Avaruus

Tapahtuuko ensi yönä suuri satelliittikolari? (ei tapahtunut, mutta läheltä piti)

To, 10/15/2020 - 12:26 Jari Mäkinen
LeoLabs-yhtiön tekemä simulaatio.

Kiinalaisen CZ-4C -kantoraketin ylin vaihe sekä sammunut venäläinen paikannussatelliitti Parus sattavat törmätä toisiinsa ensi yönä 16. lokakuuta klo 3.56 Suomen aikaa. 810 kg massaltaan olevan satelliitin ja 1700-kiloisen rakettivaiheen lasketaan ohittavan toisensa vain noin 12 metrin etäisyydeltä.

Päivitys 16.10. aamulla: Törmäystä ei tapahtunut. Viimeisin ennen ohitusta tehty arvio ohitusetäisyydestä oli 25 metriä, eli vähän enemmän kuin sitä aikaisemmin alla olevaa tekstiä kirjoitettaessa. Nyt saatuja tietoja käydään läpi ja todennäköisesti saamme pian tarkempaa tietoa todellisesta välimatkasta.

Alla on alkuperäinen teksti:

---

Ottaen huomioon epätarkkuuden ratatiedoissa, kalifornialainen satelliitteja tarkkaileva yhtiö LeoLabs arvioi törmäyksen mahdollisuuden olevan jopa 10 %.

Nyt maapalloa kiertää avaruudessa yli 34 000 kappaletta, joiden koko on suurempi kuin kymmenen senttimetriä. Pienempiä kappaleita, sentistä kymmeneen senttiin, arvellaan olevan jopa noin 900 000. Millimetristä kymmeneen senttiin kooltaan olevia kappaleita saattaa olla jopa 128 miljoonaa.

Tuollainen vajaan sentinkin halkaisijaltaan oleva pieni romun palanen saa aikaan suurta tuhoa, kun se törmää kiertoratanopeudella toiseen kappaleeseen. Törmäyksen tuloksena on aina lisää avaruusromua, kun törmääjät hajoavat pienemmiksi kappaleiksi.

Kun törmäys tapahtuu nokkakolarina, on suhteellinen törmäysnopeus hurjan suuri. Esimerkiksi tässä ensi yön tapauksessa se on 52 950 kilometriä tunnissa. Asiaa tarkasti seuraavan tähtitieteilijä Jonathan McDowellin mukaan lähellä Maata olevan avaruusromun määrä saattaa lisääntyä kenties jopa 20 %.

Graafi ohitusetäisyyden arvioinnista.

Kohta, missä Paroksen ja rakettivaiheen radat kohtaavat, on 991 kilometrin korkeudessa Atlantin eteläosissa, juuri Etelämantereen rannan tietämissä. Tuo korkeus on siinä mielessä ikävä, että siellä olevat kappaleet putoavat luonnollisesti alaspäin hyvin hitaasti.

Ilmakehän yläreuna ei ole tarkka, vaan ilman määrä vain vähenee ja vähenee ylöspäin mentäessä. Tämän vuoksi myös muutaman sadan kilometrin korkeudessa on ilmanvastusta. Hyvin vähän, mutta sen verran, että se hilaa hiljalleen kappaleita alaspäin. 

Kansainvälisen avaruusasemankin rataa täytyy tökkiä silloin tällöin ylemmäs, ettei se putoaisi alas. Suurin osa pienistä nanosatelliiteista kiertää maata noin 400-500 kilometrin korkeudessa, ja ne tuhoutuvat luonnollisesti parissa vuodessa. Esimerkiksi ensimmäinen avaruuteen lähetetty suomalaistekoinen satelliitti, Aalto-2, syöksyi ilmakehään vain parin vuoden lennon jälkeen.

Tuosta noin 500 kilometristä ylöspäin mentäessä "automaattinen" putoamisaika kasvaa nopeasti. 750 kilometrin korkeudella kiertävä kappale pysyy avaruudessa ainakin 2200 vuotta, 800 kilometrissä luku on jo noin 5000 vuotta ja 900 kilometrissä 20 000 vuotta. 

Jos ensi yönä törmäyksessä syntyy avaruusromupilvi, niin sen elinikä on kymmeniä tuhansia vuosia.

Osa kappaleista sinkoutuu alaspäin ja ne tulevat nopeammin alas, mutta osa nousee korkeammalle ja pysyvät siellä meidän näkökulmastamme ikuisesti. 

Kun heräämme siis uuteen aamuun huomenna, voi olla, että ihmiskunnalla on taakkanaan yhä isompi avaruusromuongelma.

Avaruudessa olevien kappaleiden määrä on jo nyt ongelma satelliittien laukaisijoille. Juuri viime viikolla Rocket Lab -yhtiön toimitusjohtaja Peter Beck harmitteli sitä, että laukaisuiden suunnittelu käy koko ajan hankalammaksi.

Suurin ongelma hänen kannaltaan ovat kuitenkin satelliittikonstellaatiot. Esimerkiksi SpaceX on laukaissut jo 775 Starlink-järjestelmänsä satelliittia avaruuteen, ja yhtiö aikoo laukaista kaikkiaan 30 000.

Eikä se ole yksin: vastaavia tietoliikennesatelliittikonstellaatioita suunnitellaan muuallakin, ja lisäksi monet muut satelliittioperaattorit, suomalainen Iceye muun muassa, kaavailee taivaalle yhden tai kahden satelliitin sijaan pientä laumaa satelliitteja. 

Bisnesmielessä tämä onkin järkevää, koska satelliittien tekeminen ja laukaiseminen on tullut edullisemmaksi, ja suuremmalla satelliittimäärällä saadaan katettua koko maapallo nopeammin ja paremmin.

Rocket Lab on tietysti osa tätä ongelmaa, koska sen Electron-raketti pystyy laukaisemaan näitä pikkusatelliitteja nopeasti ja kätevästi. Kuka tahansa voi ostaa heiltä laukaisun nettisivun kautta.

Kuten Beck toteaakin, ei satelliittien määrä sinällään ole ongelma, vaan se, että avaruudessa ei ole lennonjohtoa. Kukaan ei hallitse siellä liikennettä, vaan uusia satelliitteja laukaistaessa laukaisija itse – hieman yleistäen – tutkiskelee mitä satelliitteja on menossa milloinkin missäkin, ja koettaa sitten sujauttaa rakettinsa matkaan sellaiseen aikaan, ettei siitä ole haittaa kenellekään.

Monet avaruusalan toimijat ehdottavatkin jonkinlaista kansainvälistä järjestelyä, millä alle 1000 kilometrin korkeudessa olevia satelliitteja voitaisiin hallita paremmin. 

Mukana on tietysti sammuneita satelliitteja, joihin ei ole enää yhteyttä, sekä avaruusromua ja ohjauskyvyttömiä nanosatelliitteja, joilla ei voida tehdä tarpeen tullen väistöliikkeitä. Mutta jo niiden ottaminen paremmin ja keskitetymmin huomioon, parantaisi tilannetta.

Nyt tarkimmat tiedot kiertoradalla olevista kappaleista on sotilailla, ennen kaikkea Yhdysvaltain puolustushallinnolla. Olisi tärkeää, että avaruusliikenteen lennonjohto saataisiin siviilien hoidettavaksi ja kansainväliseksi. Muun muassa Euroopan avaruusjärjestö ja Nasa ovat tutkimassa asiaa.

Vielä paremmaksi tilanne muuttuu sitten, kun avaruusromua voidaan siivota. Tätä voitaisiin tehdä joko siivoojasatelliiteilla, jotka käyvät poimimassa isokokoisia sammuneita satelliitteja pois, tai vaikkapa ikään kuin suurilla kärpäspaperin tapaan toimivilla kappaleilla, joihin vapaasti lentelevät avaruusromun palaset tarttuvat.

Joitain kappaleita voitaisiin myös höyrystää laserilla ampumalla. 

Näistäkin avaruusjärjestöillä on jo suunnitelmia.

Satelliittikonstellaatiot eivät ole ainakaan näillä näkymin lisäämässä olennaisesti avaruusromun määrää, sillä ne ovat pääasiallisesti matalilla kiertoradoilla ja niitä voidaan ohjata alas tuhoutumaan ilmakehässä.

Starlink-satelliiteissa on myös eräänlainen automaattiohjaus, joka ohjaa satelliitin väistökurssille, jos toinen satelliitti tulee lähelle. 

SpaceX on myös ottanut käyttöön pienemmät turvavälit kuin perinteisesti on käytetty; nyt satelliittien ratoja muutetaan, jos niiden radat menevät ristiin siten, että välimatka olisi vain muutamia kilometrejä. Kun radat tunnetaan paremmin ja satelliittien ohjaaminen on tarkempaa, voitaisiin tätä varomatkaa lyhentää olennaisesti.

Tällä hetkellä tilanne on kuitenkin "first takes all", eli kun megakonstellaatioita ei ole säädelty kansainvälisesti, saa parhaimmat kiertoradat käyttöön se, joka nappaa ne ensimmäisenä. Tämä selittänee osaltaan sen tahdin, millä Starlink-verkostoa ollaan rakentamassa; tuorein laukaisu oli viime viikolla ja seuraavaa odotetaan lokakuun lopussa. Sitä seuraava laukaisu on suunnitteilla marraskuuksi.

Niin tylsää kuin se onkin, olisi tärkeää lähettää nyt diplomaatit ja juristit pohtimaan sitä, miten avaruuslennonjohto saataisiin aikaan mahdollisimman pian. 

Ja sen jälkeen pitää pohtia sitä, kuka tai ketkä alkavat korjata avaruusromua pois. 

Toivottavasti ensi yönä CZ-4C ja Parus vain suhahtavat toistensa ohitse, eikä törmäystä tule. Tapaus kuitenkin osoittaa taas kerran sen, että jotain täytyisi tehdä mahdollisimman pian.

Tämä artikkeli on julkaistu myös Ursan blogeissa.

Iridium 33:n ja Kosmos 2251:n törmäys.

Törmäyksiä on tapahtunut aikaisemminkin. Edellinen merkittävä tapaus oli 10. helminuuta 2009, kun Iridium 33 ja Kosmos 2251 törmäsivät toisiinsa 776 kilometrin korkeudessa Siperian päällä. Kuva näyttää miten törmäyksessä syntyneet osat olivat (laskennallisesti) levinneet 50 minuutin kuluessa törmäyksen jälkeen satelliittien radoille ja muuallekin.

Hubblen avaruusteleskooppi 30 vuotta - tässä kuusi erikoisjuttua tähtitieteen legendasta

Pe, 04/24/2020 - 12:46 Toimitus
Hubble 30 vuotta -logo

Avaruusteleskooppi Hubble laukaistiin kiertoradalleen Maata kiertämään avaruussukkula Discoveryllä  30 vuotta sitten.

Avaruusteleskooppi Hubble on kallein koskaan tehty tähtitieteellinen havaintolaite, mutta samalla se on myös kaikkein tuotteliain tieteellinen tutkimuslaite, kun lasketaan sillä tehtyjen havaintojen perusteella julkaistujen artikkelien määrä: niitä on yli 15 000, ja näihin on viitattu 738 000 muussa artikkelissa. 

Luvut ovat Hubblen nettisivuilta, enkä epäile niitä lainkaan. Hubblella otettuja kuvia ja tietoja ei ole vain netti pullollaan, vaan sen tekemät 1,3 miljoonaa havaintoa ovat olennainen osa tähtitiedettä viimeisten 30 vuoden ajalta.

Kyllä. Hubble on ollut avaruudessa tänään 30 vuotta. Se kuljetettiin avaruuteen avaruussukkula Discoveryllä lennolla STS-31, joka laukaistiin matkaan 24. huhtikuuta 1990. Siis tänään 30 vuotta sitten. 

STS-31 lähtee matkaan

Harvinainen näky Kennedyn avaruuskeskuksesta: taustalla Discovery lähtee lennolle STS-31 laukaisualustalta 39B ja etualalla noin kahden kilometrin päässä Columbia odottaa alustalla 39A toukokuuksi 1990 suunniteltua lentoaan.

 

Tuo avaruussukkulaohjelman 35. lento sujui hyvin ja Hubble vapautettiin omille teilleen sukkulan rahtiruumasta 25. huhtikuuta 1990. Periaatteessa siis Hubblen 30-vuotisjuhlaa pitäisi juhlia vasta nyt lauantaina, mutta yhtä kaikki: tätä kirjoitettaessa iltapäivällä 24.4.2020 oli Hubble jo kiertoradalla, tosin sukkulan ruumassa.

Se oli eräs merkkipaaluista avaruussukkulan historiassa, koska sukkulan periaatteena oli olla yleiskäyttöinen avaruusrahtari, joka voisi kuljettaa rutiininomaisesti avaruuteen kaikenlaista kamaa satelliiteista avaruusasemien kautta avaruusteleskooppeihin.

Hubbe vapautetaan avaruuteen Discoveryn ruumasta 25.4.1990.

 

Avaruusteleskooppi olikin 1970-luvun alusta alkaen suunnitelmissa. Paitsi että sukkulan ruumaan voitiin asettaa pieniä teleskooppeja kunkin noin viikon kestävän lennon aikana käytettäväksi, pohdittiin irrallisen, sukkulasta avaruuteen jätettävän avaruusteleskoopin tekemistä. 

NASA perustikin jo vuonna 1970 kaksi komiteaa tutkimaan itse teleskoopin suunnittelua ja hankkeen tieteellisiä tavoitteita. 

Ideoista ei ollut puutetta, mutta rahasta oli – etenkin kun sukkulan kehittäminen tuli oletettua kalliimmaksi ja rahaa oli käytettävissä odotettua vähemmän. Presidentti Fordin rajut julkisten menojen leikkaukset vuonna 1974 iskivät erityisesti avaruusteleskoopin tekemiseen ja hanke laitettiin jäihin.

Tähtitieteilijät eivät nielleet päätöstä: he lobbasivat asiansa puolesta niin senaatissa kuin kongressissakin, ja saivat hieman rahaa hankkeen jatkamiseen.

Rahaa oli tosin vain puolet aikaisemmasta, joten teleskooppia pienennettiin. Peilin halkaisija pudotettiin kolmesta metristä 2,4:ään ja Euroopan avaruusjärjestö värvättiin mukaan maksamaan osa viuluista: teleskooppiin tuli yksi instrumentti ja aurinkopaneelit Euroopasta. Vastineeksi tästä ESA sai 15 % osa teleskoopin käyttöajasta.

Eräs ensimmäisistä avaruusteleskooppisuunnitelmista.

 

Lopulta vuonna 1978 teleskooppi sai Yhdysvaltain puolella tarpeeksi rahaa, jotta sen rakentaminen pääsi alkamaan. 

Aikomuksena oli laukaista laite matkaan vuonna 1983, mutta kuten tavallista, hanke viivästyi – osin sukkulalentojen alkamisen viivästymisen vuoksi, mutta osin myös teleskoopin tekemisen hitauden vuoksi.

Viimein vuonna 1990 tähtitieteilijälegenda Edwin Hubblen mukaan nimetty avaruusteleskooppi pääsi avaruuteen. Ja kaikki olivat iloisia.

Kuvapari M100-galaksista näyttää selvästi peilin hiontaongelman: vasemmalla ennen korjausta, oikealla korjauksen jälkeen. 

 

Pahuksen peiliongelma

Ilo vaihtui kuitenkin suureen harmistukseen, kun Hubble otti ensimmäiset kuvansa. Aivan ensimmäisten odotettiinkin olevan huonoja ja epätarkkoja, sillä vasta niiden ottamisen jälkeen laitteita säädettäisiin paremmaksi, mutta varsin pian kävi ilmi, että ennätyskalliin teleskoopin kuva ei vain tarkentunut. 

Itse asiassa tarkentaminen ei paljoa vaikuttanut kuvan epäselvyyteen, koska pian kävi ilmi, että vaikka teleskoopin pääpeili oli kyllä hiottu erittäin tarkasti suunniteltuun muotoon, oli tuo suunniteltu muoto valitettavasti väärä. Peilin reuna-alueet oli hiottu hieman liian lattanaksi; tarkalleen ottaen sieltä lasia oli otettu 2,2 mikronia (eli noin 1/15 ihmisen hiuksen paksuudesta) liikaa. Tästä syystä peilin muodostama kuva oli sumuinen.

Onneksi Hubble oli suunniteltu kiertoradalla huollettavaksi. Huoltolennoilla oli tarkoitus vaihtaa teleskoopin havaintolaitteita ja vaihtaa sen laitteistoja muutenkin paremmiksi. Ensimmäinen suunniteltu huoltolento sai kuitenkin nyt aivan uuden tehtävän, sillä sen päätehtäväksi tuli asentaa teleskoopille silmälasit.

Oikeasti kyseessä oli viidestä pienestä peiliparista koostunut kokonainen laitteisto, jonka tehtävänä oli korjata peilin palloaberraatio. Optiikka vei yhden Hubblen neljästä instrumenttilaatikosta. 

Yksittäiset peilit olivat kooltaan (ja ulkonäöltään) hammaslääkärin peilin kaltaisia, tosin erittäin huolellisesti oikeaan muotoon hiottuja. 

Tämä COSTAR-nimisen laitteiston avulla teleskoopin kolme alkuperäistä instrumenttia pystyivät tekemään jälleen normaalisti havaintoja. 

COSTAR:ia asennetaan paikalleen.

 

Jo ensimmäisellä huoltolennolla havaintolaitteista yksi korvattiin uudella ja paremmalla, ja näin tehtiin myös myöhemmillä lennoilla.

Tämä joulukuussa 1993 tehty huoltolento on merkittävä myös siinä mielessä, että se on ensimmäinen paikan päällä USAssa seuraamani sukkulalento. STS-61 laukaistiin matkaan 2. joulukuuta, ja lentoon käytetty sukkula oli Endeavour. Laukaisun jälkeen pääsin tutustumaan lennon jatkumiseen Houstonissa lennonjohdossa, ja tein tästä aikanaan montakin ohjelmaa Yleisradion tiedeohjelmille nuoren miehen innokkuudella. Toivottavasti ne ovat jossain tallessa (itselläni ei ole valitettavasti noilta ajoilta muutamia valokuvia lukuun ottamatta mitään arkistossa).

Seuraavat huoltolennot tehtiin helmikuussa 1997, joulukuussa 1999, maaliskuussa 2002 ja toukokuu 2009. Viimeinen oli hyvin erikoinen, koska se tehtiin avaruussukkula Columbian onnettomuuden jälkeen ja silloin toinen sukkula oli samaan aikaan lähtövalmiina siltä varalta, että lennolla olleelle sukkula Atlantikselle olisi tapahtunut laukaisun aikaan jotain vastaavaa kuin Columbialle.

Lennoilla teleskooppia huollettiin, sen osia vaihdettiin uusiin, sen havaintolaitteita korvattiin paremmilla ja myös sen aurinkopaneelit vaihdettiin pariinkin kertaa uusiin. 

Nyt avaruudessa oleva Hubble ei siis ole sama kuin se Hubble, joka laukaistiin kiertoradalle 30 vuotta sitten.

 

Hubble vapautetaan sukkulasta huollon jälkeen

Hubble kuvattuna viimeisen huoltolennon päätteeksi.

 

Säästäminen kävi kalliiksi

Periaatteessa avaruusteleskoopin huollettavuus avaruudessa oli erinomainen ajatus. Se, että astronautit saattoivat käydä sitä korjailemassa ja parantamassa oli eräs avaruussukkulan kehittämisen perusajatuksista, mutta valitettavasti se ei toiminut ihan kuten oli tarkoitus.

Avaruussukkuloiden lennättäminen oli kalliimpaa ja hankalampaa kuin 1970-luvulla toivottiin. Utopistisimmissa ajatuksissa sukkulat olisivat lentäneet jopa pari kertaa viikossa, ja silloin tällaiset huollot olisivat olleet rutiinihommia muiden tehtävien seassa. 

Lopulta oli niin, että yhden huoltolennon hinnalla olisi saanut laukaisua avaruuteen kokonaan uuden avaruusteleskoopin perinteisellä raketilla. 

Tästä voi repiä tietysti pelihousunsa ja harmitella hukkaan menneitä mahdollisuuksia sekä kaikkea rahaa, jonka Nasa ja ESA olisi voineet säästää, mutta kolikolla on myös toinen puolensa: tulevaisuudessa tällaiset huollot ovat varmasti rutiinia ja silloin Hubblea sekä sen huoltolentoja kiitellään. Niillä saatiin paljon kokemusta avaruudessa toimimisesta.

Hubblen seuraajan tekeminen ei sekään ole tullut halvaksi, sillä James Webb Space Telescope (JWST) on hurjasti myöhässä aikataulustaan ja ylittänyt suuresti budjettinsa. Kyseessä on ”huoltovapaa” kaukoputki, jonka sijoituspaikaksi tulee Lagrangen piste noin 1,5 miljoonan kilometrin päässä Maasta.

Sen peili on yli tuplasti Hubblen peiliä suurempi halkaisijaltaan ja sen hartioilla on suuria odotuksia kosmologian suurten kysymysten ratkaisemisesta eksoplaneettojen havaitsemiseen.

 

JWST:n mallikappale avaruusnäyttelyssä kuvattuna

JWST:n mallikappale avaruusnäyttelyssä kuvattuna.

 

Jos se saadaan avaruuteen lopulta noin vuoden päästä ja se toimii odotetusti, on se aivan ällistyttävän hieno havaintolaite. Juuri nyt työt teleskoopin kanssa ovat kuitenkin keskeytyksissä koronaepidemian vuoksi; nähtäväksi jää, kuinka paljon tämä vaikuttaa aikatauluun.

Itse Hubble on toiminnassa edelleen avaruudessa, mutta jokin sen tärkeistä systeemeistä saattaa rikkoontua koska tahansa. Tähän saakka lennonjohto on saanut joko ongelmat ratkaistua tai keksinyt temppuja, joilla havaintojen tekoa on voitu jatkaa. 

Nykyinen rahoitus teleskoopin toiminnalle päättyy ensi vuonna, ja sitä seuraava määräaika on 2030-luvun puolivälissä. Jos Hubblea ei voida hivuttaa sitä ennen korkeammalle kiertoradalle, se syöksyy silloin ilmakehään ja tuhoutuu.

Toivottavasti JWST on silloin jo taivalla, ja voimme sanoa valtavan suuren kiitoksen Hubblelle.

---

Tiedetuubi kokosi viisi vuotta sitten Hubblen 25-juhlan kunniaksi juttusarjan avaruusteleskoopin historiasta ja olemuksesta. Niiden avulla voi juhlistaa edelleen tätä tähtitieteen mullistajaa.

Hyvää hubbleilua!

25 kosmista kynttilää Hubblelle


Hubblen huippuhavainnot


Avaruusteleskoopin anatomiaa


Hubblen huoltolennot


Hubblen muodonmuutos


Hubblen seuraaja JWST

Juttu on julkaistu myös Ursan blogina.

-->

 

Mitä epäonnisesta Apollo 13 -lennosta opittiin?

Pe, 04/17/2020 - 10:58 Jari Mäkinen
Lennojohto Apollo 13 -lennon aikana

Tasan 50 vuotta sitten Apollo 13 -alus oli lähestymässä Maata epäonniseksi muuttuneen lennon päätteeksi. Astronautit Jim Lowell, Fred Haise ja Jack Swigert valmistautuivat laskeutumiseen kylmissään, nälissään ja epätietoisena kohtalostaan. Kolmikko laskeutui lopulta onnistuneesti eteläiselle Tyynelle valtamerelle 17. huhtikuuta 1970 klo 20:07 Suomen aikaa.

Apollo 13 -lento alkoi 11. huhtikuuta 1970, mutta erinomaisen alun jälkeen lento muuttui selviytymiskamppailuksi.

Tarkoituksena oli tehdä kolmas laskeutuminen Kuun pinnalle ja käydä tutkimassa Fra Mauron kraatterialuetta. Siellä oletetaan olevan paljon Mare Imbriumin, eli Sateiden meren aikanaan synnyttäneen törmäyksen materiaalia. Apollo 15 laskeutui lopulta alueelle, mutta Apollo 13:n miehistölle se jäi haaveeksi.

Ongelmat alkoivat klo 05:08 Suomen aikaa huhtikuun 14. päivänä 1970.

Alus oli noin 330 000 kilometrin päässä Maasta ja  lentoa oli kulunut tuolloin 55 tuntia 54 minuuttia ja 53 sekuntia, kun komentomonuudin ohjaajana toiminut Jack Swigert painoi nappia. Lennonjohto oli pyytänyt häntä käynnistämään happitankin sisältöä sekoittaneen moottorin, mikä sai aikaan räjähdyksen. 

Tankki räjähti ja räjähdys vaurioitti paitsi vieressä ollutta toista happitankkia, niin myös sähköä alukselle tuottaneita polttokennoja. 

Lennon komentajana toiminut Jim Lowell sanoi kuuluisat sanansa "Houston, meillä on ongelma" noin kaksi minuuttia räjähdyksen jälkeen, kun kojelaudassa varoitusvalot vilkkuivat punaista ja mittarit näyttivät sähköntuotannon hiipuvan. Pian selvisi, että happea suihkusi avaruuteen, eikä vuotoa saatu loppumaan.

Alus oli tuhoon tuomittu – paitsi että neuvokkaasti miehistö onnistui sammuttamaan komentomoduulin ennen sen akkujen hiipumista, käyttämään kuualusta ratamanöveereihin ja hengissä pysymiseen aina siihen saakka, kun kolmikko palasi jälleen Maan luokse. 

Apollo 13 on onnekkain epäonnistuminen avaruuslentojen historiassa. Vaikka kolmikko ei päässyt laskeutumaan Kuuhun, on lennosta tullut legendaarinen myös siksi, että se opetti paljon. Tai ennemminkin vahvisti muutamia jo aikaisemmin opittuja asioita erittäin hyvin.

Apollo 13 -astronautit (vasemmalta oikealle) Fred Haise, Jack Swigert ja Jim Lowell.

Apollo 13 -astronautit (vasemmalta oikealle) Fred Haise, Jack Swigert ja Jim Lowell.

-

Mitä lennosta opittiin – vai opittiinko mitään?

Ensinnäkin Apollo 13 oli jälleen yksi osoitus siitä, että pienetkin, epäolennaisilta vaikuttavat sattumukset avaruusaluksen rakentamisessa saattavat muodostua suuriksi ongelmiksi myöhemmin.

Räjähtänyt happitankki oli tarkoitus laittaa alun perin Apollo 10 -lennolla käytettyyn huoltomoduuliin, mutta koska siihen haluttiin tehdä muutoksia, laitettiin Apollo 10 -lennolle uudempi tankki ja tämä vanhempi jätettiin pois. 

Tankkien sisällä oli pieniä sekoittimia, joiden avulla lennon aikana aina silloin tällöin tankin sisällä olevaa happea hieman hämmennettiin, ettei siihen tullut klönttejä. Näiden sekoittimien kytkimet haluttiin vaihtaa toisiin.

Töiden yhteydessä tankki pääsi vahingossa putoamaan noin viiden sentin korkeudelta lattialle. Tukevatekoiseen tankkiin ei tullut vaurioita, mutta nähtävästi sen sisällä olleiden sähköjohtojen eristeet liikkuivat sen verran, että johdot jäivät paljaaksi.

Testeissä tätä ei havaittu, etenkin kun happitankin testaus tehtiin hieman eri tavalla kuin olisi pitänyt, joten kun Sweigert kytki lennolla sekoittajan päälle, tuli johtoihin oikosulku ja puhdasta happea sisältäneessä tankissa tapahtui saman tien räjähdys. Ja niin edelleen.

Eli tässä opetus oli lähinnä taas kerran kuistutus siitä, että kriittiset osat pitää testata todella huolellisesti, eikä proseduureista saa poiketa.

Lennonjohtaja Sy Liebercot (oikealla) juuri ennen räjähdystä ja vaurioitunut Apollo 13 -huoltomoduli.

Seymour "Sy" Liebergot oli lennonjohdossa henkilö, joka pyysi miehistöä sekoittamaan happitankkia. Tämä sai aikaan oikosulun tankissa ja räjähdyksen. Kuvassa Sy on juuri ennen tapahtumia, täysin tietämättömänä rikkoutuneesta sähköjohdon eristeestä. Oikealla on kuva huoltomoduulista, joka irrotettiin ennen laskeutumista. Suuri osa sen kyljestä on räjähtänyt irti.

-

Toinen asia on toistaalta juuri proseduureista poikkeaminen. Jokainen Apollo-lento oli tarkkaan suunniteltu etukäteen, ja niin astronautit kuin lennonjohtokin olivat opetelleet käytännössä ulkoa mitä milloinkin pitää tehdä. Lisäksi he olivat käyneet läpi suuren määrän erilaisia vaaratilanteita ja kaikenlaisia vikoja, jotka voisivat tulla lennon aikana vastaan. 

Itse asiassa suurin osa astronauttien koulutuksesta oli ja on edelleenkin juuri tätä: erilaisiin poikkeustilanteisiin varautumista.

Apollo 13:n onnettomuus oli kuitenkin sellainen, että kukaan ei ollut sitä harjoitellut.

Suuri osa räjähdyksen johdosta tulleista vioista ja vikaketjuista oli myös sellaisia, että joko niitä ei osattu ajatellakaan tai niitä ei vain pidetty todennäköisinä. Lennon jälkeen myös epätodennäköisempiä tapauksia alettiin harjoitella.

Tähän liittyy myös se, mitä tapahtui lennonjohdossa. Avaruuslentojen lennonjohdossa suhtaudutaan erittäin nihkeästi hätätilanteessa tehtyihin pikaisiin päätöksiin. Päälennonjohtaja Gene Krantz painottikin heti tapahtumien alkaessa, että "ei tehdä tätä yhtään pahemmaksi arvailemalla". Päätösten täytyy perustua faktoihin.

Mutta kun niitä ei ollut tai tiedot olivat ristiriistaisia, piti päätellä ja improvisoida. Tässä Apollo 13 -lennolla onnistuttiin erinomaisesti, ja etenkin lennonjohdon toiminta on edelleen erinomaisen hyvä esimerkki siitä, miten pitää toimia kriittisessä tilanteessa. Pitää osata priorisoida asioita, viestiä ongelmista ja ratkaisuista selvästi, sekä arvioida koko ajan sitä, miten päätökset vaikuttavat myöhemmin lennolla. 

Tästä hyvä esimerkki oli komentomoduulin akkujen käyttö: niitä piti käyttää vähän aikaa lennon alussa, mutta onneksi lennonjohdossa tajuttiin ajoissa, että akkuja tarvittaisiin myöhemmin laskeutumisen aikana. Pieni ratkaisu heti onnettomuuden tapahduttua pelasti osaltaan miehistön.

Apollo 13 -lennon muistikirjaa.

Fred Haise kertoi myöhemmin myös yhden, yllättävän opetuksen: pidä aina kynä ja tyhjää paperia lähelläsi.

Astronauteilla oli mukanaan paljon paperia, mutta ne olivat täynnä muistiinpanoja, tarkastuslistoja, karttoja tai muuta materiaalia – tyhjää paperia ei ollut juuri lainkaan, ja siksi he joutuivat kirjoittamaan muistiin lennonjohdosta tulleita ohjeita ja numeroita paperien tyhjiin kohtiin ja reunoihin.

Etenkin laskeutumista valmistellessa, miehistön jo ollessa väsynyt ja viluissaan, oli tärkeää kirjata yksinkertaisetkin asiat ylös.

Paperi alkoi olla jopa niin lopussa, että viime vaiheissa miehet kirjoittivat paksummalla kynällä aikaisempien, lyijykynällä tehtyjen muistiinpanojen päälle. 

(Juttu on tehty yhteistyössä Tiedekeskus Tietomaan kanssa)

Jos haluat päästä hyvin Apollo 13 -lennon tunnelmaan mukaan, kuuntele BBC:n aivan erinomainen podcast-sarja 13 minutes to the Moon.

BepiColombo lentää perjantaina aamulla Maan ohi

Ke, 04/08/2020 - 23:53 Jari Mäkinen
Piirros Bepistä Maan luona

Kun lähetämme luotaimia tutkimaan muita planeettoja ja taivaankappaleita, aina välillä ne tulevat matkallaan käymään lähellä maapalloa. Silloin ne pystyvät havaitsemaan omaa kotiplaneettaamme aivan kuten se olisi vain yksi taivaankappale muiden joukossa.

Maa on vain yksi kahdeksasta muusta planeetasta, mutta meille se on erityisen rakas ja tärkeä. Maa tosin on erilainen myös ihan muistakin syistä. 

Ensiksikin se on selvästi sininen planeetta. Sillä on meriä, ilmakehä ja pilviä. Maa ei ole Venuksen kaltainen helvetti, ei Kuun kaltainen käkkärä eikä Marsin kaltainen autiomaa. Maa näyttää luotainten ottamissa kuvissa mukavalta paikalta – varsinaiselta paratiisilta tyhjässä ja kylmässä avaruudessa

Ja sellainen se onkin.

Nyt meitä kohden on tulossa Merkuriusluotain BepiColombo. Lokakuussa 2018 alkanut Euroopan avaruusjärjestön ja Japanin avaruustutkimuskeskuksen lento Aurinkokuntamme sisintä planeettaa kohden kestää pitkään ja pitää sisällään monta ohilentoa: seitsemän vuotta kestävään menomatkaan kuuluu jopa yhdeksän lähiohitusta. 

Ensimmäinen näistä on nyt perjantaina 10. huhtikuuta tapahtuva Maan ohilento, ja sitä seuraa kaksi Venuksen ohitusta ja lopulta kuusi vempautusta Merkuriuksen läheltä ennen kuin luotain asettautuu kiertämään sitä.

Rosetta otti nätin kuvan Maasta 13. marraskuuta 2009.

30 vuotta Maan ohilentoja

Ensimmäinen luotain, joka tuli planeettainvälisestä avaruudesta Maan luokse, oli Halleyn komeettaa tutkinut luotain Giotto, jota ohjattiin kohti toista komeettaa Maan ohilennon avulla. Se lensi ohitsemme 22 730 kilometrin päästä heinäkuussa 1990. 

Maan vetovoimaa voi käyttää luotaimen radan muuttamiseen ja sen ratanopeuden lisäämiseen tai hidastamiseen samaan tapaan kuin muilla planeetoilla oli tehty jo aikaisemmin. Kyse on niin sanotusta painovoima- eli gravitaatiolinkoamista. 

Temppu on periaatteessa hyvin yksinkertainen: kun tiedetään mistä suunnasta luotain on tulossa kohti Maata (tai muuta taivaankappaletta), lasketaan tietokoneilla milloin ja mistä kohdasta kannattaa lentää Maan ohi, jotta tuloksena olisi haluttu ratamuutos. Käytännössä tietysti koko lentorata laukaisusta perille kohdeplaneetalle saapumiseen lasketaan jo etukäteen siten, että ohilennot ovat osa sitä. 

Useissa tapauksissa ilman gravitaatiolikouksia luotain vaatisi suuremman ja voimakkaamman raketin, tai itse luotain voisi olla kevyempi. Melkein kaikki uudet luotaimet käyttävät tätä temppua; Mars ja Venus ovat sen verran lähellä, että niille mentäessä tästä ei ole paljoa iloa.

Ensimmäinen luotain, joka käytti yksikertaista gravitaatiolinkousta, oli neuvostoliiton Luna 3 vuonna 1959. Luotain onnistui kuvaamaan Kuun Maahan näkymättömän puolen siten, että Kuun vetovoimaa käytettiin hyväksi lentoradan vääntämiseen sopivaksi.

Seuraavaksi gravitaatiolinkousta harrasti amerikkalainen Pioneer 10 vuonna 1973, kun se kävi ensimmäisenä lähettämänämme laitteena tutkimassa Jupiteria läheltä. Jättiläisplaneetta käänsi sen rataa ja sinkosi luotaimen ulos Aurinkokunnasta.

Amerikkalainen Mariner 10 puolestaan oli ensimmäinen luotain, jonka rata suunniteltiin vetovoimavempautus mielessä: luotain koukkasi Venuksen luota vuonna 1974 matkallaan kohti Merkuriusta.

Mariner 10 -luotaimella ja nyt ohitsemme kiitävällä BepiColombolla muutakin yhteistä kuin vain päämäärä, sillä Mariner 10:n monimutkaisen lentoradan laski italialainen Giuseppe Colombo – tuttavien kesken Bepi

”Bepi” Colombo hahmottelee lentorataa Merkuriukseen.

Kunnia gravitaatiolinkouksen keksimisestä menee kuitenkin Venäjälle, sillä Juri Kondratjuk kehitteli ajatusta vuosille 1918 ja 1919 päivätyissä kirjoituksissaan.

Ensimmäiset oikein kunnolla gravitaatiolinkousta käyttäneet luotaimet olivat Nasan Voyagerit, kun ne kävivät 1970- ja 1980-luvuilla tutkimassa Jupiteria ja Saturnusta. Voyager 2 teki vielä Uranuksen ja Neptunuksen ohilennot, jotka eivät nekään olisi onnistuneet ilman juuri oikein tehtyjä ohilentoja aiemmin matkalla.

Ohilentoja ei tietenkään tehty vain radan muuttamiseksi, vaan ennen kaikkea ohitettavan planeetan tutkimiseksi. Samalla kun kamerat kävivät ja mittalaitteet surisivat, taivaanmekaniikka huolehti lentoradan muuttumisesta ihan itsekseen.

Nyt maapallon ohilentoja käytetään myös luotaimen kameroiden ja mittalaitteiden testaamiseen ja kalibrointiin.

Juno otti tämän kauniin kuvasarjan Maasta lokakuussa 2013.

Maa saa vierailijan

Ensimmäinen luotain, joka käytti maapalloa gravitaatiolinkousetappina, oli Galileo. Jupiteria kohti lokakuussa 1989 lähetetty luotain pihisti vauhtia Maan lisäksi Venukselta ja toisen kerran maapallolta voidakseen kivuta ylöspäin Aurinkokunnassa. Jupiteria kiertämään se saapui joulukuussa 1995, ja sitä ennen se teki kaksi Maan ohilentoa, ensin joulukuussa 1990 960 kilometrin päästä sekä kaksi vuotta myöhemmin vain 305 km:n etäisyydeltä meistä.

Seuraava suurempi Maan luota matkallaan koukannut luotain oli Saturnusta tutkimaan lähetetty Cassini-Huygens. Se teki ensin kaksi Venuksen ohitusta (huhtikuussa 1998 ja kesäkuussa 1999), kunnes tuli Maan luokse elokuussa 1999. Se teki ohituksensa 1171 km:n päästä.

Kohti komeetta Tšurjumov–Gerasimenkoa lentänyt ESAn Rosetta teki peräti kolme Maan ohilentoa. Maaliskuussa 2005 se oli lähimmillään 1950 km:n etäisyydellä, marraskuussa 2007 hieman kauempana 5700 kilometrin ja kaksi vuotta myöhemmin 2481 kilometrin päässä meistä.

Myös Merkuriukseen lentänyt Nasan MESSENGER käytti Maata hyväkseen elokuussa 2005, kun se teki ohilennon 2348 kilometrin päästä. Siinä missä MESSENGER käytti Maata nopeutensa hidastamiseen, Jupiteria parhaillaan kiertävä Juno kiihdytti vauhtiaan Maan avulla lokakuussa 2013. Junon rata kulki vain 559 kilometrin päässä maapallon pinnasta.

Lisäksi useampi muukin luotain on tehnyt maapallon ohilentoja matkatessaan kohti komeettoja ja asteroideja. Tuorein itse lähettämämme avaruudesta tullut vierailija oli OSIRIS-Rex syyskuussa 2017 matkallaan kohti Bennu-asteroidia.

BepiColombo on nähnyt Maan ja Kuun jo maaliskuun alusta alkaen jopa pienellä ”selfiekamerallaan”.

Bepin voi nähdä taivaalla (periaatteessa)

Nyt maanantaina 6.4. illalla BepiColombo on vielä puolentoista miljoonan kilometrin päässä Maasta. Se tulee lähemmäksi koko ajan vähän yli 30 kilometrin sekuntinopeudella ja tulee menettämään tästä noin 5 km/s ohituksen aikana. Manöveerin tarkoituksena on radan muuttaminen ja nopeuden hidastaminen.

Kartta ohilennon näkyvyydestä

Valmistautuminen tähän ohitukseen alkoi jo helmikuussa, kun luotaimen ohjausrakettimoottoreilla tehtiin pieni hienosäätö rataan. Sen seurauksena BepiColombo olisi 10.4. klo 4:24:58 UTC (eli noin 7.25 Suomen kesäaikaa) lähimmillään Maata, jolloin etäisyys luotaimen ja Maan keskipisteen välillä olisi 19 064 km. Luotaimen etäisyys Maan pinnasta olisi siis 12 693 km. 

Maaliskuussa oli tarkoitus tehdä kolme pikku korjausta rataan, mutta ne eivät olleet tarpeen, koska rata oli alle prosentin tarkkuudella se mikä sen pitikin olla. Tarkistusten jälkeen myös viime lauantaille (4.4.) suunniteltu ratamuutos jätettiin tekemättä.

Luotaimen rata kulkee idästä länteen siten, että radan lähin kohta on Atlantin eteläosan päällä. Lähimmillään ollessaan luotain on periaatteessa harrastajakaukoputkella tai jopa kiikarilla havaittavissa, koska sen kirkkaus on 8 mag. 

Suomesta luotaimen näkeminen ei onnistu, koska paitsi että luotain on huomattavasti himmeämpi (noin 9,2 mag), on sen rata liian etelässä ja valoisa aamutaivaskin tekisi katsomisen mahdottomaksi. Täysikuusta ei siis ole meille lisähaittaa.

Jos luet tätä esimerkiksi Kapkaupungissa, niin silloin kannattaa herätä aikaisin aamulla ja sanoa heippa Bepille. Havaintopaikan mukaan lasketun sijaintikartan voi tehdä täällä: https://bepicolombo.iaps.inaf.it

Lisätietoja ohilennosta on ESA:n sivuilla:
– https://www.cosmos.esa.int/web/bepicolombo-flyby/earth-flyby
– https://www.cosmos.esa.int/web/bepicolombo-flyby/ground-based-observations

Juttu on julkaistu ensin Ursan blogina. Blogissa on myös enemmän kuvia.

Marsilaisia, onko heitä?

Pe, 04/03/2020 - 14:52 Jarmo Korteniemi
Marsilaisia kulkijaa katsomassa. (Sean Savage / Flickr)

Marsilaiset ovat kiehtoneet ihmismieltä jo parisataa vuotta. Osaako nykytiede vihdoin sanoa jotain niistä oikeista Marsin asukkaista?

 

Jo 1800-luvulla kävi selväksi, että Mars on maankaltainen planeetta: Se pyörii, sillä on vuodenajat, napajäätiköt ja kaasukehä, sekä tummia ja vaaleita alueita. Loppu tarinasta piti kuitenkin täyttää oletuksilla, ja mielikuvitus laukkasi niin tutkijoilla kuin yleisölläkin. Laajalle levinnyt uskomus oli, että Marsissa täytyi olla elämää—koska hei, miksi ei, kun onhan meilläkin. (Aikoinaan myös Kuussa ja Auringossa sanottiin asuvan väkeä.)

1800-luvun lopulla sensaatiouutinen kanaaleja rakentavista marsilaisista tavoitti suuren yleisön. Eräät kuuluisat tutkijat raportoivat nähneensä Marsin pinnalla tummia viivoja. Karttoja julkaistiin, viivoja ilmestyi uusiin paikkoihin ja vanhoja pyyhittiin pois. (Pian kävi ilmi, että viivat johtuivat kenties kaukoputkien linssien huonosta laadusta sekä siitä, että ihmisaivot yhdistävät lähekkäin nähdyt pisteet usein viivoiksi. Mutta eihän se estänyt näkemästään vakuuttuneita tutkijoita inttämästä asiaansa.)

Marsilaisten aikakausi oli alkanut. Tavallaan elämme sitä yhä.

Kun keskustelu kääntyy Marsiin, eräs yleisimmistä pohdinnoista on vieläkin "onko niitä marsilaisia oikeasti olemassa". Vastauksen haluaisivat tietää tahoillaan niin "siviilit", scifi-intoilijat, kuin monet Marsiin perehtyneet tutkijatkin.

Ja nyt siis puhutaan oikeista, tieteellisesti todistettavista "marsilaisista". Toisen planeetan eliöistä.

Merkkejä nykyisestä elämästä?

Yksinkertaisinta (jos niin voi sanoa) lienee selvittää, sattuisiko Marsista löytymään jotain yhä aktiivista elämää. Tällä saralla onkin tehty jo monia erittäin mielenkiintoisia ja mahdollisesti "marsilaisiin" viittaavia löytöjä.

Marsiin 1970-luvun lopulla laskeutuneet kaksi Viking-luotainta etsi pinnalta elämän merkkejä. Laitteet keräsivät pintamateriaa, jota sitten lämmitettiin, ruokittiin ravintoliuoksella ja haudotettiin erilaisissa kontrolloiduissa kaasuissa. Tulos hätkäytti: näytteisiin imeytyi ravintoa ja lisäksi niistä vapautui kaasuja. Päivänselviä aineenvaihdunnan merkkejä, sanoivat optimistisimmat.

Ikävä kyllä oikea tulkinta ei ole ihan niin suoraviivainen.

Yhtä Vikingien koetta uusittaessa aiemmin havaittu ilmiö ei enää toistunutkaan. Joissain kontrollitesteissä taas kuumennus ei vaikuttanut tuloksiin, eli vaikka "marsilaisten" olisi pitänyt varmasti olla kuolleita, niiden "aineenvaihdunta" toimi silti yhä. Vikingien tärkein havainto kuitenkin oli, ettei käsittelemättömässä pinta-aineessa ollut orgaanisia yhdisteitä lainkaan. Kaiken kukkuraksi koejärjestelyissä olisi ollut jopa silloisella tekniikalla parantamisen varaa.

Kokonaisuutena tarkasteltuna Vikingien biologiset tutkimukset olivatkin täysin tuloksettomia. Niiden avulla kuitenkin huomattiin miten "marsilaisia" ehkä kannattaisi etsiä. Tai ainakin että kuinka ei kannata.

Sittemmin Marsista on löydetty useita erilaisia ja monimutkaisiakin orgaanisia yhdisteitä. Ne löytyivät Curiosity-kulkijan ajoreitiltä muinaisen kuivuneen järven pohjalta. Löytö todistaa, että elämän syntyyn tarvittavia aineita on ainakin paikoin ollut Marsissa riittävästi tarjolla. Sekä yhä toimiva Curiosity että muutaman vuoden sisällä laukaistavat Perseverance- ja Rosalind Franklin -kulkijat on kaikki suunniteltu etsimään merkkejä erityisesti "marsilaisista" ja niiden elinoloista.

Satelliitit Marsin kiertoradalla taas ovat tunnistaneet planeetan kaasukehästä hivenen metaania, vaikka aineen pitäisi joko hapettua tai hajota sikäläisissä olosuhteissa nopeasti. Sitä täytyy siis jollain tavalla tulla koko ajan lisää. Metaanin määrä tuntuu myös vaihtelevan sekä alueellisesti että vuodenaikojen mukaan. Syy voisikin ehkä olla jonkinlaisen kesäisin aktivoituvan eliöstön aineenvaihdunnassa. Kaiken kukkuraksi Marsin kaasukehässä on myös hieman formaldehydiä, jota syntyy metaanin hapettuessa. Myös sen olemassaolo olisi oivasti selitetty vaikkapa mikrobimattojen toiminnalla.

Sitten ovat vielä Mars-meteoriitit, eli punaiselta planeetalta Maahan sinkoutuneet kivet. Ainakin parista sellaisesta on tähän mennessä löydetty merkkejä, jotka voi erittäin hyvällä mielikuvituksella tulkita mikrobien toiminnan tuotteiksi. Kivet ovat muutamia miljardeja vuosia vanhoja, joten parhaassa tapauksessa meillä olisi näytteitä "marsilaisten" fossiileista.

Mutta.

Kaikki tähän mennessä löydetyt mahdollisen elämän merkit ovat vain aihetodisteita. Ne voidaan selittää myös elottomilla geologisilla ja kemiallisilla prosesseilla. Se on myös kaikkein yksinkertaisin selitys, ja siksi todennäköisin.

Tylsää, eikö?

"Marsilaisten" tunnistus vaatisi täysin kiistattomia todisteita. Siksi kannattaakin pohtia, mistä sellaisia saattaisi löytää.

Missä se elämä oikein piilottelee?

Marsin pinnan olosuhteet ovat erittäin karut. Siellä on hyvin kuivaa ja erittäin kylmää—parhaimmillaankin kuin Etelämantereen kuivimmissa laaksoissa. Auringon ultraviolettisäteily ja kosmiset säteet piiskaavat pintaa koko ajan. Kaasukehä taas hapettaa kaiken. Pinnalla vallitsee niin mitätön paine, että sinne putkahtava vesi kiehuisi saman tien kaasuksi. Kaiken kukkuraksi Marsin pyörimisakseli kääntyilee varsin hektisesti, joten pintaolosuhteet vaihtelevat pitkien aikojen kuluessa radikaalisti.

Toisaalta Marsissa on aivan varmasti elämän tarveaineita: hieman sisäistä lämpöä, orgaanisia yhdisteitä, sekä vettä. Tunnetut vesivarannot (jäätiköt ja pinnanalaiset suolaiset järvet) riittäisivät peittämään planeetan noin 35 metriä paksulla vesikerroksella.

Muinoin Marsin pinnalla virtasi paljon enemmän vettä. Planeetalla oli paksumpi kaasukehäkin. Tulivuoret ja asteroidit kuskasivat pinnalle paljon uutta tavaraa. Kyllä Marsiin olisi ihan hyvin voinut syntyä elämää siinä missä Maahankin. Jos "marsilaisia" joskus kehittyi, olosuhteiden muutokset ja resurssien niukkuus ovat todennäköisesti pitäneet heidät varsin alkeellisina.

Nykyaikoihin asti selvinneet "marsilaiset" olisivat sopeutuneet oloihin ja luultavasti hakeutuneet johonkin suojaisampaan elinpaikkaan. Osa saattaisi myös vajota pitkiksi ajoiksi horrokseen tai vaikkapa jonkinlaiselle itiöasteelle, herätäkseen vasta kun elinpaikan olosuhteet muuttuvat suotuisammiksi.

Pakopaikkavaihtoehtoja on monia. Kallion sisässä olisi kiveä syöville kemotrofisille mikrobeille yllin kyllin tilaa ja popsittavaa. Planeetan sisuksista kumpuaa vielä riittävästi lämpöä tekemään pinnanalaisetkin olot niille mukaviksi. Auringon valoa energianlähteenään käyttävät mikrobit taas voisivat elellä pintakivien rakosissa endoliitteina. Edistyneemmät eliöt saisivat suojaa vaikkapa tuliperäisten alueiden laavatunneleista tai maanalaisista vesivarastoista.

Elämälle suotuisat olosuhteet eivät kuitenkaan tarkoita, että elämää olisi varmasti ollut. Siksi "marsilaisten" etsintä jatkuu yhä.

Juttu on tehty yhteistyössä Tiedekeskus Tietomaan kanssa.

Kirjoittaja on Mars-tutkija.

Otsikkokuva: Sean Savage / Flickr

Kun Kuu täytti taivaan

La, 03/21/2020 - 11:50 Jarmo Korteniemi
Muinainen ja nykyinen Kuu. (Jarmo Korteniemi)

Mitä sanoisit, jos taivaan poikki kiitäisi jättimäinen, Aurinkoa paljon suuremmalta näyttävä ja paikoin punaisena hohtava pallo? 4,5 miljardia vuotta sitten tuo oli meillä aivan tavallinen näky.

Yötaivaalla mollottavaa täysikuuta on vaikea olla huomaamatta. Erityisen valtavalta se näyttää ollessaan matalalla, koska silloin silmä suhteuttaa sen horisontissa näkyviin tuttuihin asioihin. Mutta syntyaikoinaan Kuu näytti kerrassaan jättimäiseltä.

Kun ojennat kätesi suoraksi, täysikuun läpimitta vastaa noin puolta pystyyn nostetun pikkurillin leveyttä. Kuun syntyessä se kuitenkin näkyi koko nyrkin levyisenä.

Kuu syntyi aivan Maan viereen runsaat 4,5 miljardia vuotta sitten. Etäisyyttä sinne oli tuolloin vaivaiset 25 000–30 000 kilometriä, eli vähemmän kuin maapallon oma ympärysmitta.

Jos maanpinnalla olisi tuolloin tepastellut joku satunnainen matkailija, hänen näkemänsä Kuu olisi peittänyt taivaasta yli 200 kertaa nykyistä laajemman alueen. Leveyttä komeudella olisi ollut 15 kertaa nykykuun verran. Kaiken kukkuraksi naapuripallon varjossa oleva puoli olisi hohtanut punaisena. Sen pinta oli kauttaaltaan sulaa magmamerta.

Nykyisen ja muinaisen kuun näennäiset läpimitat. (Jarmo Korteniemi)

Kuu sai alkunsa suuressa törmäyksessä, kun hieman pienempi (tai ehkä useampi pienempi) protoplaneetta törmäsi Maahan. Kiertoradallemme sinkoutui heittelettä, josta osa tiivistyi nopeasti Kuuksi. Mallinnusten perusteella prosessi oli nopea, ja kesti enimmilläänkin vain satakunta vuotta.

Kuu myös liikkui aluksi taivaalla todella vinhaan. Alussa se kiersi Maan kerran 12 tunnissa. Maan vuorokausi taas kesti vaivaiset 5 tuntia.

Sivujuonne: Totuuden nimessä todettakoon, että myös Maan pinta oli Kuun syntytörmäyksen vuoksi vielä sula. Satunnaisella matkailijalla olisi siis luultavasti ollut varsin tuskaiset oltavat tälläkin pallolla. Ja todellisuudessa hän ei ehkä olisi nähnyt yhtään mitään, koska kaasukehämme saattoi hyvinkin olla tuolloin läpinäkymätön.

Mitä sitten tapahtui?

Kuun ensimmäisen sadan miljoonan vuoden aikana ehti tapahtua paljon. Kuun pinta jäähtyi ja kiinteytyi. Vuorovesivoimien ansiosta se myös lukkiutui näyttämään saman puolen Maata kohden.

Vuorovesivoimat myös loitonsivat Kuuta hyvin nopeasti. Alkuvaiheessa vauhtia oli reippaasti yli 20 cm vuodessa. 600 miljoonassa vuodessa se oli siirtynyt jo 140 000 kilometrin päähän Maasta.

Aikojen saatossa etääntymisen vuosivauhti on vaihdellut 0,15 ja 30 sentin välillä. Tällä hetkellä se on noin 3,8 cm per vuosi ja hiipuu hiljalleen. Arvioiden mukaan kestää kuitenkin vielä noin 50 miljardia vuotta ennen kuin etääntyminen pysähtyy—mikäli siis Aurinko ei onnistu hotkaisemaan Maata ja Kuuta sitä ennen.

PS. Joku saattaa kysyä kuinka tuollainen mitätön loittonemisvauhti voidaan edes tietää. Kuuhunhan on tällä hetkellä matkaa yli 384 400 kilometriä, eikä muutaman sentin heiton luulisi tuntuvan missään! Selitys on lasermittaus: Maasta ammutaan laserpulssi, joka heijastuu Kuusta ja saapuu takaisin Maahan. Kun vuotuinen etäisyysvaihtelu vähennetään laskuista, jäljelle jää Kuun etääntyminen. Lähes käsittämättömän tarkka mittaus on mahdollista kolmen Apollo-lennon ja kahden miehittämättömän Lunohod-kulkijan Kuuhun jättämien heijastimien vuoksi.

Kuun vaiheita sekä nousu- ja laskuaikoja voi tutkiskella vaikkapa Tähtitieteellinen yhdistys Ursan tähtikartan avulla.

Teksti on tehty yhteistyössä Tiedekeskus Tietomaan kanssa. Kirjoittaja on planetologi.

Samaan aikaan Aasiassa – Kiina ja Intia kehittävät uusia avaruusaluksia

Piirros intialaisesta Gaganyaan-aluksesta

Ihan äskettäin Yhdysvalloissa on tehty kaksi näyttävää ja tärkeää koelentoa uusilla, pian käyttöön tulevilla ihmisten kuljettamiseen tarkoitetuilla avaruusaluksilla. 

Juuri ennen joulua Boeingin CST-100 Starliner teki ensimmäisen koelentonsa avaruuteen. Se ei sujunut ihan suunnitelman mukaan, koska alus ei onnistunut käynnistämään heti laukaisun jälkeen rakettimoottoreitaan päästäkseen kohti avaruusasemaa vievälle radalle, mutta lennonjohto onnistui pitämään uuden avaruusaluksensa hallinnassa ja tuomaan sen turvallisesti alas. Alus laukaistiin matkaan Atlas V -kantoraketilla perjantaina 20. joulukuuta ja se laskeutui New Mexicon osavaltiossa olevalle White Sandsin laajalle sotilaskoealueelle kahta päivää myöhemmin.

Ellei avaruusasemakäynnin peruuntumista oteta huomioon, lento näyttää sujuneen hyvin. Nasa ja Boeing pohtivat parhaillaan pitäisikö aluksen tehdä vielä yksi täysin onnistunut koelento ilman matkustajia ennen kuin astronautit päästetään kyytiin.

SpaceX näyttää kuitenkin olevan nyt lähempänä hetkeä, jolloin ihmiset pääsevät nousemaan avaruuteen ensimmäistä kertaa Yhdysvalloista avaruussukkulan eläkkeelle jäämisen jälkeen. Crew Dragon -aluksen näyttävä pelastusrakettien koe tammikuun 20. päivänä sujui täsmälleen suunnitellusti, ja astronautit Doug Hurley ja Robert ”Bob” Behnken saattavat päästä aluksella matkaan jo huhtikuussa. 

Alun perin lennon oli tarkoitus olla vain lyhyt käynti avaruusasemalla, mutta koska uudet avaruusalukset ovat kovasti myöhässä ja Kansainvälisen avaruusaseman lento-ohjelma on siksi sekaisin, Nasassa mietitään parhaillaan mahdollisuuksia venyttää lentoa muutaman kuukauden mittaiseksi. Crew Dragon pääsisi siis saman tien tositoimiin, ei vain koelennolle.

Crew Dragon nousee testilennolleen Falcon 9 -raketilla.
19. tammikuuta 2020 tehty testi sujui suunnitellusti: Crew Dragon irtaantui samalla kun Falcon 9:n moottorit sammutettiin. Raketti räjähti pian sen jälkeen aerodynaamisten voimien rikkomana – aivan kuten oli tarkoitus.

19. tammikuuta 2020 tehty testi sujui suunnitellusti: Crew Dragon irtaantui samalla kun Falcon 9:n moottorit sammutettiin. Raketti räjähti pian sen jälkeen aerodynaamisten voimien rikkomana – aivan kuten oli tarkoitus.

Boeing saattaa seurata Starlinerillään vielä kevään kuluessa, mikäli uutta testilentoa ei tarvita. Kyse on lähinnä siitä, että katsotaanko aluksen toimineen muuten suunnitellusti ja ymmärretäänkö tapahtunut virhe tarpeeksi hyvin: nyt näyttää siltä, että kyse oli yksinkertaisesta töppäyksestä, missä aluksen toimia ohjaava kello oli asetettu ennen laukaisua väärin. 

Boeing Starliner
Boeing Starliner kuvattuna juuri laskeutumisen jälkeen 22. joulukuuta.

Starlinerin ensimmäisessä miehistössä ovat Mike Fincke, Nicole Mann ja Chris Ferguson, joiden tekemän lyhyen koelennon jälkeen Sunita Williams ja Josh Cassada tekisivät ensimmäisen ”normaalin” lennon avaruusasemalle. Tosin näitäkin lentoja ja miehistöjä saatetaan nyt tässä uudessa tilanteessa vaihtaa.

Yhdysvalloissa on tulossa pian käyttöön myös kaksi avaruusturistialusta: Blue Originin kapseli ja Virgin galacticin SpaceShip2 tekevät kumpikin todennäköisesti vielä muutaman koelennon, ja sitten mukaan otetaan jo matkustajia.

Loppuvuodesta myös Orion, kuulentoihinkin sopiva uusi alus, päässee lopulta matkaan. Ensilento tapahtuu automaattisesti ilman kyytiläisiä, mutta jo seuraavalla on mukana astronautteja. Heistä tulee ensimmäiset ihmiset sitten Apollp-lentojen, jotka käyvät katselemassa maapalloa Kuun kiertoradalta.

Kiinan uusi alus

Vaikka Amerikassa tapahtuukin lähiaikoina paljon ihmiskelpoisten avaruusalusten saralla, on Aasiassa kehitteillä kaksi uutta avaruusalusta. Näistä jännittävin on kiinalaisten uusi alus, jonka kerrotaan myös kykenevän myös lentoihin Maan lähiavaruutta kauemmaksi. Sen avulla taikonautit voisivat siis myös lentää Kuuhun.

Tähän saakka Kiina on käyttänyt avaruuslentäjiensä lennättämiseen venäläisestä Sojuz-aluksesta muokattua Shenzou -alusta. Nyt niillä ei enää tehdä lentoja, vaan työtä jatkaa uusi, toistaiseksi nimeämätön avaruusalus. Se tehnee ensilentonsa vielä tänä vuonna.

Kiinan uusi avaruusalus
Kiina on kertonut uudesta aluksestaan varsin avoimesti.

Uusi alus on selvästi erilainen kuin Sojuz tai Shenzou. Se on kartiomainen kapseli, hyvin paljon amerikkalaisalusten kaltainen, ja sen alapuolella on sylinterimäinen huoltomoduuli. Kokonaisuuden pituus on yhdeksän metriä ja sen. massa on noin 20 tonnia. Mukaan mahtuu neljästä kuuteen avaruuslentäjää.

Kiinalaisten julkaisemien tietojen mukaan aluksella on tarkoitus tehdä ensilento ihan koska tahansa nyt vuoden 2020 alkupuolella. Kyseessä on automaattinen koelento ilman matkustajia. Kiina aikoo laukaista tänä vuonna myös uuden avaruusasemansa, ja todennäköisesti ensimmäinen lento taikonauttien kanssa tehdään asemalle.

Aluksen laukaisuun käytetään Pitkä marssi 5B -rakettia, mutta tulevaisuudessa lentoja esimerkiksi Kuun luokse voidaan tehdä kehitteillä olevalla Pitkä marssi 9 -raketilla. Kyseessä on suuri, amerikkalaisen SLS-kuuraketin kaltainen kantoraketti, joka pystyy lähettämään 50 tonnia massaltaan olevan kuorman kohti Kuuta – tai 44 tonnia kohti Marsia.

Vyomamitra valmistautuu lentoon Intiassa

Intia on kehittänyt jo jonkin aikaa omaa ihmisten kuljettamiseen sopivaa avaruusalusta. Se on nimeltään Gaganyaan, eli ”Taivasalus”, ja sen avulla kolme avaruuslentäjää voi saada taivaallista kyytiä vuoden 2021 lopusta alkaen – jos kaikki sujuu suunnitellusti.

Aluksen pienkokoinen koeversio teki lennon joulukuussa 2014, ja aluksen lopulliset suunnitelmat lyötiin lukkoon viime keväänä. Piirros aluksesta on tämän kirjoituksen otsikkokuvana.

Gaganyaan on kehitteillä oleviin aluksiin verrattuna hieman pienempi, sillä massa on ”vain” 3,7 tonnia ja siihen liitetty huoltomoduli on massaltaan kolmetonninen. Alus on suunniteltu ainoastaan Maan kiertoradalle tehtäviä, noin viikon kestäviä lentoja varten. Se laukaistaan matkaan intialaisten omalla GSLV-III -kantoraketilla.

Paitsi että Intiassa rakennetaan tätä avaruusalusta, tehdään siellä sille myös ensimmäistä matkustajaa: nyt tammikuussa Intian avaruustutkimusorganisaatio ISRO julkaisi kuvia robotista nimeltä Vyommitra. Sanskriittiä oleva nimi tarkoittaa ”avaruusystävää”, ja on versio vyomanautista, miksi intialaisia avaruuslentäjiä yleensä kutsutaan. 

Vyommitra
”Hei, olen Vyommitra.”

Tarkoituksena on lähettää tämä naisen näköiseksi tehty robotti Gaganyaanin ensilennolle. Robotti rekisteröi lennon aikana olevia kiihtyvyyksiä, ympäristötekijöitä, ilman laatua ja sen avulla voidaan myös harjoitella jo avaruuslentäjien pukeutumista ennen lentoa sekä irrotusta aluksen sisältä laskeutumisen jälkeen.

Ensimmäiset intialaiset avaruuslentäjät lähetettäisiin aluksella kiertoradalle vuonna 2022.

Intialla on kunnianhimoinen avaruusohjelma meneillään, sillä maa aikoo palata Kuuhun viime keväänä olleen epäonnisen Chandrayaan-2 -laskeutujan jälkeen. Lisäksi tekeillä on esimerkiksi Aurinkoa tutkiva luotain Aditya L-1, ja ainakin juhlapuheissa pidetään esillä omaa avaruusasemaa sekä lentoja Marsiin ja Venukseen.

Joka tapauksessa jo nyt intialaiset raketit vievät hyvin usein intialaisia ja muista maista tulevia satelliitteja avaruuteen. Myös ensimmäinen suomalainen satelliitti Aalto-1 laukaistiin avaruuteen Intiasta juhannuksena 2017.

Milloin uusi venäläisalus?

Venäläinen Sojuz on erinomainen, mutta jo auttamattoman vanhanaikainen alus, vaikka sitä on päivitetty moneen kertaan sitten vuoden 1966, jolloin se teki ensilentonsa. Yksinkertaisuus ja konservatiivisuus ovat tosin sen vahvuuksia, sillä kun muut keinot päästä esimerkiksi Kansainväliselle avaruusasemalle ovat pettäneet, on Sojuz ollut tukena.

Niitä on laukaistu matkaan kesähelteillä ja lumimyrskyssä Baikonurista, Kazakstanista samalta laukaisualustalta, mistä Gagarin nousi myös aikanaan lentoon Vostok-aluksellaan. Sojuz perustuu pitkälti siihen alukseen.

Itänaapurissa on tosin suunniteltu Sojuzille seuraajaa jo pitkään. Pisimmälle näistä suunnitelmista pääsi PPTS, eli Перспективная Пилотируемая Транспортная Система, ja sittemmin PTK NP, Пилотируемый Транспортный Корабль Нового Поколения, eli ”uuden sukupolven avaruuslentäjien kuljetusavaruusalus”.

Se oli hyvin samankaltainen nyt kaikkialla muuallakin suunniteltavien alusten kanssa. Siinäkin oli kartiomainen maahanpaluuosa avaruuslentäjille ja sen alla sylinterimäinen, ennen Maahan paluuta pois pudotettava huolto-osa. Sen kehittäminen kuitenkin lopetettiin vuonna 2016, kun Venäjällä ei ollut rahaa sen tekemiseen, eikä esimerkiksi Euroopan avaruusjärjestö halunnut tulla mukaan hankkeeseen.

Uuden venäläisaluksen mallikappaleita
Uuden venäläisaluksen mallikappaleita vuonna 2015.

Nyt kehitteillä oleva, aikaisempien suunnitelmiin perustuva alus on nimeltään Orel, eli Орел, eli Kotka. Neljän avaruuslentäjän kuljettamiseen sopivan aluksen on tarkoitus olla osittain uudelleenkäytettävä, ja se voisi olla avaruudessa 30 vuorokautta omillaan niin Maata kiertämässä kuin esimerkiksi lennolla Kuuhun. Avaruusasemaan kiinnitettynä sen toiminta-aika olisi vuoden, mikä on tuplasti verrattuna nykyiseen Sojuziin.

Huoltomodulin ja aluksen yhteismassa voisi olla jopa 17 tonnia Kuuhun suuntaavilla lennoilla.

Aluksesta on olemassa mallikappaleita, mutta varsinaisen avaruuteen lentävän aluksen rakentamisesta ei ole tietoa. Venäjän avaruushallinto Roskosmos hahmottelee kuitenkin ensilennon tapahtuvan vuonna 2023 (ilman matkustajia). Kiertoradalle kosmonautit voisivat lentää aluksella vuonna 2025 ja Kuuta kiertämään 2026. Näihin kannattaa kuitenkin suhtautua varauksin, sillä aikaisemminkin venäläiset ovat heitelleet lukuja varsin vapaasti näistä uusista alushahmotelmista puhuessaan.

*

Vaikka julkisuudessa kerrotaankin kovasti uusista amerikkalaisaluksista, kannattaakin muistaa, että myös muualla on tulossa uusia avaruusaluksia. Ihmisen lennättäminen avaruuteen tulee siis helpommaksi lähivuosina, ja siksi avaruuslennoista tulee paljon nykyistä arkisempia. 

Ja asia erikseen on sitten jälleen SpaceX ja sen suuret suunnitelmat. Jos kehitteillä oleva Super Heavy -raketti ja sen päällä avaruuteen nouseva Starship ovat vähänkin niin mullistavia kuin nyt uskotellaan, niin lähitulevaisuuskin on ihan toisenlainen. Näiden tässä esiteltyjen alusten tekeminen menee kuitenkin eteenpäin, koska kyseessä ovat tärkeät kansalliset hankkeet, joissa kyse on myös maineesta, itsetunnosta ja avaruusteknisen tietotaidon keräämisestä.

(Kirjoitus on ilmestynyt ensin Ursan blogeissa.)

Vastaa

2020-luku on avaruuden uudisraivaajien vuosikymmen

Rautatie horisonttiin

Näin vuodenvaihteessa katsellaan taakse ja pohditaan tulevaa. Tällä kerralla näkökulma on usein ollut yhden vuoden sijaan vuosikymmen, koska vuosiluku kirjoitetaan nyt futuristisesti 2020.

Monissa lehtijutuissa ja nettikirjoituksissa on siksi ollut paljon ennusteita siitä, mitä kaikkea seuraavat kymmenen vuotta tuovat tullessaan. Yksi asia on kuitenkin jäänyt lähes kaikilta huomaamatta: avaruus. Vaikka seuraavaa saatetaan irvailla vuonna 2030, uskallan silti väittää, että edessä on suuri muutos, jonka saa aikaan lisääntyvä ja laajentuva avaruustoiminta.

Pohja tälle suurelle muutokselle on jo luotu. Suurin yksittäinen tekijä on SpaceX, jonka Falcon 9 -raketti on tuonut uudelleenkäytettävyyden satelliittien laukaisuun. 

Nyt kyseessä on vain raketin ensimmäinen vaihe, joka palaa alas, huolletaan ja käytetään uudelleen useampaankin kertaan. Tekeillä on kuitenkin uusi, suuri raketti, joka on täysin uudelleenkäytettävä. Sillä voidaan laukaista suuriakin kuormia edullisesti ja kätevästi avaruuteen, niin Maata kiertävälle radalle kuin myös Kuuhun ja Marsiin.

Tämä Super Heavy -niminen raketti ja sen toisena vaiheena toimiva Starship -alus eivät ole vielä lentäneet, mutta SpaceX:n mukaan ensimmäiset kunnolliset koelennot tehdään tänä vuonna. Rutiinikäyttöön raketti tulisi parin vuoden päästä. 

Starship ja SuperHeavy SpaceX:n piirroksessa
Starship ja SuperHeavy SpaceX:n piirroksessa.

SpaceX:n puheet ovat olleet aina tähän mennessä suuria ja suunnitelmien aikataulut ovat venyneet, mutta yhtiö on tehnyt kaiken lupaamansa vastoinkäymisistä oppia ottaen. Vaikka uuden raketin käyttöönotto viivästyisikin, niin silti se tulee käyttöön siten, että se ennättää myllertää tulevaa vuosikymmentä.

Eikä SpaceX ole yksin. Blue Origin on tekemässä New Glenn -rakettia, joka on lähes samaa kokoluokkaa ja uudelleenkäytettävä. Yhtiöllä on kokemusta on pienemmän New Shepard -raketin lennättämisestä. Sen avulla yhtiö aikoo aloittaa avaruusturistilennot tämän vuoden aikana. 

Myös perinteiset rakettiyhtiöt ovat heränneet: niin Euroopassa kuin Kiinassakin kehitellään uudelleenkäytettäviä raketteja. Kiinassa niitä jo testataan, ranskalaiset tähtäävät koelentoon vuonna 2022.

New Glenn -kantoraketti Blue Originin hahmotelmassa
New Glenn -kantoraketti Blue Originin hahmotelmassa.

Avaruusturismi alkaneekin tänä vuonna oikeasti, sillä viime vuoden aikana niin Blue Origin kuin Virgin Galactic tekivät koelentoja aluksillaan siten, että edessä ovat nyt viimeiset testit ennen maksavien matkustajien päästämistä mukaan.

Näitä ensimmäisiä avaruusturistien lentoja voi arvostella niiden ympäristövaikutusten vuoksi, sillä niin SpaceShip2:n kuin Blue Originin kapselinkin sinkoaminen hieman yli sadan kilometrin korkeuteen tuottaa varsin paljon päästöjä matkustajaa kohden. Lisäksi suuri osa matkustajista lentää yksityiskoneillaan paikkoihin, mistä avaruushyppäyslennot tehdään.

Vaikka nämä lennot ovat hyvin lyhyitä, eivätkä alukset muuta kuin piipahda nopeasti avaruuden puolella, voivat matkustajat nähdä kauniin maapallon korkealta ja kokea painottomuuden. Toivottavasti edes osa heistä saa niin sanotun Overview-efektin, eli etäisyysvaikutuksen – oudon tunteen, joka muuttaa käsityksen maapallosta. 

Maisema nähtynä Virgin Galacticin VSS Unity -aluksesta
Maisema nähtynä Virgin Galacticin VSS Unity -aluksesta sen ensimmäisen avaruuslennon aikana joulukuussa 2018. Alus nousi 83 kilometrin korkeuteen, mutta turistilennoilla tarkous on nousta yli sataan kilometriin.

Monet astronautit kertovat tästä lähes uskonnollisesta hetkestä, jolloin Maa näyttää tyhjän avaruuden keskellä olevalta planeetalta, jonka ympärillä on vain ohuen ohut, herkkä ilmakehä. Kartoista tuttuja rajoja ei näe maiden ympärillä, ja maanpäällisten konfliktien syyt tuntuvat mitättömiltä.

Jos edes osa avaruusturisteista kokee tämän, niin hyvä. Ja mitä enemmän on avaruusturisteja, niin sitä suurempi osa ihmisistä tajuaa planeettamme ainutlaatuisuuden sekä sen, että sitä kannattaa suojella kaikin mahdollisin keinoin.

Avaruusturismi saattaa siis olla uuden ajan ympäristöliikkeen alku.

Kuuluisa Apollo 8 -lennolla otettu kuva maapallosta
Kuuluisa Apollo 8 -lennolla otettu kuva maapallosta.

Toinen tulevana vuosikymmenenä varmasti elämänmenoa muuttava asia ovat megakonstellaatiot, eli avaruudessa olevat valtavat satelliittilaumat. Monet yhtiöt suunnittelevat tuhansien satelliittien parvia, joiden avulla esimerkiksi nopea nettiyhteys voitaisiin luoda joka puolelle maapalloa. Tämä olisi upeaa: netti olisi kaikkialla kuin ilma ympärillä, ja lisäksi se olisi nopea ja edullinen. Tämän vaikutukset elämänmenoon olisivat yhtä suuret kuin matkapuhelimien tulo aikanaan. 

Moni tosin ei taida huomata eroa nykyiseen, koska useat olettavat kännyköiden toimivan jo nyt satelliittien avulla. Satelliittipaikannuslaitteetkin ovat tulleet jo niin arkisiksi, ettei monikaan tule ajatelleeksi raketteja ja avaruusajan alun kömmähdyksiä pizzeriaan Google Mapsin avulla suunnistaessaan. 

Avaruus on jo yhtä olennainen osa arkeamme kuin on toimiva viemäriverkosto. Ja tämä trendi tulee vain jatkumaan.

Megakonstellaatiot tosin ovat myös huolestuttavia. Ensinnäkin avaruudessa olevien satelliittien määrä tulee lisääntymään hurjasti. Nyt toimivia satelliitteja on maapallon ympärillä noin 2200, mutta pelkästään SpaceX:n suunnitelmissa on laukaista Starlink-systeemiinsä noin 12 000 satelliittia 2020-luvun puoliväliin mennessä ja kaikkiaan 42 000 myöhemmin. Kilpailevan OneWebin suunnitelmissa on ensin 650 satelliittia ja myöhemmin parituhatta lisää.

Starlinkin ensimmäisessä vaiheessa on 1584 satelliittia 72 kiertoradalla
Starlinkin ensimmäisessä vaiheessa on 1584 satelliittia 72 kiertoradalla. Kullakin 550 kilometrin korkeudessa olevalla radalla on 22 satelliittia.

Paitsi että taivaalle tulee ruuhkaa, niin tähtitieteen kannalta tilanne on hyvin ikävä. Satelliitteja vilisisi taivaalla kaukoputkien näkökentissä koko ajan, ja mikä ei olisi mukavaa, vaikka satelliitit onnistuttaisiin tekemään sellaisiksi, että ne eivät heijasta juurikaan Auringon valoa. Radiotähtitieteilijät eivät tietenkään ole iloisia siitä, että taivaalta tulevan radiosaasteen määrä lisääntyy.

Toisaalta tulevat jättiraketit ja avaruuteen menemisen hinnan romahtaminen tekee avaruusteleskooppien tekemisen edullisemmaksi. Kenties nyt rakenteilla olevan ELT-jättiteleskoopin seuraaja tehdään Kuun takapuolelle, missä maapallo satelliitteineen ei haittaa. Silti olisi mukavaa, että Maan päältäkin voisi ihailla tähtitaivasta samaan tapaan kuin järvimaisemaa on mukava katsella ilman horisontissa olevia moottoritiesiltoja. 

Megakonstellaatioiden hyödyt ovat kuitenkin suuria, ja niillä on osaltaan maapalloa edelleen supistava vaikutus: mitä enemmän koemme olevamme vain yksi ihmiskunta, sitä parempi. Myös maista, joissa nettiä sensuroidaan, voitaisiin päästä yhteyteen ulkomaailman kanssa.

Voi olla, että tämä on toiveajattelua, mutta historia on vienyt meitä koko ajan kohti vapaampaa, globaalimpaa maailmaa. Avaruus ja avaruustekniikka on ollut mukana tässä kehityksessä, ja tulevan vuosikymmenen aikana tulee olemaan vielä enemmän.

SpaceX laukaisi 60 uutta Starlink-satelliittia 7. tammikuuta 2020
SpaceX laukaisi 60 uutta Starlink-satelliittia 7. tammikuuta 2020. Litteät satelliitit täyttivät koko Falcon 9:n nokkakartion. Näissä on uusi, tumma pinnoite, minkä ansiosta ne eivät ole toivottavasti yhtä kirkkaita kuin aiemmat satelliitit.

Jos haaveiluvaihteen laittaa kunnolla päälle, niin avaruus voisi olla osaltaan auttamassa olennaisesti myös ilmastonmuutoksen hillitsemisessä ja torjunnassakin. Ensin osa saastuttavaa teollisuutta voidaan siirtää avaruuteen, missä raaka-aineita on yllin kyllin ja energiaa saa enemmän kuin on tarpeen. Sitten osa koko ajan paisuvasta ihmiskunnasta lähtee asumaan avaruuteen, joko Maan kiertoradalle tehtäviin siirtokuntiin tai kauemmaksi Kuuhun ja Marsiin. 

Vaikka Mars on varsin ankea paikka asua, ei äärimmäisen ilmastonmuutoksen kourissa oleva maapallokaan olisi nykyisenkaltaisen ihana. Voi olla, että osan ihmisistä on pakko siirtyä avaruuteen asumaan. 

Optimisti voi ajatella asiaa myös niin, että kun suuri osa ihmiskunnan saastuttavista toimista siirretään avaruuteen, niin maapallosta voitaisiin tehdä kuin suuri luonnonpuisto.

Vuosikymmenessä ei ihmiskuntaa kuitenkaan siirretä avaruuteen, mutta avaruus on varmasti seuraava suuri ihmiskunnan askel eteenpäin. Historiassa tällaisia hyppäyksiä ovat olleet maatalouden synty, kaupungit, teollinen vallankumous, elektroniikan tulo ja tuoreimpana tietotekniikka. Geenitekniikan lisäksi ihmisen siirtyminen elämään, asumaan ja toimimaan avaruuteen on varmasti seuraava samankaltainen hyppäys.

Se on jopa loogista: kun planeettamme on jäämässä pieneksi, pitää siirtyä sen ulkopuolelle. Avaruudessa tilaa ja raaka-aineita riittää.

Olen usein verrannut avaruutta Kaliforniaan. Kuivaa, autiomaata Tyynen valtameren rannalla pidettiin asumiseen kelvottomana, mitättömänä alueena, mutta kun sinne rakennettiin rautatie, sieltä löytyi kultaa ja siellä alettiin viljellä appelsiineja, tilanne muuttui täysin. Sinne muutti enemmän ihmisiä, se muuttui omavaraiseksi ja siitä tuli pian monessa mielessä maapallon edelläkävijä. Kaliforniassa synnytettiin Hollywood ja Piilaakso. Siitä tuli rikkain Yhdysvaltain osavaltio ja eräs maapallon vauraimmista paikoista. 

Avaruuden kanssa tulee käymään samoin. Olemme tähän saakka menneet sinne vankkureilla, mutta 2020-luvulla kiertoradalle vedetään rautatie. Uudisraivaajien aika tulee taas!


Avaruussiirtokuntia on pohdiskeltu jo 1930-luvulta alkaen. Tämä piirros on vuodelta 1970.

(Juttu on ilmestynyt Ursan blogina 10.1.2020)

 

Tiedetöppäysjoulukalenteri 24: Kosmonauttien peruutettu kuumatka

Ti, 12/24/2019 - 10:32 Jari Mäkinen
N1-raketti ja Neuvostoliiton avaruusjohtajia

51 vuotta sitten jouluna Apollo 8 kiersi Kuuta. Kolmen astronautin kuumatkan myötä Yhdysvaltain ja Neuvostoliiton kiihkeä avaruuskilpa päättyi, vaikka vasta Apollo 11:n lento heinäkuussa 1969 toi "voiton" Amerikkaan. Rautaesiripun toisella puolella oli tapahtunut kenties kalleimmaksi tullut tieteellistekninen töppäys ikinä.

Neuvostoliitto oli avaruusajan alussa aivan omassa luokassaan. Se onnistui lähettämään ensimmäisenä avaruuteen niin satelliitin kuin ihmisenkin, ja ero oli suuri paitsi ajassa, niin myös teknisesti: itänaapurin raketti oli voimakkaampi ja avaruuslaitteet parempia.

Kahdesta nolosta häviöstä suivaantunut presidentti John F. Kennedy päätti lähettää vuonna 1961 amerikkalaiset ensinnä Kuuhun, ja polkaisi käyntiin massiivisen Apollo-ohjelman. Sen säikäyttämänä Neuvostoliitto puolestaan päätti myös lähettää kosmonautit kohti Kuuta. 

Tosin Kennedy tarjosi Neuvostoliitolla mahdollisuutta lentää Kuuhun yhdessä; on vaikea sanoa oliko kyse teatterista vai aidosta tarjouksesta, mutta ulos oli selvä. Nikita Hruštšov totesi Neuvostoliiton avaruussaavutukset mielessään, että “jos amerikkalaiset lähettävät astronautin avaruuteen, me lähetämme kaksi kosmonauttia, jos hekin lähettävät kaksi, niin me lähetämme kolme, ja jos he lentävät Kuuhun, niin me lennämme ennen heitä”.

Neuvostoliitossa käynnistettiinkin oma kuulento-ohjelma. Avaruusohjelmaa johtanut Sergei Korolev (otsikkokuvassa alhaalla keskellä) suunnitteli jo suurta N1-nimistä rakettia, ja hahmotteli samalla myös nopeammin toteutettavaa ratkaisua, missä Sojuz-raketeilla voitaisiin toteuttaa lento Kuuhun: kuualukset ja laskeutumiskapselit lähetettäisiin omilla raketeillaan.

Mutta sitten politiikka ja henkilösuhteet astuivat peliin. Korolevia ei nimettykään kuuhankkeen pääsuunnittelijaksi. 

Korolevin kilpakumppani oli jo aiemmin ollut Valentin Glusko (otsikkokuvassa alhaalla oikealla). Eräs hänen parhaimmista työtovereistaan oli sotilaallisia ohjuksia kehittänyt Vladimir Tselomei (otsikkokuvassa vasemmalla), jonka hyvä ystävä oli Hruštšovin poika Sergei. Tämä varmaankin vaikutti siihen, että Korolev joutui Kremlin epäsuosioon, ja niin kuulennot annettiin työparin Glusko & Tselomei tehtäväksi.

He alkoivat suunnitella miehitettyä lentoa Kuun ympäri jo lokakuuksi 1967, vallankumouksen 50. vuosipäivän kunniaksi. Ensimmäisen avaruuskävelyn tehneen, kokeneen kosmonautin Aleksei Leonovin johtama pilottiryhmä lähetettiin riskialttiiseen kuulentokoulutukseen. 

Tarkoituksena oli kehittää nykyisin Proton-nimisenä tunnettava kantorakettia UR-500, joka olisi kyennyt sinkoamaan Korolevin tiimin suunnitteleman kuualuksen, Sojuzin, juuri ja juuri ympäri Kuun. Kuuhun laskeutumista vasten olisi tarvittu toinen rakettilaukaisu, jonka kyydissä oli kuumoduuli. Alukset olisivat telakoituneet Maan kiertoradalla.
 

N1:n mallikappale laukaisualustalla vuonna 1967

N1:n mallikappale laukaisualustalla vuonna 1967.

 

Politbyroo antoi kuitenkin Hruštšoville kenkää syksyllä 1964, jolloin Korolevin asema parani jälleen. Työ N1:n kanssa saattoi jatkua. Jättiraketti olisi hieman kuten amerikkalaisten kuuraketti Saturnus V; hieman matalampi, mutta leveämpi, mutta periaatteessa samantapainen.

N1:n käyttöä kuuohjelmassa ei kuitenkaan hyväksytty, mutta kun kahden raketin menetelmä osoittautui liian hankalaksi ja vaaralliseksi, katseet kääntyivät N1:n suuntaan. 

Sen kehittäminen oli kuitenkin hankalaa, koska pätevänä rakettimoottorien suunnittelijana tunnettu Glusko ei suostunut yhteistyöhön. Niinpä Korolev joutui tyytymään enemmänkin suihkumoottoreita suunnitelleen Nikolai Kuznetsovin apuun. Tuloksena oli heikompitehoiset ja epäluotettavammat moottorit, joita tarvittiin peräti 30 kappaletta N-1:n ensimmäiseen aiheeseen.

Tarina sai kuitenkin saanut yllättävän käänteen jo tammikuussa 1966, kun Korolev kuoli moskovalaisen sairaalan leikkauspöydälle. Kuuohjelman johtoon asetettiin Valeri Mishin, jolla oli kuitenkin jatkuvia vaikeuksia Politbyroon kanssa, minkä ansiosta Tselomei onnistui pitämään myös omaa suunnitelmaansa koko ajan esillä.

Kuuhanke meni kuitenkin eteenpäin. Nykyisin Sojuzina tunnettu alus oli aluksi tarkoitettu kuulentoihin, tosin hieman erikoisvarusteltuna. Itänaapurien kuumoduuli oli vähän kuin amerikkalaisten kuumoduuli, paitsi että vain yhdelle kosmonautille mitoitettu miehistöosa oli pienempi ja muodoltaan pallomainen, minkä lisäksi moduulin päällä oli suuri asennonsäädöstä huolehtiva osa.  

Siinä missä Apollot olivat kolmepaikkaisia ja Kuuhun laskeutui kaksi astronauttia, oli neuvosysteemissä vain kaksi matkalaista.  Heistä toinen siirtyisi Kuun kiertoradalla avaruuspuvussa ulkokautta kuumoduuliin ja laskeutuisi sillä Kuun pinnalle, missä hän vuoden 1969 suunnitelmien mukaan viipyisi vain neljä tuntia.  Alukset telakoituisivat toisiinsa Kuun kiertoradalla ja Kuun pinnalla käynyt kosmonautti siirtyisi Sojuziin, mikä palaisi Maahan. 

Ajatuksena oli myös – turvallisuuden vuoksi – miehittämättömän kuumoduulin lähettäminen etukäteen Kuun pinnalle. Miehitetty moduuli laskeutuisi sen luokse, ja paluumatka voitaisiin tehdä tyhjänä laskeutuneella aluksella.  Käytännössä laskeutuminen kävelymatkan etäisyydelle miehittämättömästä aluksesta on hyvin vaikeata, lähes mahdotonta, minkä vuoksi ajatuksesta luovuttiin. 

Ensimmäisellä N1:n koelennolla oli kyydissä Zond L1S-1 -salanimen saanut Sojuz ja tarkoitus oli tehdä ilman kosmonautteja automaattinen lento Kuun ympäri. Helmikuun 21. päivänä vuonna 1969 tehty laukaisu kuitenkin epäonnistui, kun raketti mäsähti moottoririkkojen vuoksi Baikonurin maankamaraan kolmen minuuttia kestäneen lennon päätteeksi.

Jos lento olisi mennyt hyvin, olisi Neuvostoliitolla ollut vielä mahdollisuus voittaa kuukilpailu, mutta nyt se näytti jo epätodennäköiseltä.

N1:n toinen koelento päättyi räjähdykseen

Lopullisesti kisa menetettiin 3. heinäkuuta, kun toinenkin koelento päättyi onnettomuuteen (kuva yllä). Nyt suuri raketti räjähti laukaisualustalla, joten laukaisualustan vaurioituminen teki tapauksesta vieläkin vakavamman takaiskun.

Kun kaksi muutakin koelentoa kesäkuussa 1971 ja marraskuussa 1972 päättyivät räjähdyksiin, vuodelle 1974 suunniteltu viides lento peruutettiin. Samoin koko N1-ohjelma peruutettiin lopulta toukokuussa 1974. Haaveet siitä, että kosmonautit olisivat käyneet Kuussa 1970-luvulla haudattiin. Neuvostoinsinöörit olivat jo muokanneet aluksiaan siten, että Kuussa olisi voitu olla kenties parikin viikkoa, mahdollisesti jopa kuukauden ajan. Kuussa olisi voinut olla samanaikaisesti useampia aluksia.  Jos nämä suunnitelmat olisivat toteutuneet, eli kosmonautit olisivat olleet Kuussa esimerkiksi vuonna 1980, olisi avaruuslentojen kehitys saattanut muodostua hyvinkin erilaiseksi.

Nyt kuitenkin voi sanoa, että N1-hanke oli kenties ihmiskunnan kallein tieteellistekninen harha-askel. N1:n kehittäminen ja siihen liittyneet kustannukset olivat arviolta 115 miljardia nykyeuroa, kun koko Yhdysvaltain Apollo-hankkeen hinta oli noin  140 miljardia euroa nykyarvon mukaan laskettuna.

Ihan hukkaan N1:n parissa tehty työ ei kuitenkaan mennyt, koska kokemuksia voitiin käyttää hyväksi 1980-luvulla lentäneen suuren Enegria-raketin ja sen kuljettaman Buran-sukkulan kanssa. Ne toimivat hyvin: Energia teki kaksi lentoa ja Buran yhden, ennen kuin ne laitettiin koipussiin Neuvostoliiton lopun koittaessa.

Buran ja Energia

Energia-rakettia Buran selässään kuljetetaan laukaisualustalle Baikonurissa.

Tiedetöppäysjoulukalenteri: 11. Mars-luotaimen kova kohtalo

Ke, 12/11/2019 - 08:55 Jari Mäkinen
Mars Climate Orbiter joulukehyksissä

Tämä, jos mikä, on aika ison luokan töppäys: täysin toimintakuntoinen, 200 miljoonaa dollaria maksanut Mars-luotain menetettiin vuonna 1999 hyvin yksinkertaisen virheen vuoksi.

Tänään 21 vuotta sitten, joulukuun 11. päivänä 1998, laukaistiin Cape Canaveralista matkaan Mars Climate Orbiter -niminen luotain. 640-kiloinen avaruuslaite lähti matkaan iltapäivällä paikallista aikaa ja aloitti 9,5 kuukautta kestäneen lentonsa kohti punaista planeettaa.

Kohtalaisen pienen luotaimen tarkoituksena oli tutkia Marsin kaasukehää, ilmastoa ja säätä. Marsin kaasukehä oli tärkeässä roolissa myös luotaimen saapumisessa perille: tarkoituksena oli käyttää ilmajarrutusta hidastamaan luotaimen nopeutta siten, että se asettuisi kiertämään sopivalle radalle Marsin ympärille.

Ilmajarrutus on hyvin kätevä temppu, mutta vaatii tarkkaa ohjaamista. Siinä luotain suunnataan lentämään kaasukehän yläosien läpi siten, että siellä oleva harva kaasu jarruttaa vastuksellaan luotainta. Mutta jos luotain kulkee liian korkealta, ei ilmanvastusta ole tarpeeksi, ja liian syvälle kaasukehään menevä luotain tuhoutuu kitkakuumennuksessa. 

Koska ilmajarrutus toisella planeetalla oli uusi menetelmä, haluttiin Mars Climate Orbiterin kanssa olla varovaisia. Se oli tarkoitus ohjata  lentämään planeettainvälisestä avaruudesta Marsin ohi 226 kilometrin korkeudelta. Siellä oleva ilmanvastus riittäisi rakettimoottorin polton lisäksi hidastamaan ratanopeutta sen verran, että luotain jäisi kiertämään Marsia. Tämän jälkeen rataa olisi voitu säätää uusien ilmajarrutusten ja rakettimoottorien avulla.

Ainoa MCO:n ottama kuva


Mars Climate Orbiter otti tämän kuvan Marsista sitä lähestyessään. Tämä jäi ainoaksi luotaimen ottamaksi kuvaksi.


 

Luotain – tuttavallisesti MCO – saapui perille 23. syyskuuta 1999. Se kääsi aurinkopaneelinsa suojaan (ettei ilmajarrutus rikkoisi paneelia) ja kääntyi sopivaan asentoon jarrutuspolttoa varten. Rakettimoottori hörähti käyntiin suunnitellusti hieman yli klo 12 Suomen aikaa. Moottori jarrutti menoa 16 minuutin ja 23 sekunnin ajan, minkä kuluttua luotaimen oli tarkoitus osua juuri sopivasti kaasukehään.

Suunniteltu rata kulki Marsin taakse Maasta katsoen siten, että radioyhteyden odotettiin olevan poikki noin 20 minuutin ajan. Yhteys katkesi kuitenkin noin minuuttia laskettua aikaisemmin, mikä herätti jo pientä huolta lennonjohdossa.

Kun yhteys ei sitten palautunutkaan silloin kuin olisi pitänyt, eikä sen jälkeenkään, pieni huoli muuttui suureksi suruksi. Nähtävästi luotain oli menetetty Marsiin saapumisen aikana.

Kaksi päivää myöhemmin 25.9.1999 Mars Climate Orbiter julistettiin virallisesti menetetyksi, eikä siihen enää yritetty ottaa yhteyttä. Onnettomuutta tutkimaan perustettiin työryhmä.

Luotaimen rata Marsiin saapumisen aikana

Työryhmä julkisti karun raporttinsa jo marraskuun 10. päivänä, vain hieman yli kuukauden tutkimusten jälkeen.

Työ sujui nopeasti, koska syy onnettomuuteen oli yksinkertainen ja nolo: luotaimen radan laskelmissa olivat menneet sekaisin angloamerikkalaiset yksiköt ja SI-standardin mukaiset yksiköt. 

Nasa on koettanut käyttää kansainvälisiä SI-yksiköitä, mutta se ei ole helppoa paunojen, mailien ja tuumien kyllästämässä maassa. Tässä tapauksessa luotaimen rakentaneen Lockheed-Martin -yhtiön tekemä tietokoneohjelma, jota käytettiin rakettimoottorien impulssin laskemiseen, antoi tuloksensa paunasekunneissa. Nasan lennonjohdossa luotaimen ratamuutosten laskemiseen käyttämä ohjelma puolestaan oletti saavansa luvun newtonsekunneissa.

Vaikka nämä yksiköt eroavat tosistaan peräti 4,45 -kertaisesti, ei kukaan huomannut lukujen olevan omituisia. Nasan ohjelmaan syötettiin siis vääriä lukuja.

Tämän seurauksena luotain ohjattiin tekemään Marsin ohilento vain 57 kilometrin korkeudella, mikä oli aivan liian vähän. Luotain joko hajosi kitkakuumennukseen ja syöksyi saman tien alas, tai sinkoutui takaisin planeettainväliseen avaruuteen.

Onnettomuutta tutkinut työryhmä huomasi, että jo ennen Marsiin saapumista tehdyt ratakorjaukset olivat vieneet luotainta liian alas. Kaksi lennonjohtajaa oli itse asiassa huomannut luotaimen lasketun ja havaitun radan olleen jo tuolloin toisistaan selvästi eriäviä, mutta heitä ei kuunneltu, koska he eivät raportoineet huomiostaan proseduurin mukaisesti.

Työryhmä myös päätteli, että mikäli ratakorkeus olisi ollut 80 kilometriä tai enemmän, niin luotain olisi voinut selvitä toimintakunnossa, mutta 57 kilometriä oli ehdottomasti liikaa.  

Periaatteessa syyllinen onnettomuuteen oli Lockheed-Martin, joka käytti ohjeistuksen vastaisesti amerikkalaisyksiköitä SI-yksiköiden sijaan, mutta käytännössä vikaa oli myös Nasan lennonjohdossa, missä lukuja ei tarkistettu kunnolla.

Huono onni jatkui vielä samana vuonna, sillä samoihin aikoihin kohti Marsia lentänyt Mars Polar Lander -laskeutuja syöksyi alas liian suurella nopeudella ja tuhoutui joulukuun 3. päivänä. Tässä tapauksessa luotain sammutti rakettimoottorinsa liian aikaisin laskeutuessaan todennäköisesti ohjelmistovirheen vuoksi.

Sittemmin kaikki Nasan Mars-luotaimet ja laskeutujat ovat onnistuneet tehtävissään. Yleensä ne ovat jopa ylittäneet odotukset.

Silti vuosi 1999 kummittelee edelleen Mars-tutkimuksen historiassa katastrofaalisena vuotena. Se on myös eräs noloimmista töppäyksistä avaruuslentojen historiassa.

Tiedetöppäysjoulukalenteri

Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.

Kaikki avautuneet luukut ovat täällä.