. Ja Lysenko lupasikin korjata asian. 

Stalin teki Lysenkosta maataloustieteellisen Akatemian johtaja vuonna 1938 ja hänestä tuli myös Stalinin avustaja tiedekysymyksissä. Eli Lysenko oli käytännössä Neuvostomaan tiedediktaattori Stalinin aikaan. Hänen ajatuksiaan kritisoineet tutkijat laitettiin Siperiaan, minkä seurauksena tieteellinen keskustelu paitsi genetiikan ja perintötieteen, niin myös muiden tieteenalojen saroilla muuttui ymmärrettävästi vaisuksi.

Stalin ja Lysenko patsaana
Stavropolin kaupunkiin pystytettiin vuonna 1952 veistos, missä ovat Stalin ja Lysenko ihastelemassa vehnää. Veistos tuhottiin vuonna 1961, mutta se elää edelleen tässä Stavropolin hallintoalueen arkistossa olevassa kuvassa. Otsikkokuvassa ovat myös Lysenko (vasemmalla) ja Stalin (oikealla); kuvassa Lysenko pitää puhetta Kremlissä.

Lysenko oli voimissaan Stalinin valtakauden ajan, ja yllättäen hänen loistelias uransa jatkui myös Nikita Hruštšovin aikana. 

Hruštšov oli esimerkiksi todella innostunut Lysenkon ideasta käyttää kanoja sokerijuurikkaita turmelevien kärsäkkäiden tuhoamiseen. Kun asiantuntijat epäilivät asiaa, tuli Hruštšov väliin ja totesi hänen olevan ensiluokkainen tiedemies. 

Vasta 1960-luvun alussa Lysenkon ympärilleen ja koko neuvostomaahan rakentama tieteellinen kupla alkoi sihistä tyhjäksi. Ensin kolme tunnettua fyysikkoa, Jakov Zeldovitš, Vitali Ginzburg ja Pjotr Kapitsa syyttivät Lysenkoa valetieteellisyydestä ja tieteellisten vastustajiensa tuhoamisesta. Sitten myös ydinfyysikko Andrei Saharov hyökkäsi Lysenkoa vastaan ja sanoi yksinkertaisesti, että Lysenkon teorioiden takana oli vain Stalinin henkilöpalvonta, ja että  Lysenko oli aiheuttanut neuvostotieteelle valtavasti vahinkoa.

Käännekohdaksi tuli vuosi 1964, kun Lysenko viimein  erotettiin tiedeakatemian johdosta ja asetettiin arestiin koetilalle lähelle Moskovaa. 

Kun Hruštšov oli erotettu lokakuussa 1964, ei Lysenkolla ollut enää suojelijaa. Pian tiedeakatemian puheenjohtaja ilmoittikin, ettei Lysenkoa enää suojeltu arvostelulta, Lysenkon kotiin lähetettiin asiantuntijakomitea, ja keväällä 1965 julkaistiin häntä koskeva raportti, ja se oli rajua tekstiä: Lysenkon maine tuhottiin ja hänen tutkimuksensa todettiin yksiselitteisesti olleen puppua.

Lysenko kuoli Moskovassa vuonna 1976, mutta hänen vaikutuksensa näkyy edelleen itänaapurissamme, sillä Neuvostoliitossa jäätiin jälkeen etenkin geenitekniikassa – ja yhä edelleen politiikka sotkeutuu (sielläkin) tieteentekoon.

Nikolai Vavilov
Eräs surullisimmista Lysenkon ajan tutkijakohtaloista on Nikolai Vavilov. Hän oli erinomainen ja lahjakas tutkija, kasvitieteilijä ja geneetikko, joka erikoistui kasvien immunologiaan ja viljelykasvien geneettisten ominaisuuksien tutkimiseen ja niiden jalostamiseen. 


Vavilov oli Lysenkon aikalainen, ja geneetikkona (sekä pätevänä tutkijana) Lysenkon kannalta vaarallinen. Siksi Vavilov vangittiin vuonna 1940 ja tuomittiin kuolemaan isänmaanpetturuudesta ja tuholaistoiminnasta. Tuomio lievennettiin 20 vuoden vankeudeksi, mutta Vavilov kuoli jo kolmen vuoden kuluttua tuomiostaan aliravitsemukseen vankilassa. Yllä on hänen vankilakuvansa Vavilov-museossa Moskovassa.

 

PS. Jotkut huomauttavat, että vernalisaatio ei ollutkaan ihan täyttä soopaa. Viimeaikainen tutkimus epigenetiikassa on osoittaunut, että hankitut ominaisuudet voivatkin vaikuttaa jossain määrin perimään. Vaikutus on kuitenkin paljon pienempi kuin Lysenko lupasi, ja lisäksi Lysenkon perustelut vernalisaatiolle eivät kestä tietellistä valoa laisinkaan.

 

 

 

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 3. Eetteri

Ti, 12/03/2019 - 10:50 Jari Mäkinen
Orionin kaasusumu Andrew Ainslie Commonin kuvaamana vuonna 1883

Eetteri on orgaaninen yhdiste, joka reagoi varsin huonosti muiden aineiden kanssa ja sitä käytetään esimerkiksi uuttamisessa varsin paljon.

Aikanaan sillä oli myös kovasti käyttöä kosmologiassa, koska jostain syystä koko maailmankaikkeuden oletettiin olevan täynnä eetteriä – hieman kemiallisen eetterin tapaan huonosti vuorovaikuttavaa ainetta, jonka ansiosta esimerkiksi valo pystyi liikkumaan (hieman äänen tavoin) avaruudessa. 

Jo antiikin kreikassa niin sanotun maailmaneetterin oletettiin "täyttävän kuunylisen kaikkeuden".

Ajatus eetteristä oli sinänsä looginen, sillä esimerkiksi ääni kulkee ilmassa värähtelynä. Koska oli vaikeaa kuvitella tapaa, millä valo tai minkä muun tahansa signaali kulkisi tyhjässä avaruudessa, oli suora päätelmä se, että avaruudessa on pakko olla jotain ainetta, mitä ei näe, mikä ei haittaa taivaankappaleiden liikettä ja mikä ei muutenkaan ole havaittavissa, paitsi että se kuljettaisi esimerkiksi valoa.

Eetterin piti olla siis täysin läpinäkyvää, kitkatonta ja sen piti olla täysin levossa maailmankaikkeuden suhteen siten, että valon nopeus siinä oli aina täsmälleen valon nopeus.

Tämä eetteri oli kuitenkin sen verran omituinen ja ristiriitainen ajatus, että herrat Albert Michelson ja Edward Morley suunnittelivat 1880-luvulla kokeen, jonka tarkoituksena oli mitata Maan absoluuttinen liike eetterin suhteen.

Kokeen lähtökohtana oli ajatus siitä, että maapallon liikkeen eetterin suhteen pitäisi aiheuttaa Maan pinnalla havaittava "eetterituuli". Valon suunnan ja eetterituulen välisen kulman pitäisi vaikuttaa valon nopeuteen, ja siksi hyvin yksinkertaisella koejärjestelyllä koetettiin havaita "sivutuuleen" ja "vastatuuleen" liikkuneiden valonsäteiden eri nopeuksista aiheutunut vaihe-ero.

Michelson-Morley -koe 1887

He tekivät mittauksia useampaan otteeseen vuonna 1881 ja 1887, eivätkä löytäneen mitään eroavaisuutta. Tai he löysivät hyvin pienen nopeuseron, mutta se oli mittausvirheen rajojen sisällä ja siksi siihen ei voinut luottaa.

Vaikka koetta pidetään yhtenä kuuluisimmista epäonnistuneista kokeista, se oli kuitenkin kiinnostava. Michelson sai sen ansiosta jopa Nobelin palkinnon vuonna 1907.

Tuolloin kuitenkin eetterin aika alkoi olla lopullisesti ohi, koska 1900-luvun alussa Albert Einstein selitti suhteellisuusteoriassaan vuonna 1905, että mikään koejärjestely ei voi havaita eroa valon nopeudessa, koska valon nopeus on aina vakio.

Lisäksi tuntemus valon ja koko sähkömagneettisen säteilyn olemuksesta oli kehittynyt 1900-luvun alussa siihen saakka, ettei sen kulkemiseen enää kaivattu edes teoreettisesti mitään eetteriä.

Avaruus on siis tyhjä ja eetteri on jäänyt elämään lähinnä radiotoiminnassa, missä edelleen lähetyksiä lähetetään niin sanotusti eetteriin – vaikkakin yhä useammin tuo radioeetteri sijaitseekin netissä. Mutta se on ihan eri juttu.

-

Otsikkokuvassa on Andrew Ainslie Commonin vuonna 1883 ottama kuva Orionin kuuluisasta kaasusumusta. Tämä oli eräs ensimmäistä tähtivalokuvista, joilla osoitettiin miten aikavalotuksella saadaan kuvaan näkyviin paljon enemmän tähtiä ja kaasua kuin paljain silmin voi nähdä.

Tiedetöppäysjoulukalenterin tunnus

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 2. Piltdownin ihminen

Ma, 12/02/2019 - 08:24 Jari Mäkinen
John Cooken maalaus tutkijoista ihailemassa Eoanthropus dawsonin kalloa

Vuonna 1912 amatööriluonnontieteilijä Charles Dawson kertoi maailmalle löytäneensä luita ja työkaluja eräästä luolasta Piltdownin luona Kentissä, eteläisessä Englannissa. Alue on tunnettu arkeologisista löydöistään.

Löytyneet luut näyttivät viittaavan jonkinlaiseen ihmisen ja apinan välimuotoon. Kun keskustelu Charles Darwinin esittämästä evoluutioteoriasta kävi tuolloin kovin kiivaana, ei ollut ihme, että löytö sai kovasti huomiota osakseen.

Kolme vuotta myöhemmin, vuonna 1915, Dawson ilmoitti toisesta, jopa kiinnostavammasta löydöstä: nyt hän oli löytänyt lisää luita toisesta ammoisesta ihmisapinasekasikiöstä, aivan edellisen löytöpaikan lähitienoilta.

Kun luut kasattiin yhteen, mudostivat Piltdownin fossiilit mielenkiintoisen jäänteen: yksilöllä näytti olevan suurikokoinen, lähes nykyihmisen kaltainen kallo, mutta leuat ja hampaat olivat selvästi apinamaiset.

Piirros mahdollisesta Piltdownin ihmisestä ja kallo

Oikealla on rekonstruktio Piltdownin ihmisen kallosta ja vasemmalla hahmotelma siitä, millainen ihminen olisi voinut olla. Piirros oli varsin pitkälle mennyt päättely varsin vajavaisen tiedon perusteella.


 

Evoluutiotutkijat hyppivät innoissaan, sillä tämä näytti olevan puuttuva linkki ihmisen ja apinan välillä. Se oli vahva ase evoluution vastustajia vastaan, sillä varhaisista ihmisistä ja myöhäisistä ihmisapinoista oli löytynyt hyviä fossiileja, mutta niiden välissä ei ollut mitään – ennen Piltdownin ihmistä.

Löytö sopi kuitenkin liian hyvin siihen mitä odotettiin, joten jo tuolloin monet epäilivät löydon aitoutta.

Niinpä Dawsonin löytöjä tutkittiin ja tutkittiin, kunnes viimein vuonna 1953 kehittyneet tutkimusmenetelmät paljastivat luut huijaukseksi. Tavallisen 1900-luvun alun orankutangin ja 600-vuotta vanhan ihmiskallon jäänteet oli liitetty toisiinsa hyvin huolellisesti ja niin aidon tuntuisesti, että ne onnistuivat huiputtamaan tutkijoita lähes 40 vuoden ajan.

Muistona tästä Dawsonin vilpistä on edelleen hänen luomansa olion latinankielinen nimi, Eoanthropus dawsoni, eli Dawsonin jäljitelmäihminen.

Ei mikään mukava tapa saada nimensä tieteen historiaan…

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.

Tiedetöppäysjoulukalenteri: 1. Lobotomia

Su, 12/01/2019 - 15:16 Jari Mäkinen
Lobotomia

Tiedetöppäysjoulukalenterin ensimmäisen luukun takana on lobotomia, eli operaatio, missä aivopuoliskojen välisiä ja niitä taaempiin aivojen osiin yhdistäviä hermoja leikattiin poikki. Tarkoituksena oli auttaa levottomia, ahdistuneita ja tuskaisia potilaita.

Menetelmän keksi portugalilainen kirurgi Egas Antonio Caetano de Abreu Freire Moniz, joka operoi kollegansa Almeida Liman kanssa kolmattakymmenettä potilasta vuodesta 1936 alkaen poraamalla heidän kalloonsa reiän ja leikkaamalla hermosäikeitä poikki erityisellä neulalla, jonka päässä oli pieni metallisilmukka. Instrumentin nimi oli leukotomi.

Maailmanlaajuinen hoitomuoto lobotomiasta tuli, kun amerikkalaiset Walter Freeman ja James Watts aloittivat Yhdysvalloissa leikkaukset 1936 ja kehittivät niin sanotun standardimetodin.

Tämä standardileikkaus tapahtui siten, että joko paikallispuudutuksessa tai yleisanestesiassa porattiin molemmin puolin ohimoa reiät, joiden avulla mitattiin aivojen paksuus ja määritettiin etäisyys keskiviivassa kulkeviin etumaisiin aivovaltimoihin. Sen jälkeen tehtiin viuhkamaiset viillot otsalohkojen valkean aineen läpi pitkällä, mitta-asteikollisella veitsimäisellä leukotomilla. Näin otsalohkojen yhteydet tunnetiloja säätelevään limbiseen järjestelmään katkaistiin.

Kaikesta mittaamisesta ja arvioinnista huolimatta enempi tai vähempi hasardihommaa; joskus reikä meni liian pitkälle taakse, jolloin potilas saattoi tulla apaattiseksi ja lopulta täydeksi kasviksi, ja toisaalta jos lääkäri osui vahingossa liian syvälle, saattoi potilas kuolla aivoverenvuotoon.

Toinen tapa suorittaa lobotomia oli vieläkin hurjempi. Siinä jääpiikkimäinen instrumentti naputettiin pienellä vasaralla kyynelpussin ja silmäkuopan sisäreunan kautta etukuoppaan ja naskalin vartta kääntelemällä tehtiin viuhkamainen valkean aineen halkaisu molemmin puolin. 

Jännää leikkauksissa oli se, että niiden aikana potilas oli koko ajan hereillä; lääkäri saattoi kysellä koko ajan miltä nyt tuntuu.

Tohtorit Freeman ja Watts tutkivat röntgenkuvaa potilaan aivoista ennen lobotomiaa.

Tohtorit Freeman ja Watts tutkivat röntgenkuvaa potilaan aivoista ennen lobotomiaa.


Suomessa lobotomialeikkauksia tehtiin kaikkiaan noin 1700 psykiatriselle potilaalle, viimeiset vielä 1970-luvun puolivälissä.

Periaatteessa lobotomia toimi hyvin, sillä sen ansiosta usein potilaita voitiin hoitaa kotona. Potilaat muuttuivat useimmiten rauhallisiksi, kun aggressiivisuus ja ahdistuneisuus vähenivät. Heidän kokemansa harhat pysyivät kuitenkin ennallaan, mutta potilaat suhtautuivat niihin välinpitämättömästi.

Käytännössä aina tuloksena oli myös sivuvaikutuksia. Potilaat esimerkiksi muuttuivat vähemmän oma-aloitteisiksi, passiisiksiksi, ja lapsellisiksi. He saattoivat olla hyväntuulisia, mutta karkeita käytöksessään ja puheissaan.

Muita leikkauksesta seuranneita komplikaatioita olivat muun muassa epileptiset kohtaukset, aivoverenvuoto, keuhkokuume ja meningiitti. Ne olivat myös lobotomian yleisimpiä kuolinsyitä.

Suomessa lobotomiaan kuoli arviolta 3 – 5 % potilaista. Ruotsissa ja Yhdysvalloissa luku oli 4 – 8 %.

1950-luvulla tulivat käyttöön uudenlaiset psyykenlääkkeet, joiden ansiosta varsin väkivaltaisia lobotomisia leikkauksia ei tarvittu enää niin paljon. 1960-luvulla niitä tehtiinkin jo paljon aiempaa vähemmän, ja 1970-luvulla niistä luovuttiin kokonaan. 

Paitsi että lobotomia oli vaarallinen toimenpide, oli se eettisesti kyseenalainen, koska useinkaan potilailta ei kysytty lupaa sen tekemiseen. Nykyisin sitä on helppo kauhistella, mutta se oli oman aikansa ja sen aikaisen ajattelun tuote. Sitä ei voi pitää täysin kyseenalaisena hoitona, etenkin kun sen avulla on pystytty kehittämään uudenlaisia, parempia ja tehokkaampia aivoleikkauksia sekä neurokirurgisia toimenpiteitä.

Aikoinaan lobotomiaa arvostettiin jopa niin paljon, että sen keksijä Moniz sai lääketieteen Nobelin palkinnon vuonna 1949 (yhdessä sveitsiläisen Walter Rudolf Hessin kanssa).

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä. Aihe ei ole erityisen jouluinen, mutta kiinnostava, sillä töppäykset pitävät sisällään niin tietoisia huijauksia, puhtaita vahinkoja kuin myös varsin onnekkaiksi osoittautuneita epäonnistumisia.

Tiedetöppäykset ovat myös kiinnostavia siksi, että ne osoittavat miten tiede toimii: se on itse itseään korjaava systeemi, jonka tavoitteena on totuus.

Jos joku epärehellinen tutkija koettaa väärentää tuloksiaan, toiset kyllä paljastavat tämän ennemmin tai myöhemmin. Jos virheelliset mittaukset tai epäselvät havainnot johtavat tekemään epätosia päätelmiä, niin tutkijakollegat kyllä korjaavat tämän pian. Jokainen hyvä tutkija on luonnostaan myös epäilijä, vaikka kyse on omista tuloksista.

Totuus voittaa aina lopulta, eikä luonnonlakeja voi huijata.

Tämä on tärkeää muistaa näinä aikoina, kun tutkimustuloksia väärennellään julkisuudessa ja niistä kerrotaan valikoiden. Kansanedustajatkin esittävät suoranaisia valheita, ja monet yleisesti ottaen järkevät ihmiset eivät halua uskoa tiedeyhteisön varsin yksimielisesti hyväksymiin asioihin, kuten ilmastonmuutokseen tai evoluutioon.

Juuri siksi on kiinnostavaa poimia historiasta kalenterillisen verran tapauksia, joissa tiede on ollut hakoteillä. Vastapainoksi ikäville, mutta opettavaisille tapauksille on myös töppäyksiä sekä erehdyksiä, jotka paljastuivat hyödyllisiksi.