Kultaisella 80-luvulla Radio Cityn taajuuksilla pyöri legendaarinen Pullakuskit-radiohupailu, jonka Viisasten kerho -osiossa panelistien päätä vaivasi kysymys siitä, mitä on kupari ja kuinka paljon. Jokseenkin samaan kategoriaan asettuu kysymys siitä, minkä muotoista on lyijy.
Lyijyn 208-isotooppi (²⁰⁸Pb) on äärimmäisen pysyvä, mikä johtuu siitä, että sen ydin on kaksoismaaginen. Sellaisiksi määritellään ytimet, joissa niin protonien kuin neutronienkin lukumäärä on niin sanottu maaginen luku.
Ydinfysiikassa maagisia ovat luvut, joiden ilmoittamalla protonien tai neutronien lukumäärällä ytimen kuorimallin mukaiset kuoret ovat täysiä. Silloin ytimen pysyvyyteen vaikuttava sidosenergia on mahdollisimman suuri.
Surreyn yliopiston tutkimuksessa tarkasteltiin lyijyn kaksoismaagisen ytimen muotoa, jonka on pitkään ajateltu olevan täsmällisen pallomainen. Niin voisi kuvitella, jos ja kun kerran ytimen kuoret ovat täysiä. Makromaailman ilmiöihin perustuvia olettamuksia ei kuitenkaan pitäisi soveltaa mikromaailmaan, kvanttimaailmasta puhumattakaan.
Jack Hendersonin johtamassa tutkimuksessa tehtiin neljä erillistä mittausta, joiden yhdistäminen antoi yllättävän tiedon lyijy-ytimen muodosta. Se ei ole pallo vaan pyörähdysellipsoidi – eli kuin rugbypallo, joka on amerikkalaista serkkuaan tylppäkärkisempi.
Mittaukset tehtiin Argonnen kansallisessa laboratoriossa Yhdysvalloissa. GRETINA-gammaspektrometrillä pommitettiin lyijy-ytimiä hiukkasilla, joiden nopeus oli kymmenesosa valon nopeudesta eli lähes 30 000 kilometriä sekunnissa. Ytimien ja hiukkasten vuorovaikutukset tuottivat säteilyä, jonka ominaisuuksista pystyttiin tekemään johtopäätöksiä ydinten muodosta.
Kyse ei ole pelkästä kuriositeetista, sillä havainto osoittaa, että atomiydinten rakenne on huomattavasti aiemmin arveltua mutkikkaampi. Tutkimukseen osallistuneen Paul Stevensonin mukaan hiukkassuihkun virittämien ydinten värähtelyt eivät kenties ole niin säännöllisiä kuin on kuviteltu.
Lyijy-ytimen yllättävä muoto ei olekaan pelkästään yhden alkuaineen erikoinen ominaisuus, vaan havainnolla voi olla huomattavia vaikutuksia laajemminkin sekä ydin- että astrofysiikkaan – kuten esimerkiksi siihen, miten raskaat alkuaineet ylipäätään muodostuvat.
Tutkimus on julkaistu Physical Review Letters -tiedelehdessä.