Tiedetuubi 1 vuotta!

Tiedetuubi 1 vuotta!

Viime viikonloppuna Tiedetuubi teki kävijäennätyksensä: yli 500 yksittäistä kävijää vuorokaudessa. Viimeisen kuukauden aikana sivustolla on käynyt lähes 2000 yksittäistä henkilöä ja lukukertoja on liki 10 000. Tulos on varsin hyvä, etenkin kun sivustoa ei ole vielä varsinaisesti julkistettu, vaan tieto siitä on kiirinyt pääasiassa sosiaalisessa mediassa ja puskaradiossa.

Tärkein syy viikonlopun kävijäryntäykseen oli artikkelimme GOCE-satelliitista ja sen maahanpaluusta. Toivottavasti sen kautta monet kävijöistä myös huomasivat, että Tiedetuubissa on jo reippaasti yli 500 muuta juttua, joita on kerätty sinne vähitellen jo noin vuoden ajan.

Kyllä vaan: huomasin juuri tilastotietoja selvitellessäni, että latasin Tiedetuubin ensimmäisen version nettiin jo yli vuosi sitten, 12. lokakuuta 2012. Kyseessä oli testiversio sivustosta, joka Markus Hotakaisen mukaan tulemisen jälkeen sai nimen T-Tuubi ja joka siirtyi hieman muokattuna kokonaan omalle serverilleen omaan osoitteeseensa tammikuussa 2013. T-Tuubista Tiedetuubiksi sivusto muuttui kesällä, kun kyllästyimme väliviivan aiheuttamiin teknisiin hankaluuksiin.

Sivustoa on kehitetty hissukseen ja pidetty jopa hieman pimennossa, koska toistaiseksi sitä tehdään vain harrastuksena. Alun perin ideana oli käyttää sivustoa muusta mediatyöstämme "yli jääneen" materiaalin julkaisemiseen, monenlaisen muun tieteestätiedottamistoimintamme apuna ja eräänlaisena sekalaisten juttujemme loppusijoituspaikkana. Olemme Markuksen kanssa siinä mielessä hulluja, että teemme työtämme myös vapaa-aikanamme, työmme on harrastuksemme, emmekä aina tule pyytäneeksi työstämme palkkaa. Ja meistä tieteestä kertominen on paitsi mukavaa, niin myös koemme sen erittäin tärkeäksi: nähtävästi useampikin nuori on valinnut ainakin osittain meidän innostamanamme tieteellisen uran, minkä lisäksi monet muut ovat ainakin laajentaneet maailmankuvaansa ja kiinnittävät aiempaa enemmän huomiota omaan kotiplaneettaamme, sen monimuotoisiin ilmiöihin sekä koko mahtavaan maailmankaikkeuteen ympärillämme.

Alkuperäisen nimen T-kirjan kertoi mistä myös nettisivustollamme oli kyse: tieteestä, tekniikasta, tutkimuksesta ja vähän niihin liittyvästä taiteestakin. Mielestämme näistä voidaan kertoa iloisesti, asiallisesti ja ajankohtaisesti, ja siihen olemme pyrkineet myös Tiedetuubissa.

Tiedetuubin viime kuukausina jatkuvasti lisääntynyt kävijämäärä on merkki siitä, että tällaiselle materiaalille on kysyntää. Valitettavasti vain teemme edelleen sivua harrastuksena muun toimittajan- ja kirjailijantyömme ohessa, joten emme pysty pitämään sivustoa toistaiseksi aivan niin ajankohtaisena ja kattavana kuin haluaisimme. Aika ei riitä. Esimerkiksi aihevalikoimassa omat lempiaiheemme painottuvat liiaksi ja useita juttujamme olisi kannattanut editoida ja kuvittaa hieman paremmin. Meillä on lisäksi runsaasti materiaalia varastossa Tiedetuubiin laitettavaksi, mutta kun vuorokaudessa on vain 24 tuntia, sen työstäminen jää jatkuvasti muun tekemisen jalkoihin. Videoitakin on varastossa kymmenkunta, mutta niiden editointiin ei ole vielä ollut aikaa.

Toistaiseksi olemme voineet kattaa mm. sivuston ylläpidosta aiheutuvia kustannuksia keväällä Tiedonjulkistaminen neuvottelukunnalta saamallamme apurahalla, ja toivomme, että saamme tähän – samoin kuin toiminnan laajentamiseen – lisärahoitusta lähitulevaisuudessa.

Samalla kun siis kiitämme lukijoitamme, pyydämme ymmärrystä sille, että sivustoa ei toimiteta tällä haavaa samoilla kriteereillä kuin yleensä tiedotusvälineitä. Yhdestä emme kuitenkaan tingi: kevyimmissäkin jutuissamme puhutaan oikeasti asiaa ja faktat pitävät paikkansa!

Toivottavasti pääsemme laajentamaan ja vakiinnuttamaan toimintaamme jo lähitulevaisuudessa – ja silloin rummutamme kyllä Tiedetuubista kuuluvammin!

Kohta GOCE putoaa Jari Mäkinen La, 09/11/2013 - 13:18
Kohta GOCE putoaa

ESA:n GOCE-satelliitti kesti avaruudessa pitempään kuin toivottiin ja se onnistui tehtävässään paremmin kuin uskottiin. Tämän maapallon painovoimakenttää hyvin tarkasti ja sen havaintojen perusteella tiedetään nyt millainen on oman kotiplaneettamme tarkka muoto – ei, se ei ole aivan täsmälleen pallo, vaan hieman muhkurainen sellainen.

Jotta GOCE olisi pystynyt mittaamaan painovoimaa hyvin tarkasti, oli se epätavallisen matalalla kiertoradalla, vain noin 250 km korkealla. Koska sielläkin on vielä vähän ilmakehän rippeitä, piti satelliitista tehdä hieman aerodynaaminen ja sen ratanopeutta täytyi koko ajan pitää yllä pienellä rakettimoottorilla.

Nyt painovoimamittauslaitteistoa, joka on itse asissa erittäin tarkka kiihtyvyysmittari, käytetään apuna Maahan putoamisen tarkkailussa: saatujen mittausten mukaan GOCEa hidastava ilmakehän kitka on nyt noin 90 mN ja se kasvaa koko ajan. Lennonjohto on yhteydessä satelliittiin, joka toimii normaalisti, ja pystyy hallitsemaan sen lentoa – paitsi että polttoaineen loppumisen vuoksi sen rakettimoottoria ei voi käyttää.

Tuorein ennuste putoamisajasta on edelleen sunnuntain ja maanantain välinen yö.

Mitä selviää pinnalle?

Kun satelliitti laukaistiin, tiedettiin jo varmasti, että sitä ei voida ohjata tehtävän päätyttyä tuhoutumaan Maan ilmakehässä samaan tapaan kuin esimerkiksi ATV-rahtialukset. Niissä on voimakkaat ratamuutoksia varten tarkoitetut moottorit, mutta GOCE oli liian pieni, jotta siinä olisi voinut olla isompi moottori.

Samalla GOCE on sen verran suuri, että siitä selviää ilmakehän kitkakuumennuksen jälkeen pieniä osia Maan pinnalle saakka.

"Vain pieni osa, noin 20% eli noin 200 kg, satelliitin alkuperäisestä massasta putoaa pinnalle", kertoo ESAn avaruusromua tutkivan toimiston johtaja Heiner Klinkrad ESAn Rocket Science -blogissa.

"Tämä massa on jakaantuneena kymmeniin pieniin osiin, jotka leviävät laajalle aluelle maahanpaluuradan alueella."

Yhtä lailla tiedetään, että joka vuorokausi Maan ilmakehään törmää luonnollisesti 100-210 tonnia ainetta avaruudesta, ja isompia kappaleita on kymmeniä tuhansia vuodessa. Vajaan tonnin painoinen GOCE on hyvin mitätön näihin verrattuna.

Useita kertoja vuodessa uutisissakin kerrotaan tulipalloista, hyvin kirkkaista tähdenlennoista, jonka syntyvät meteoroidin törmätessä meihin. Joistakin niistä jää jäljelle myös kiinteitä, pinnalle saakka selviäviä kappaleita, mutta niistäkin suurin osa putoaa huomaamatta valtameriin, aarniometsiin tai autiomaihin.

Satelliitteja, kantorakettien osia ja muita ihmisen tekemiä laitteita putoaa Maahan säännöllisesti, noin 100 tonnia vuodessa, mutta vain noin kerran vuodessa suurempi avaruusalus törmää ilmakehään hallitsemattomasti.

"Riski GOCEn puotoamisesta on ihmisille erittäin pieni", jatkaa Heiner Klinkrad. "Tilastollisesti on 250 000 kertaa todennäköisempää voittaa lotossa kuin olla paikassa, mihin GOCEn osa putoaa. Näinä 56 vuotena, jolloin avaruuslentoja on tehty, ei yksikään ihmisen tekemä ja Maahan pudonnut kappale ole aiheuttanut edes loukkaantumista."

GOCEn kaltaisia, ilman voimakkaita rakettimoottoreita olevia tutkimussatelliitteja laukaistaan kaikista maista koko ajan, koska riski niiden putoamisesta asutuille alueille on häviävä pieni. Satelliittien lähettäjät ovat silti aina vastuussa niiden putoamisen mahdollisesti aiheuttamista vaurioista.

ESAlle tämä on kuitenkin ensimmäinen hallitsematon satelliitin maahanpaluu 25 vuoteen. Sen tavoitteena on luonnollisesti saada tulevaisuudessa kaikki satelliitit sellaisiksi, että ne voidaan tuhota tehtävänsä päätteeksi vaarattomasti. Sitä mukaa kun avaruustoiminta lisääntyy, kasvaa myös riski sille, että putoavan satelliitin osa voisi osua johonkin.

Milloin ja minne?

Koko ajan tarkkenevan arvion mukaan GOCE putoaa alas radaltaan siis sunnuntain 10.11. ja maanantain 11.11. välisenä yönä (Suomen aikaa). Satelliitti putoaa parhaillaan noin kahdeksan kilometriä vuorokaudessa alemmas ja ilmakehän ote siitä tiukkenee jatkuvasti. GOCEn radan keskikorkeus nyt lauantaina oli jo noin 160 km. Lauantain kuluessa sen oletetaan putoavan jo 13 kilometriä ja sunnuntaina vielä enemmän.

"Kun GOCE on alle 100 kilometrin korkeudessa, ilman tiheys on jo sen verran suuri, että se alkaa hidastaa olennaisesti noin 25 000 kilometriä tunnissa kulkevan GOCEn nopeutta", Klinkrad jatkaa. "GOCE putoaa alaspäin ja ilman aerodynaaminen paine ja kitkakuumennus rikkovat GOCEn oletettavasti noin 80 km:n korkeudessa."

Tuloksena on suuri määrä irtonaisia osia, jotka edelleen hajaantuvat pienemmiksi osiksi, joista suurin osa tuhoutuu tähdenlentojen tapaan jo korkealla ilmakehässä. Eräitä pinnalle saakka sinnitteleviä osia ovat todennäköisesti xenon-polttoaineen säiliö ja sille painetta antaneen typen säiliö, gravimetrit, tähtietsimet sekä rakettimoottorit. Ne näkyvät hyvin otsikkokuvassa.

ESA seuraa jatkuvasti GOCEn rataa ja on edelleen yhteydessä satelliittiin. Arvio putoamisajasta täsmentyy koko ajan, mutta siihen liittyy monia tekijöitä, joihin ei voida vaikuttaa: tärkeimpiä ovat yläilmakehän tiheyteen vaikuttava Auringon aktiivisuus sekä GOCEn ohjauslaitteistojen toiminta putoamisen aikana ja siten satelliitin asento.

Kun putoamispaikka tiedetään tarkasti, ESA tulee tiedottamaan siitä kyseisen alueen viranomaisia välittömästi. Tieto välitetään myös kaikille ESAn jäsenmaille. ESAn lisäksi kansainvälinen avaruusromun koordinointikomitea (Inter-Agency Space Debris Coordination Committee) seuraa GOCEn putoamista ja ryhtyy tarvittaessa toimiin.

GOCEa tarkkaillaan sen lähettämien tietojen lisäksi tutkilla ja optisesti. Sen voi havaita myös harrastajateleskoopeilla, kuten belgialainen Ralf Vandebergh on tehnyt: alla olevassa, ESAn Rocket Science -blogissa julkaistussa kuvassa on GOCE 22. syyskuuta 2013 Alankomaista kuvattuna.

Vyomanautit tulevat! Jari Mäkinen Ti, 05/11/2013 - 13:00
Vyomanautit tulevat!

.
Intia laukaisi tänään ensimmäisen Mars-luotaimensa avaruuteen. Kyseessä oli tosin vasta ensimmäinen askel kohti punaista planeettaa, sillä tämä Mangalyaaniksi nimetty luotain kiertää ensin Maata kuukauden päivät ja hilaa itseään yhä soikeammalle ja soikeammalle kiertoradalle, jonka kauimmaisesta pisteestä se pystyy lähtemään taloudellisesti pois Maan vaikutuspiiristä planeettainväliseen avaruuteen. Tämä tapahtuu näillä näkymin 30. marraskuuta.

Jos kaikki sujuu hyvin, saapuu Mangalyaan Marsiin tapahtuu 21. syyskuuta ensi vuonna.

Tähän mennessä vain Yhdysvallat, Venäjä (ja Neuvostoliitto) sekä Eurooppa ovat onnistuneet saamaan oman luotaimensa kunnolla Marsia kiertämään, mutta myös Kiina ja Japani ovat temppua yrittäneet. Niillä tosin oli huonoa tuuria, sillä ensin japanilaisluotaimen matka muuttui vuonna 2003 vaikeaksi nilkuttamiseksi voimakkaan aurinkomyrskyn vuoksi; Auringon sylkemät hiukkaset tuhosivat Nozomi-luotaimen elektroniikkaa ja muutoin hyvin toiminut luotain lensi Marsin ohitse.

Sitten marraskuussa 2011 kiinalaisten Mars-luotain Yinghuo-1 puolestaan koitti liftata Marsiin yhdessä venäläisten Phobos-Grunt -luotaimen mukana, mutta koska venäläisluotain ei päässyt Maan kiertorataa kauemmaksi ja putosi takaisin Maahan, jäi kiinalaistenkin matka Marsiin tekemättä.

Nämä kolme Aasian maata ovat jo pitkän aikaa käyneet pienimuotoista avaruuskilpaa ja luotaimet kohti muita taivaankappaleita ovat vain osa tätä mainetekopeliä. Kuuta tutkimassahan Intia, Kiina ja Japani ovat jokainen jo käyneet, ja kullakin on suunnitelmia myös Kuuhun palaamisesta.

Se, kuka avaruuskilpailun Aasian paikallissarjassa on johdossa, riippuu hieman näkökulmasta. Suoritettujen satelliittilaukaisuiden määrässä Kiina on tänä vuonna kohonnut jopa maailman ykköseksi ja omalla miehitetyllä avaruusaluksellaankin se on jo maailmansarjassa hyvissä asemissa. Japani puolestaan on onnistunut tekemään useita teknisesti haastavia luotainlentoja planeettainväliseen avaruuteen ja sillä on myös omat, voimakkaat kantorakettinsa. Oman avaruusaluksen kehittämisen sijaan se osallistuu suurella osuudella Kansainvälisen avaruusaseman yhteistyöhön. Japanilla on asemalla oma kookas tutkimusmoduulinsa, se lennättää asemalle rahtia omalla miehittämättömällä huoltoaluksellaan ja japanilaiset avaruuslentäjät nousevat asemalle samaan tapaan kuin eurooppalaiset, yhdysvaltalaiset ja kanadalaiset.

Intia puolestaan on selvästi peesausasemassa, mutta sekin on ollut hyvin aktiivinen avaruustoimessa jo 1960-luvulta alkaen, sillä vaikka maa on – ja etenkin oli – köyhä kehitysmaa, siellä on nähty avaruustoiminnan käytännön hyödyt: esimerkiksi perinteisten tietoliikenneyhteyksien vetäminen kaikkiin pikku kyliin ja taajamiin olisi maksanut paljon enemmän kuin yhteydenpito satelliittien kautta. Maalla on myös kattava ja monipuolinen satelliittipohjainen Koulu-TV, joka tuo opetusta myös syrjäseuduille ja köyhille alueille.

Kaukokartoitus ja sääpalvelut ovat myös erittäin tärkeitä Intialle, joten maa on kehittänyt voimakkaasti satelliitteja, jotka auttavat näissä.

2000-luvulla Intia on laajentanut toimintaansa myös kantoraketteihin – onhan edullisempaa laukaista satelliitit omalla raketilla kuin ostaa laukaisuita muilta, jos laukaisuita on paljon – tosin maalla on ollut pieniä vaikeuksia suurimman ja voimakkaimman rakettinsa GSLV:n kehittämisessä. Sen sijaan hieman pienempi työjuhta PSLV, jolla Mars-alus laukaistiin myös matkaan, on toiminut varsin luotettavasti. Intia on laukaissut avaruuteen myös ulkomaisia satelliitteja, muun muassa Koreasta, Belgiasta ja Saksasta.

Kuuluotain Chandrayaanin jälkeen vuorossa on nyt oma lento Marsiin ja katseet ovat myös kohti muita tieteellisiä lentoja sekä paluuta Kuuhun. Tieteen, tekniikan ja kansalaisille turvattavien peruspalveluiden lisäksi kyse on luonnollisesti myös politiikasta, sillä omalla avaruusohjelmallaan Intia haluaa näyttää Aasian maille, naapureilleen sekä koko maailmalle olevansa kaikkea muuta kuin köyhä kehitysmaa. Planeettalennot ovat oiva tapa herätä mainetta ja kunniaa.

Tein vuonna 2007 juttua Intian kuuluotaimesta Chandrayaan 1:stä ja tapasin samalla lennon tiedejohtajan Narendra Bhandarin, jonka kanssa juttelu levisi myös Intian avaruusohjelmaan laajemmin. Miksi maa käyttää runsaasti rahaa avaruuteen, vaikka sille olisi varmasti muutakin käyttöä maanpäällisissä kohteissa?

"Avaruustekniikka on muuttanut jokaisen intialaisen elämää, koska esimerkiksi pystymme tekemään nyt paremmin sääennusteita ja ennakoimaan myrskyjen saapumista", selitti Narendra Bhandarin.

"Se on hyvin tärkeää meille, sillä esimerkiksi monsuunisateet ovat voimakkaita. Satelliitit auttavat maanviljelyä, niistä on apua luonnononnettomuustilanteissa, niiden kautta saadaan esimerkiksi lääketieteellistä apua ja pystytään ennakoimaan esimerkiksi veden pinnan nousua. Ja luonnollisestikin sitten tietoliikenteessä niiden apu on korvaamaton, satelliitit ovat mullistaneet television ja tiedonvälityksen. Olemme juuri aloittaneet kaukokartoituksen laajamittaisen hyödyntämisen ja odotamme siitä apua muun muassa kaivannasten löytämisessä. On myös loogista, että tämän kaiken jälkeen olemme nyt lähdössä tutkimaan Kuuta ja edelleen mukaan planeettalentoihin."

Tuolloin vuonna 2007 ei Intialla ollut vielä omaa miehitettyjen avaruuslentojen ohjelmaa, eikä Bhandarin ollut innostunut edes sellaisesta. "Uskomme enemmän robotiikkaan ja miehittämättömien satelliittien sekä korkean teknologian sensorien käyttämiseen. Ne pystyvät tekemään monet työt paljon ihmistä paremmin, eivätkä vaadi mutkikasta elossapitosysteemiä ja turvallisuusjärjestelyitä."

Mutta niinpä vain samana vuonna Intian avaruustutkimusorganisaatio ISRO ilmoitti harkitsevansa vakavasti oman miehitetyn avaruusaluksen tekemistä ja vuonna 2012 hanke otti konkreettisen askeleen eteenpäin, kun ISRO ilmoitti perustavasta astronauttien – hindiksi vyomanauttien – koulutuskeskuksen Bangaloreen.

Eivätkä kyseessä olleet enää lennot Maata kiertämään omalla avaruusaluksella, vaan kunnianhimoisessa suunnitelmassa ovat myös lennot Kuuhun!

Suunnitelman mukaan ensi vaiheessa vuonna 2016 intialasastronautit nousisivat matkaan intialaisavaruusaluksella GSLV-raketin uuden version nokassa uudesta Satish Dhawanin laukaisukeskuksesta, joka olisi nykyisen Sriharikotan avaruuskeskuksen alueella. Kahdelle (tai kolmelle) avaruuslentäjälle mitoitettu alus lentäisi Maan ympärillä noin 300-400 kilometrin korkeudessa ja palaisi alas laskuvarjojen varassa Bengalin lahteen loiskahtaen.

Aluksen mallikappale valmistui jo vuonna 2009, mutta se ei ollut vielä lähellekään lentokelpoinen versio. Samana vuonna suoritettiin jo ensimmäiset vyomanauttien valinnat: perinteiseen tapaan hakuun otettiin ilmavoimien hävittäjälentäjiä ja 200 halukkaasta valittiin mukaan koulutukseen neljä. Heistä muodostetaan myöhemmin kaksi kaksihenkistä miehistöä, joista toinen tulee tekemään ensimmäisen intialaisen miehitetyn avaruuslennon ja toinen on varalla. Mikäli aluksesta tehdäänkin lopulta kolmepaikkainen, otettaneen mukaan ohjelmaan pari lentäjää lisää.

Virallisesti edelleen tavoitteena on tehdä lento vuonna 2016, mutta todennäköisesti tämä on hieman toiveikas päämäärä. On kuitenkin varsin varmaa, että Intiasta tulee neljäs maa, joka laukaisee oman avaruuslentäjän omalla aluksellaan avaruuteen.

Samalla Japanissa ovat myös puheet omasta avaruusaluksesta kiihtyneet, mutta vaikea taloustilanne ja hyvä yhteistyö avaruusasemakumppanien kanssa pitänee oman aluksen ainakin toistaiseksi pelkkänä haaveena. Mutta mukaan avaruuskisaan on tulossa vielä uusi aasialaismaa: Korea suunnittelee jo omaa kuuluotaintaan.

Päivitys 5.11.Kiina esitteli juuri "sattumalta" Intian onnistuneen laukaisun jälkeen omaa joulukuussa matkaan lähtevää Chang'e 3 -kuukulkijaansa. Siitä kerrotaan omassa artikkelissaan toisaalla Tiedetuubissa.

Tämä teksti on julkaistu myös Ursan blogeissa Avaruustuubissa.

Hei hei Christer! Markus Hotakainen Ke, 30/10/2013 - 11:34
Hei hei Christer!

Tähtien joukossa vaeltavat valopisteet ovat olleet tuttu näky jo vuosikymmenien ajan. Ensimmäinen satelliitti Sputnik laukaistiin Maata kiertävälle radalle 4. lokakuuta 1957 ja siitä lähtien ihmisen rakentamien avaruuslaitteiden määrä on kaiken aikaa kasvanut. Tällä hetkellä erilaisilla kiertoradoilla on tuhansia toimivia ja sammuneita satelliitteja, kantorakettien kappaleita, karanneita työkaluja, avaruuspuvun hansikkaita ja muuta avaruusromua.

Monet satelliitit ovat suunnanneet kameransa ja muut mittalaitteensa alaspäin, kohti Maata. Ne tarkkailevat sääilmiöitä, maanjäristyksiä, luonnonvaroja ja saastumista. Lehdistä, kirjoista, televisio-ohjelmista ja nettisivuilta ovat tuttuja upeat kuvat sinivihreäruskeavalkoisesta kotiplaneetastamme.

Avaruusaluksissa ja Kansainvälisellä avaruusasemalla matkaavat astronautit voivat ihastella huikaisevia näkymiä omin silmin. ISS-asemaan liitettiin muutama vuosi sitten ESAn rakentama ”näköalaterassi” Cupola, jonka seitsemästä ikkunasta – suurin niistä on läpimitaltaan 80 senttimetriä – avautuu hulppea näköala aseman alapuolella kiitäviin Maan maisemiin.

Käännetäänpä tilanne toisinpäin: me matoisen maan asukit katselemme öiseen aikaan – ainakin toisinaan – ylöspäin kohti tähtiä ja niiden joukossa vaeltavia valopisteitä. Illalla auringonlaskun jälkeen ja aamulla ennen auringonnousua Maata kiertävillä radoilla kiertävät ihmiskätten työn tulokset kylpevät auringonvalossa, kun maanpinnalla on jo tai vielä pimeää.

Satelliitteja voi nähdä lyhyessäkin ajassa lukuisia; itse muistelen joskus tähtiharrastustaipaleen alkupuolella bonganneeni niitä tunnissa 17 eikä se ole varmasti lähelläkään ennätystä – jos nyt kaikesta on mielekästä ennätyksiä ylipäätään kirjata.

Yksi noista valopisteistä on kaikkien aikojen suurin avaruusrakennelma, pituudeltaan 108-metrinen, leveydeltään 73-metrinen ja massaltaan 450-tonninen ISS. Aika ajoin avaruusaseman purjehdusta taivaankannen poikki voi seurata Suomestakin, mutta meikäläisiltä leveysasteilta se jää aina matalalle, lähelle eteläistä horisonttia, eikä se ole näkyvissä kuin pienen hetken.

Etelämpänä tilanne on toinen. Lontoon korkeudella ISS kulkee korkeimmillaan suoraan pään yläpuolelta ja siitä vielä etelämmäs se näkyy pohjoisellakin taivaankantilla. Muutama vuosi sitten seurasimme aseman lentoa Italiassa, pienessä Pioppin kalastajakylässä, kartoista tutun ”saappaan” nilkan tietämillä.

Olin laittanut älypuhelimen GoSatWatch-sovelluksen hälyttämään, kun ISS alkaa nousta taivaanrannan takaa. Huvilan terassi antaa suoraan etelään, mutta pohjoisen puolella jyrkkä rinne peittää ison osan taivaasta. Koko taivasta kuvaavassa ohjelman näkymässä aseman symboli kipusi yhä korkeammalle ja täsmälleen arvioidulla hetkellä se ilmestyi näkyviin puidenlatvojen takaa.

Runsaan 400 kilometrin korkeudessa Maata kiertävä ISS etenee radallaan 7,7 kilometrin sekuntinopeudella. Kirkkaana valopisteenä näkynyt asema kiisi vauhdilla päidemme päällä kohti kaakkoista horisonttia. Sovellus kertoi reaaliajassa paitsi korkeuden ja nopeuden myös etäisyyden: 500 kilometriä, 700 kilometriä, 1200 kilometriä…

Hieman ennen hiipumistaan merenlahden toisella puolella kohoavien vuorten yläpuolella leijuvaan elokuiseen usvaan ISS:llä oli etäisyyttä yli 2000 kilometriä. Sinänsä siinä ei ole mitään ihmeellistä, monet paljain silmin näkyvät satelliitit kiertävät Kansainvälistä avaruusasemaa korkeammalla, joten ne erottuvat vielä kauempaa.

Harvemmin – ja maanpinnalla ei koskaan – on kuitenkaan mahdollista katsella ihmisten liikkumista 27 500 kilometrin tuntinopeudella parintuhannen kilometrin etäisyydellä. Asemalla oli sattumoisin juuri silloin Christer Fuglesang, ruotsalainen ESA-astronautti, jonka olimme tavanneet pari vuotta aiemmin Avaruus 2007 -näyttelyssä. Tuolloin nelivuotias Tilda-tyttäremme oli päässyt kuvaan oikean avaruuslentäjän kanssa. Vilkutimme innokkaasti ylitsemme lentävälle asemalle. Christer ei tainnut nähdä meitä.

[Ursan Avaruustuubi]

Vähän sinnepäin – tai ei sinnepäinkään

Vähän sinnepäin – tai ei sinnepäinkään

Sekä lasten että aikuisten tietokirjallisuutta kirjoittavana olen joutunut miettimään usein kummassa on enemmän haastetta. Nämä mietiskelyt tulivat taas mieleen, kun luin Mark Braken opusta Avaruusolentojen etsijän käsikirja – Aloittelevan avaruustutkijan opas (suomennos Petri Mäenpää. Nemo 2013).

Braken kirjan aihepiiri – avaruuden äly ja elämä sekä niiden etsintä – on jälleen muotia. Siihen on ilmeisenä syynä kaiken aikaa kasvava eksoplaneettojen joukko. Tällä hetkellä tunnetaan varmuudella jo 919 eksoplaneettaa ja varmistusta odottavia kandidaatteja on yli 3600. Tältä alalta ei ole kovin paljon ajantasaista suomenkielistä kirjallisuutta, joten Nemon uutuus on tervetullut lisä tarjontaan.

Kirjassa kerrotaan elämän perusominaisuuksista ja sen etsinnästä, maailmankaikkeutta mahdollisesti asuttavien avaruusolentojen piirteistä sekä asuttavaksi kelpaavien planeettojen monimuotoisuudesta. Teksti on pilkottu lyhyisiin, helposti omaksuttaviin palasiin ja tietoiskumaisen kerronnan tukena on hauska ja havainnollinen Colin Jackin ja Geraint Fordin piirroskuvitus.

Siihenpä hyvät ja kehuttavat puolet sitten jäävätkin. Kirja on täynnä virheitä. Käsitteistö horjuu ja vakiintuneiden termien sijasta käytetään kummallisia väännöksiä (tyyliin ”valonpimennys”), asiat esitetään siten, että ne ymmärtää väärin (Auringon ”voimakkaan painovoiman veto” ei pidä planeettoja ”paikoillaan”), ja usein faktoissa ollaan aivan metsässä (Marsin ”Mariner-laakso” ei ole syntynyt, kun ”virtaava vesi kuluttaa kiveä miljoonia vuosia” eikä Aurinko todellakaan polta vetyä).

Alkuteoskaan ei ole virheetön, koska mokia on tehty tekstin lisäksi myös piirroskuvituksessa: niitä ei pysty suomennosvaiheessa mitenkään korjaamaan. Esimerkiksi voi ottaa piirroskuvan, jonka otsikkona on ”Planeettojen suhteellinen koko”. Siinä Jupiter on läpimitaltaan vain noin viisinkertainen Maahan verrattuna, kun sen halkaisija on todellisuudessa melkein 11 kertaa Maata suurempi.

Sen sijaan tekstissä olevat virheet olisi pitänyt korjata. Esimerkiksi tuon ”Mariner-laakson” rinnastuksen Grand Canyoniin olisi voinut helposti muuttaa vertaukseksi Itä-Afrikan hautavajoamaan, joka on syntynyt samalla tavalla kuin Vallis Marineris.

Kustannusalalla työskennellessäni yritin tolkuttaa tekstiä loputtomiin hioville kirjailijoille ja suomentajille, että täydellistä ja täydellisen virheetöntä kirjaa ei ole vielä julkaistu – eikä ikinä julkaistakaan. Samaan hengenvetoon tähdensin, että siitä huolimatta pitää yrittää löytää ja korjata kaikki virheet.

Olen itse yrittänyt noudattaa edesmenneeltä Risto Vartevalta saamaani hyvää neuvoa: suomennoksen pitää olla aina alkuteosta parempi. Jos alkutekstissä on virheitä, ne korjataan. Jos alkuteksti on kömpelöä ja kökköä, se kirjoitetaan suomeksi sujuvalla kielellä. Jos alkutekstiä on vaikea ymmärtää, asiat esitetään ymmärrettävässä muodossa.

Tämän kirjan kohdalla virheitä ei ole korjattu, vaan niitä on päinvastoin tehty tukuttain lisää. Kieli ei myöskään ole sujuvaa eikä asioita ole esitetty ymmärrettävässä muodossa. Kirjan mukaan esimerkiksi ”Auringonpimennys tapahtuu, kun Aurinko joutuu Kuun varjoon, jolloin Aurinkoa ei näy Maasta”. Olisi mielenkiintoista tietää, minkä tässä on ajateltu olevan se valonlähde, jonka suhteen Aurinko joutuu Kuun varjoon.

Tekosyyksi ei riitä tietämättömyys (Mark Brake on takakansitekstin mukaan ”ollut tiedeasiantuntijana NASAn lisäksi televisiossa, radiossa ja elokuvissa”) tai se, että faktojen tarkistaminen olisi kauhean työlästä. Se on nykyisin – kiitos internetin – tavattoman paljon helpompaa kuin esimerkiksi 80-luvun puolivälissä, jolloin tein ensimmäisen suomennokseni. Silloin tiedot piti etsiä lehdistä ja kirjoista, joihin piti päästä fyysisesti käsiksi kirjastoissa tai arkistoissa.

Alan harvoja kirjoja ei ole kiva haukkua, mutta valitettavinta tässä on se, että Braken kirja on tarkoitettu lapsille, takakannen suosituksen mukaan 7-12-vuotiaille. Onko tässä nyt ajateltu, että faktojen suhteen ei tarvitse olla kovin tarkka, kun kyseessä on ”pelkkä” lastenkirja? Toivottavasti ei.

Ehkä ammun kärpästä tykillä, onhan kyseessä vain yksittäinen kirja, joka tulee nyt lytättyä totaalisesti. Onko kurmootus kohtuutonta? Aristoteelista draaman kaarta noudattaakseni palaankin nyt noihin alun yleisempiin pohdintoihin – joiden takia olen niin suivaantunut tästä nimenomaisesta kirjasta.

Lasten tietokirjoja on tietyllä tavalla helpompi kirjoittaa, koska lapsilla ei vielä ole luutuneita käsityksiä, jotka pitää ensin oikaista ja vasta sitten voi mennä itse asiaan ja kertoa nykykäsitysten mukaiset faktat. Lapsille voi kirjoittaa mitä tahansa ja he uskovat sen. Ja juuri siksi kirjoittajan ja myös suomentajan vastuu on lasten tietokirjoja tehdessä paljon suurempi. Faktojen on oltava täsmälleen oikein.

Ei vähän sinnepäin tai ei sinnepäinkään, kuten monin paikoin tässä kirjassa.

Planck sulki mikroaaltokorvansa Jari Mäkinen Pe, 25/10/2013 - 14:09
Planck sulki mikroaaltokorvansa

Tähtitaivaan mikroaaltotaustasäteilyä havainnut Planck-teleskooppi sammutettiin 23. lokakuuta toimittuaan pari vuotta suunniteltua pitempään. Planckin tieteellinen johtaja Jan Tauber lähetti satelliittiin viimeisen käskyn, jolla Planck käänsi itsestään peruuttamattomasti virran pois päältä. Jo sitä ennen lennonjohto oli komentanut Planckin käyttämään ohjausrakettimoottoreitaan siten, että sen polttoainetankit tyhjenivät, jotta polttoaineen mahdollisesta räjähdyksestä joskus tulevaisuudessa ole vaaraa.

Planck ei kiertänyt Maata, eikä se siten tule putoamaan alas, vaan se etääntyy parhaillaan Maasta Aurinkoa kiertävällä radalla. Se teki havaintojaan ns. Lagrangen pisteessä noin 1,5 miljoonan kilometrin päässä Maasta, joten tästä eteenpäin teleskooppi on ikään kuin kaukana meistä avaruudessa vapaasi oleva avaruusromu; sen sijainti tiedetään, eikä se siten tule olemaan uhka meille tai muille avaruusaluksille ainakaan tuhansiin vuosiin.

Havaintopaikalleen Planck laukaistiin vuonna 2009 yhdessä Herschel-infapunateleskoopin kanssa. Ne nousivat avaruuteen Ariane 5 -kantoraketilla ja lensivät erikseen samoille seuduille Lagrangen pisteeseen numero 2 (tai pikemminkin kiertämään tätä laskennallista paikkaa, missä Maan ja Auringon vetovoimat ikään kuin kumoavat toisensa).

Kumpikin teleskooppi käytti havaintolaitteidensa jäähdyttämiseen nestemäistä heliumia, ja kummankin tapauksessa helium riitti lähes tuplasti arvioitua pitempään. Kumpikin laite oli myös täysin riippuvaista heliumista, sillä ilman sitä havaintojen laatu kärsi niin paljon, ettei kallista teleskooppia kannattanut pitää toiminnassa – vaikka muuten laitteet olivatkin toiminnassa.

Planckissa on kaksi mikroaaltosäteilyä vastaanottavaa laitteistoa, matala-aaltopituinen LFI ja korkeammilla aallonpituuksilla toimiva HFI, joista HFI:n helium loppui ensin tammikuussa 2012. Sen jälkeen LFI jatkoi toimintaansa, ja ennätti tekemään peräti viisi täyttä taivaan kartoitusta ennen kuin sen helium pihisi loppuun nyt syksyllä. Tieteelliset havainnot lopetettiin 3. lokakuuta ja havaintolaitepaketista virta sammutettiin jo 19. lokakuuta.

Lokakuun aikana satelliittia valmisteltiin sammuttamiseen. Olennaisinta oli ohjata se radalle, millä se ei ole vaaraksi kenellekään.

Kyseessä oli samankaltainen toimenpide kuin Herschelillä aiemmin. “Nämä olivat kaksi ESAn ensimmäistä avaruusalusta Lagrangen pisteessä 2, joka on hyvin tärkeä paikka tieteellisesti", kertoo Andreas Rudolph, ESAn avaruusohjauskeskus ESOCissa tähtitedelennoista vastaava lennonjohtaja. Piste sijaitsee Maasta katsottuna poispäin Auringosta, joten se sopii erinomaisesti juuri tähtitieteellisiin havaintoihin.

"Planck 'passivoitiin' ja ohjattiin lentoradalle, mikä pitää sen Aurinkoa kiertävällä radalla poissa Maan ja Kuun läheisyydestä ainakin tuhansien vuosien ajan."

Ensin teleskooppi ohjattiin 9. lokakuuta pois Lagrangen pisteen luota Aurinkoa kiertävälle radalle kaksipäiväisellä, monimutkaisella manöveerillä. Radallaan Planck alkoi etääntyä hitaasti Maasta.

Sen jälkeen systeemejä sammutettiin vähitellen ja Planckin radiolähettimet kytkettiin pois päältä ja varmistettiin, ettei Planck enää koita ottaa yhteyttä. Tämä on hyvin tärkeää siksi, että luotain saattaisi joskus saada virtaa aurinkopaneeleihinsa ja alkaa lähettää, mikä voisi häiritä myöhempiä avaruusaluksia.

Lopulta 23. lokakuuta Jan Tauber painoi vertauskuvallisesti nappia, joka käynnisti ennalta laaditun ohjelman, mikä kytki kaikki Planckin laitteet pois päältä.

Kyseessä oli herkkä hetki, sillä Tauber ja koko tutkijajoukko oli tehnyt työtä Planckin parissa 1990-luvun lopusta alkaen ja toimintakuntoisen, mutta heliuminsa käyttäneen teleskoopin hylkääminen on aina vaikeaa.

Planck jättää jälkeensä hienon perinnön: maailman tarkimman ja parhaan kartan taivaan mikroaaltotaustasäteilystä, mikä on ikään kuin kaiku maailmankaikkeuden alkupamauksesta. Suomalaisille Planck oli erityisen tärkeä, sillä paitsi että suomalaistutkijat olivat - ja ovat edelleen - tärkeässä roolissa havaintotulosten käsittelyssä, niin Suomessa tehtiin Planckiin osa sen huipputarkoista vastaanottimista.

Tiedetuubi kirjoitti Planckista ja sen työstä viime maaliskuussa: Lähes täydellinen maailmankaikkeus?

3D-tulostus mullistaa avaruuttakin Jari Mäkinen Pe, 11/10/2013 - 14:24
3D-tulostus mullistaa avaruuttakin

Euroopan avaruustekniikkakeskuksen ESTECin käytävälle oli ilmestynyt omituinen betonikappale. Erilaisten avaruuslaitteiden ja satelliittimallien, joita avaruuskeskuksen seinillä ja käytäville on aseteltu ihmeteltäväksi, keskellä on nyt möhkäle betonia – siinä aivan Hubblen aurinkopaneelin vieressä.

Kyse ei kuitenkaan ole mistä tahansa palasesta betonia, vaan puolitoista tonnia painava mallikappale mahdollisen kuuaseman rakennusmateriaalista, joka on tehty Kuun pinta-ainetta muistuttavasta seoksesta 3D-tulostusmenetelmällä.

Juuri tästä kappaleesta ja sen tekemiseen käytetystä tekniikasta kerrottiin viime keväänä, kun ESA julkaisi tutkimuksen uudesta tavasta tehdä kuuasema aikaisempaa kätevämmin ja edullisemmin. Ryhmä rakennus- ja avaruusalojen asiantuntijoita, muun muassa tunnettu arkkitehtiyhtiö Foster + Partners, olivat lähestyneen aseman rakentamisen ongelmaa aivan uudesta näkökulmasta: ei mitään esivalmistettuja sylintereitä, jotka laukaistaisiin ensin kiertoradalle, hilattaisiin sieltä Kuun ympärille ja laitettaisiin laskeutumaan sen pinnalle, vaan koko asema voitaisiin tehdä paikan päällä, paikallisista materiaaleista.

Kätevin tapa valmistaa rakennuspalasia on käyttää sovellettua 3D-tulostintekniikkaa. Erikoisprintterin lähettäminen olisi suhteellisen edullista, ja sillä voitaisiin tehdä juuri sellaisia osia, mitä tarvitaan. Kun eri muotoisten, sisäosiltaankin monimuotoisten osien tekeminen olisi mahdollista, voitiin aseman suunnittelussakin ottaa uusia vapauksia.

Tuloksena oli kupolirakenne, joka haudataan Kuun pinnan alle. Sen "tiilet" olisivat lintujen luiden tapaan sisältä osittain onttoja, ohuiden, tarkasti laskettujen ja sijoiteltujen tukiranteiden täyttämää tyhjää tilaa, jolloin kappaleet olisivat lujia sekä kestäviä, mutta myös kevyitä ja niiden tekeminen vaatii vähän ainetta. Paitsi että muoto voitaisiin tehdä aivan millaiseksi halutaan, myös sisältä, olisi materiaalihävikki minimaalinen.

Brittiyhtiö Monolite onnistui valmistamaan juuri halutunlaisia rakennuspalasia D-Shape -tulostimellaan, joka on suunniteltu jopa kuusi metriä halkaisijaltaan olevien maanpäällisten rakennuskappaleiden valmistamiseen. Se tuottaa hiekkamaisesta raaka-aineesta betonia sekoittamalla siihen sidosainetta ja ruiskuttamalla aineen pienempien 3D-tulostinten tapaan kerros kerrokselta haluttuihin kohtiin tietokoneen ohjaamana.

Itse asiassa jättibetoniprintteriä on käytetty rakennusten sijaan toistaiseksi eniten keinotekoisten koralliriuttojen ja taideteosten tulostamiseen.

Kuun tapauksessa betoni olisi kuun pintaregoliittia, mihin lisätään ensin magnesiumoksidia ja tulostettaessa suolaa, mikä muuttaa aineen kivenkovaksi. Laitteella voisi tulostaa yhden kuuaseman periaatteessa viikossa. Huimaa!

Avaruus tuo uutta maanpäälliseenkin 3D-tulostukseen


Samalla kun kolmiulotteinen tulostus leviää Maan päällä, ollaan myös avaruusasemalle lähettämässä 3D-printteriä.

Se, että monien yksittäisten varaosien asemalle rahtaamisen sijaan osia voitaisiin tulostaa muovi- tai metalliseoksista siellä tarpeen mukaan on huima askel eteenpäin. Ongelmana avaruudessa on tosin painottomuus, mutta siihenkin on omat ratkaisunsa. Tulevaisuudessa, kun lennetään kauemmaksi ja kaikkien mahdollisten osien pakkaaminen mukaan on hankalaa, on printteri todella suureksi avuksi.

3D-tulostuksen vääntäminen avaruuskelpoiseksi on kehittänyt tekniikkaa myös maanpäällisessä käytössä paremmaksi. Varsin voimakasta tämä kehitys on ollut Euroopan avaruusjärjestön teknologiaosastolla, missä on kehitetty aivan uusi, mullistava tapa tehdä metallisia, hyvin vaikeita olosuhteita kestäviä 3D-tulosteita. Hanke on osoittautunut niin kiinnostavaksi kaupallisesti, että sen ympärille on kerätty ESAn, Euroopan unionin ja alan teollisuusyritysten yhteinen AMAZE-projekti.

Tätä monessa mielessä vallankumouksellista tekniikkaa esitellään Lontoon Tiedemuseossa nyt lokakuun 15. päivänä ja Tiedetuubissa kerrotaan luonnollisesti heti päivän annista.

Myös muut tiedotusvälineet ovat tervetulleita tilaisuuteen: kutsu sinne on ESAn nettisivuilla.

Miksi ihmeessä menisimme Marsiin? Markus Hotakainen Ti, 08/10/2013 - 12:53
Miksi ihmeessä menisimme Marsiin?

Avaruus julistettiin valloitetuksi, kun ihminen astui ensimmäisen kerran Kuun kamaralle heinäkuussa 1969. Sittemmin ylväästä lausumasta on jouduttu tinkimään, sillä oma kiertolaisemme lukeutuu kosmisessa skaalassa aivan lähinaapurustoomme.

Jos maailmankaikkeutta tai vaikkapa vain omaa Aurinkokuntaamme ajatellaan aavana merenä, käynti Kuussa vastaa korkeintaan varpaiden kastamista arastelevasti veteen, kenties vain varovaista astumista laiturille.

Apollo-lentojen luontevana jatkona piti oleman lento Marsiin. Se ei kuitenkaan toteutunut, sillä loput kuulennotkin peruttiin, kun meuhkaavan median, hetkeksi innostuneen kansan ja rahoituksesta päättävien poliitikkojen kiinnostus pölyisellä pallolla pomppimista kohtaan lopahti.

Marsia ei kuitenkaan unohdettu kokonaan. Suunnitelma toisensa jälkeen näki päivänvalon, mutta vaipui yleensä melkein saman tien unholaan. Orastava innostus hyytyi viimeistään siinä vaiheessa, kun kaavailuille laskettiin hinta. Haaveet elivät, mutta todellisuus tuppasi tappamaan ne.

Viisivuotiaasta asti avaruuslentoihin liki kritiikittömän innostuneesti suhtautuneena alan harrastajana olen viime aikoina alkanut miettiä miehitetyn Mars-lennon mielekkyyttä. Mikä olisi riittävä motiivi kymmeniä tai todennäköisemmin satoja miljardeja maksavalle hankkeelle?

Kuu ”valloitettiin”, koska suurvaltojen tavoitteena oli päihittää toisensa kaikilla mahdollisilla rintamilla, myös avaruudessa. Yhdysvallat halusi selviytyä kuukilvassa voittajana hinnalla millä hyvänsä – ja suunnilleen sen verran Apollo-ohjelma tuli maksamaan.

Ovatko poliittiset syyt riittävän painavia ihmisen lähettämiseksi toiselle planeetalle? Pystyttämään kansakunnan valtiollisen symbolin punaiseen hiekkaan osoitukseksi siitä, että ”me ehdimme ensin”? Tuskin.

Entä tekniikan kehitys? Kuulentojen myötä saatiin arkikäyttöön monia sellaisia asioita, jotka ilman niitä olisivat pysyneet vain tutkijoiden ilona tai jääneet ehkä kokonaan keksimättä. Eikö mittavalla Mars-projektilla voisi olla samanlaisia seurauksia?

Kenties, mutta halvemmaksi tulisi kehittää vain ne tekniset uutuudet ja jättää sotkematta soppaan ihmisen lähettämistä satojen miljoonien kilometrien etäisyydelle – ja saamista sieltä ehjin nahoin takaisin.

Miten olisi tiede? Kuten edellisessä blogitekstissäni totesin, Apollo-lennot auttoivat selvittämään Kuun synnyn arvoituksen. Samalla ne osaltaan osoittivat, että ihminen on erinomaisen tehokas havainnoitsija. Pikaisella ja puutteellisella koulutuksella astronauteista saatiin leivottua varsin päteviä kenttägeologeja, puhumattakaan Apollo 17 -lennolle osallistuneesta Harrison Schmittistä, joka oli oikeastikin geologi ja tutkija.

Vuonna 1997 Marsiin laskeutunut Sojourner-kulkija käytti suunnilleen lentopallokentän kokoisen alueen tutkimiseen kolme kuukautta. Tehtävään koulutetulta astronautilta homma hoituisi samalla tarkkuudella muutamassa tunnissa, korkeintaan päivässä tai parissa. Eikö siinä olisi riittävästi kannustinta lähettää ihminen Marsiin?

Punaisella planeetalla tallustelee ihmisiä suurella todennäköisyydellä vasta parinkymmenen vuoden kuluttua – elleivät yksityisen sektorin suunnitelmat pikaisemmasta aikataulusta toteudu, mitä uskallan epäillä. Luotaintekniikka on kehittynyt suunnilleen samassa ajassa mikroaaltouunin kokoisesta Sojournerista, jota ohjattiin 3D-kakkuloiden, virtuaalimallin ja komentosarjojen avulla, Morris Minille pärjäävään Curiosityyn, jonka ohjausjärjestelmä kykenee itsenäisesti vertailemaan eri kulkureittejä ja valitsemaan niistä turvallisimman.

Millaisiksi robotiikka ja tekoäly ehtivät kehittyä siihen mennessä, kun ihminen vihdoin saadaan Marsiin? Silloin emme välttämättä enää olekaan niin ylivoimaisia kulkijoihin verrattuna, vaan tekniikan keinoin voidaan päästä liki samoihin tuloksiin kuin ihmisen osaamisen avulla.

Kerettiläisestä skeptisyydestäni huolimatta olen silti varma, että jonakin päivänä ihminen astuu Marsin pinnalle. En vain ole ollenkaan varma miksi.

[Ursan Avaruustuubi]

Painovoimatutkija putoaa pian alas Jari Mäkinen Ke, 02/10/2013 - 18:01
Painovoimatutkija putoaa pian alas

.
Maapallon painovoimakenttää maaliskuusta 2009 mitannut ESAn GOCE-satelliitti on päättämässä toimintaansa avaruudessa. Se suunniteltiin toimimaan alun perin vain 20 kuukauden ajan, mikä olisi riittänyt hienosti siihen, että GOCE olisi voinut mitata erittäin tarkasti painovoimakiihtyvyyden joka puolella planeettaamme.

Koska niin satelliitti itse kuin sen mittalaitekin, niin sanottu gravimetri, toimivat moitteetta, annettiin GOCEn hyrrätä niin kauan kuin mahdollista.

Syy, miksi GOCE joutuu nyt lopettamaan toimintansa, on hyvin yksinkertainen: siltä loppuu polttoaine.

Satelliitti on kiertänyt Maata hyvin matalalla kiertoradalla, noin 225 kilometrin korkeudella, jotta sen mittaukset olisivat mahdollisimman hyviä. Tuolla korkeudella ilmakehä on jo kaukana alapuolella, mutta siellä on silti hyvin ohutta kaasua, mikä hidastaa koko ajan satelliitin kiertoratanopeutta. Jotta se pysyisi oikealla radallaan, tulee vauhtia pitää yllä pienellä rakettimoottorilla, joka puskee satelliitille lisää nopeutta saman verran kuin ilmanvastus sitä vähentää.

Jotta ilmakehän ripeiden aiheuttama ilmanvastus olisi mahdollisimman pieni, muotoiltiin GOCE myös pitkäksi, aerodynaamiseksi puikulaksi. Se näyttää lähes yliäänilentokoneelta siipimäisine aurinkopaneeleineen ja pienine peräsimineen. Rakettimoottorina GOCEssa oli erittäin polttoainetaloudellinen ionimoottori, eli sähköinen työntövoimalaite, joka kiihdyttää aurinkopaneeleista tulevalla virralla xenon-kaasua hyvin suureen nopeuteen.

Mukaan oli pakattu 40 kiloa xenonia, joka onnistuneen lennonsuunnittelun ja pihin ajotavan ansiosta on riittänyt paljon kaavailtua pitempään. Mutta nyt xenon-tankki alkaa olla siis tyhjä, ja lokakuun puolivälissä löpö loppuu. Niinpä GOCE ei enää pysty pitämään yllä tarvittavaa ratanopeutta. Se alkaa vajota radaltaan alaspäin, ja mitä alemmas se tulee, sitä voimakkaammin ilmakehä ottaa siitä otettaan, kunnes lopulta se putoaa maahan.

GOCE on noin 5,3 metriä pitkä ja metrin halkaisijaltaan oleva putkilo, mihin on kiinnitetty pitkittäin rungon suuntaan olevat aurinkopaneelit molemmin puolin. Massaa satelliitilla on hieman yli tonnin verran.

Näin pieni satelliitti tulee tuhoutumaan lähes kokonaan ilmakehän kitkakuumennuksessa, mutta on mahdollista, että muutamat kestävimmät kappaleet selviytyvät osittain tulipätsistä ja putoavat pinnalle saakka.

Näin tapahtuu arvioiden mukaan noin kolmen viikon kuluttua polttoaineen loppumisesta, eli marraskuun alkupuolella. Tarkkaa aikaa ei voi laskea, koska putoaminen riippuu monesta eri tekijästä: tärkein vaikuttava asia on yläilmakehän kaasuntiheys, joka vaihtelee esimerkiksi Auringon aktiivisuuden mukaan. Kun Aurinko on aktiivinen, "nousee" ilmakehä korkeammalle.

GOCE kiertää maapalloa napojen kautta kulkevalla radalla, joten se voi periaatteessa syöksyä alas missäpäin tahansa Maata – myös Suomen yläpuolella. Kun putoamisen ajankohtaa ei voi vielä ennustaa, ei paikkaa, missä GOCE radallaan silloin on, pysty edes arvaamaan.

Se kuitenkin tiedetään, että on erittäin epätodennäköistä, että GOCEn putoava palanen vahingoittaisi ihmisiä, eläimiä tai rakennuksia. Kaksi kolmasosaa maapallon pinnasta on meriä ja maa-alueestakin suurin osa on hyvin harvaan asuttua.

Maahan putoaa joka vuosi noin 40 tonnia ihmisten avaruuteen lähettämiä satelliitteja, laitteita tai muita kappaleita, eikä niistä ole ollut haittaa. Tämä on lisäksi hyvin vähän verrattuna planeettaamme avaruudesta törmäävien luontaisten kappaleiden massaan. On todennäköisempää saada meteoriitti päähänsä kuin joutua GOCEn palasen runtelemaksi!

Vaikka riski onkin häviävän pieni, GOCEn rataa seurataan nyt hyvin tarkasti, ja kun se alkaa vajota alaspäin, tehdään putoamispaikasta jatkuvasti tarkentuvia arvioita. Ja jos on tarpeen, niin vaara-alueelta hätistetään lentokoneet sivummalle ja pelastusviranomaiset nostavat valmiuttaan.

Maapallo on päärynä

GOCEn itsensä keräämät tiedot auttavat myös sen putoamisen arvioinnissa, sillä yli neljä vuotta kestäneen mittausrupeaman tärkein tulos on ollut maapallon erinomaisen tarkka painovoimakartta. Nyt tiedämme paremmin kuin koskaan kuinka suuri on painovoiman veto eri puolilla planeettaamme ja minkä muotoinen täsmälleen ottaen Maa on.

Yksi konkreettinen tulos on Maan ns. geoidi, eli maapallon laskennallinen pinta, missä vesi ei voi virrata paikasta toiseen, vaan pysyisi täsmälleen paikallaan. Mikäli maapallon pinnalla olisi vain vettä, yksi maailmanlaajuinen valtameri, niin se ottaisi geoidin muodon, mikäli vuorovesiä ja merivirtoja ei olisi olemassa.

Nimi GOCE tuleekin sanoista "Gravity field and steady-state Ocean Circulation Explorer", ja sen keräämien tietojen perusteella voidaan esimerkiksi ymmärtää paremmin merivirtoja, meriveden korkeutta ja jäädynamiikkaa sekä havaittuja, painovoiman vaihtelusta aiheutuvia omalaatuisia vääristymiä satelliittien radoissa.

Koko GOCE-lento, siis satelliitin tekeminen, laukaisu ja operointi, ovat tulleet maksamaan noin 350 miljoonaa euroa. Tuotoksiin verrattuna se on eräs kustannustehokkaimmista tutkimuslennoista.

GOCEn tietoja hyödynnetään myös Suomessa

Geodeettisella laitoksella on sovellettu GOCEn mittaamaa aineistoa korkeusjärjestelmien perustaksi sekä eri maiden korkeusjärjestelmien liittämiseen toisiinsa. Geoidin tarkka määritys auttaa esimerkiksi GPS-mittauksista saatujen korkeuksien muuntamista.

Painovoiman mittaaminen perinteiseen tapaan maan pinnalla vie paljon aikaa, eivätkä havainnot ole kattavia. Kiertoradalta sen sijaan saadaan mittauksia tasaisesti kaikkialta, myös merialueilta, ja tulokset ovat samanlaisia.

Suomalaiset ovat olleet aktiivisesti myös GOCEn teknisellä puolella: Space Systems Finland -yhtiö on ollut päävastuussa satelliitin keskustietokoneen ohjelmistosta. Kyseessä on ikään kuin satelliitin käyttöjärjestelmä, joka pitää satelliitin halutussa asennossa, kerää instrumenttien tuottamat havaintotiedot talteen ja välittää sekä välittömät maakomennot että muistiin ennalta syötetyt ja ajastetut toimintakäskyt tietokoneelle. Ohjelmisto myös raportoi laitteiston tilasta.

Ja aivan pian ohjelmisto tulee myös hallitsemaan GOCEn loppua: viimeiset siitä saatavat radiopiipahdukset ovat suomalaisohjelmiston lähettämiä.

Lue lisää GOCE:sta: GOCE, ESA's Gravity Mission

3+1 teoriaa Markus Hotakainen Ma, 23/09/2013 - 19:22
3+1 teoriaa

"Kuulennot olivat pelkkää rahan haaskausta, tieteen ja tekniikan valjastamista suurvaltapolitiikan vetojuhdiksi." Tämäntyyppistä kritiikkiä esitettiin aikoinaan ja sitä kuulee edelleen toisinaan. Avaruustutkimus on kallista, siitä ei ole epäilystäkään, mutta moneen muuhun – ja turhempaan – asiaan käytetään paljon enemmän rahaa.

Silti voi kysyä, oliko yli 40 vuotta sitten tehdyistä kuulennoista tieteellistä hyötyä? Kyllä oli, vaikka tiede pääsikin mukaan Apollo-ohjelmaan ikään kuin jälkijunassa. Päätökset kuulennoista tehtiin poliittisin perustein, mutta kun Kuuhun kerran oltiin menossa, voisihan siellä jotain tutkimustakin tehdä. Ja sitä myös tehtiin, sillä tutkijoilla oli mielessään monta avointa kysymystä, joihin voitaisiin saada vastaus menemällä Kuuhun.

Yksi keskeinen asia, johon kuulentojen toivottiin tuovan selvyys, oli Kuun synty. Ennen Neil Armstrongin "pientä askelta" tutkijoilla oli pohdittavanaan kolme teoriaa. Yhden mukaan Kuun syntyyn tarvittava aines olisi irronnut vinhasti pyörivästä Maasta nykyisen Tyynen valtameren kohdalta. Toisen mukaan Kuu olisi syntynyt muualla Aurinkokunnassa ja joutunut sitten Maan sieppaamaksi. Ja kolmannen mukaan Maa ja Kuu olisivat muotoutuneet samaan aikaan jo alun perin lähekkäin.

Jokaisessa teoriassa oli ongelmansa, joiden vakavuus vaihteli teoriasta toiseen. Ne eivät siten olleet keskenään ihan yhtä vakavasti otettavia, mutta silti toistensa kanssa kilpailevia. Kuulentojen ja niiden myötä saatavien kivinäytteiden toivottiin vihdoin tekevän selväksi, mikä teorioista olisi oikea. Ja tekiväthän ne: ei mikään.

Tutkijat joutuivat palaamaan piirustuspöydän ääreen ja kehittämään aivan uuden teorian. Tuloksena oli törmäysmalli. Sen mukaan Kuu on syntynyt aineesta, jonka Maahan muinoin törmännyt noin Marsin kokoinen kappale heitti avaruuteen. Osa aineesta jäi Maan läheisyyteen ja muodosti ruhjoutunutta planeettaa ympäröivän kiekon, josta sitten kertyi Kuu.

Tänään ja huomenna Royal Societyssa pidetään Kuun syntyä koskeva tieteellinen kokous. Olin juuri kuuntelemassa Robin Canubin, Southwest Research Instituten tutkijan, esitystä erilaisista törmäysmalleista. Hänen mukaansa nuoreen Maahan ei ehkä törmännytkään viistosti Marsin kokoinen protoplaneetta, vaan kaksi samankokoista, massaltaan Maan puolikasta kappaletta saattoi osua toisiinsa kosmisessa nokkakolarissa. Se selittäisi (yksityiskohtiin menemättä) Maan ja Kuun samanlaiset happi-isotooppisuhteet, mikä on yksi "perinteisen" törmäysmallin ongelmista.

Kolmesta vaihtoehtoisesta teoriasta on siis hypätty täysin uuden teorian erilaisiin versioihin. Näinhän tiede etenee, siinä ei ole mitään ihmeellistä. Mutta olisiko Kuun synnyn tutkimus edennyt tällä tavalla, ellei kuulentoja olisi tehty? Ennustaminen on tunnetusti vaikeaa, etenkin tulevaisuuden, vaihtoehtoisesta tulevaisuudesta puhumattakaan, joten emme tiedä vastausta tähän kysymykseen. Tiedämme vain, miten tutkimus eteni kuulentojen seurauksena.

Edellisessä blogitekstissäni parjasin klassista fundeeraamista ainoana maailmankuvan muodostamisen välineenä. Nyt kyseenalaistan häikäilemättä myös pelkän katselun: aivan kaikkea ei saada selville ainoastaan "katselemalla" (lainausmerkit viittaavat siihen, että havaintoja pystytään nykyisin tekemään kaikilla aallonpituusalueilla, jotka valoa lukuunottamatta ovat ihmissilmille näkymättömiä). Toisinaan ratkaisu löytyy vasta menemällä paikan päälle.

Maailmankaikkeus ja itse asiassa pelkkä Aurinkokuntakin on kuitenkin niin valtaisan suuri, ettei "paikan päälle" niin vain mennä. Toistaiseksi ihminen on päässyt vasta Kuuhun saakka, mutta sekin osoittautui tieteen kannalta hyödylliseksi. Ja se oli mahdollista monien turhana ja turhan kalliina pitämän avaruustutkimuksen ansiosta.

[Ursan Avaruustuubi]