Vuosi 2025 alkaa revontuli-ilottelulla Jari Mäkinen Ke, 01/01/2025 - 21:59
Revontulia Sodankylässä 1.1.2025. Kuva: Jari Mäkinen
Revontulia Sodankylässä 1.1.2025. Kuva: Jari Mäkinen
Aurinko 1. tammikuuta 2025 GOES-16 -satelliitin SUVI-instrumentin näkemänä.

Aurinko pökkäsi kohti maapalloa uudenvuodentulituksen, joka jatkunee vielä usean päivän ajan. Kunhan vain olisi selkeää!

Auringossa tapahtui 28.-29. joulukuuta useita purkauksia, joiden seurauksena planeettainväliseen avaruuteen ryöpsähti massapurkauksia. Kaksi niistä suuntasi kohti maapalloa, ja saivat odotetusti aikaan G4-luokan avaruusmyrskyn.

Komeita revontulia nähtiinkin paitsi Suomessa, niin myös muissa pohjoismaissa, Kanadassa ja Yhdysvalloissa – oikeastaan kaikkialla pohjoisella pallonpuolella revontuliovaalin alapuolella, missä vain oli selkeää.

Taivaan ilotulitus löi vertoja raketeille ja muille maanpäälisille värivaloille.

Auringon koronassa olevat aukot saavat nyt aikaan sen, että revontulia aikaansaavia varattuja hiukkasia puskee kohti Maata myös lähipäivinä tavallista enemmän. 

Tilannetta kannattaa seurata paitsi katsomalla itse taivaalle, niin myös Ilmatieteen laitoksen Avaruussääkeskuksen nettisivujen kautta.

Aurinko 1. tammikuuta 2025 GOES-16 -satelliitin SUVI-instrumentin näkemänä.

Aurinko 1. tammikuuta 2025 GOES-16 -satelliitin SUVI-instrumentin näkemänä.

Revontulia voi katsoa myös kotoa Oulun yliopiston Sodankylän geofysiikan observatorion uuden Sky-I -kameraverkoston kautta. Siitä tulee juttu Tiedetuubiin lähiaikoina (olemme jo jutuntekohousut jalassa paikan päällä Sodankylässä, missä otsikkokuva on otettu 31.12.204 ja 1.1.2025 välisenä yönä).

Alla tuorein kameraverkoston kuva.

Parker-luotain lähes sukelsi Aurinkoon – ja selvisi hengissä

Parker-aurinkoluotain Nasan piirroksessa
Parker-aurinkoluotain Nasan piirroksessa
Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Nasan Aurinkoa tutkiva luotain liippasi joulun aikaan hyvin läheltä tutkimuskohdettaan, ja selvisi tästä lähes kamikaze-tyyppisestä tempusta hengissä (kuten odotettiinkin).

Aurinkoa tutkii parhaillaan kaksi luotainta lähietäisyydeltä: Nasan Parker Solar Probe ja Euroopan avaruusjärjestön Solar Orbiter. 

Kumpikin näistä kiertää Aurinkoa planeettojen tapaan radoilla, jotka tuovat ne aina välillä hyvin lähelle Aurinkoa. Koska luotaintlen tutkimuslaitteet ja lentoradat on suunniteltu toisiaan täydentäviksi, hoitaa Nasan luotain lähemmän tutkimisen ja eurooppalaisluotain katselee kauempaa.

Nyt jouluaattona 2024 Parker-luotain teki toistaiseksi kaikkein läheisimmän Auringon ohilennon. Kello 13.53 Suomen aikaa sen etäisyys Auringon pinnasta oli vain 6,1 miljoonaa kilometriä.

Koska Auringon halkaisija on noin 1,4 miljoonaa kilometriä, tapahtui ohilento hyvin läheltä.

Auringolla ei ole kiinteää pintaa, vaan höttöisä välialue, missä turbulenttisen, kuuman kaasun tiheys muuttuu noin 500 kilomerin paksuisessa kerroksessa läpinäkyväksi. 

Tuon "pinnan" päällä on laaja kaasukehä, jota kutsutaan koronaksi. Silläkään ei ole tarkkaa yläpintaa, vaan se vain hiipuu vähitellen avaruuteen muuttuen aurinkotuuleksi. Karkeasti koronan tiiveimmät osat kurottavat kuitenkin noin kahdeksan miljoonan kilometrin päähän Auringon näkyvästä pinnasta.

Parker siis hujahti nyt koronan lävitse – kuten se teki jo edellisilläkin kerroilla, kun se on tullut radallaan lähelle Aurinkoa. Luotain kiertää Auringon noin 88 vuorokaudessa, ja syyskuusta 2023 alkaen se on ollut perihelissä (ratansa Aurinkoa lähimmässä kohdassa) noin 7,26 miljoonan kilometrin päässä.

Ratansa kaukaisimmassa kohdassa luotain on etääntyy Auringosta Venustakin kauemmaksi. Itse asiassa Venusta käytettiin hyväksi radan muuttamiseen tätä läheisintä ohistusta varten marraskuun 6. päivänä, jolloin se ohitti Venuksen vain 317 kilometrin etäisyydeltä – siis lähes sen pilvipintaa hipoen.

Tämänhetkisen lentosuunnitelman mukaan Parker tekee vielä neljä lähiohitusta (22. maaliskuuta, 19. kesäkuuta, 15. syyskuuta ja 12. joulukuuta) ennen kuin sen ensisijainen tehtävä päättyy.

Jos luotain on näiden jälkeen vielä toimintakuntoinen, sen todennäköisesti annetaan jatkaa vielä tutkimuksiaan. Toimivaa ja ainutlaatuisia havaintoja tekevää luotainta ei kannata sammuttaa.

Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Aurinko lämmittää luotainta erittäin voimakkaasti lähiohituksen aikana. Siihen kohdistunut paahde oli nyt joulu aikaan noin 457 kertaa voimakkaampi kuin on Auringon lämpöteho täällä maapallon luona. 

Siksi Parker-luotaon on suojattu 2,3 metriä halkaisijaltaan olevalla 11,4 cm paksulla lämpösuojalla, joka kestää noin 1370°C:n lämpötilan ja auttaa pitämään luotaimen sisällä olevat laitteet alle 30°C:n lämpötilassa.

Lähiohituksen aikana Aurinko itse häiritsee niin voimakkaasti yhteydenpitoa luotaimeen, että siihen ei voitu olla yhteydessä. Se oli ohjelmoitu tekemään ennalta tutkimuksensa ja ottamaan yhteyttä pahimman kuumennuksen jälkeen 27. joulukuuta.

Ja yhteys onnistuttiin palauttamaan. Tietojen lataaminen tältä jouluiselta ohilennolta alkaa aikaisintaan 1. tammikuuta uuden vuoden puolella.

Matkaan luotain lähetettiin elokuussa 2018.

Yllätysten joulukalenteri: päivän luku on 147 165 829 km

Talvipäivää Ounasvaaralla. Kuva: Jari Mäkinen
Talvipäivää Ounasvaaralla. Kuva: Jari Mäkinen
Maapallon rata Auringon ympärillä

Tänään 21.12. on talvipäivänseisaus, eli päivä on lyhimmillään täällä pohjoisella pallonpuolella ja yö pisimmillään. Tähtitieteellinen talvi alkaa, mutta yllättäen maapallo onkin lähimmillään Aurinkoa näinä aikoina!

 

Vuodenajat ja maapallon vuotuinen kierto Auringon ympäri eivät ole suoraan tekemisissä keskenään.

Maan rata on lähes ympyrä, joten Auringon Maahan kohdistama lämmitysteho ei vaihdu vuoden kuluessa olennaisesti. Vähän kyllä, mutta ei niin paljoa, että se vaikuttaisi vuodenaikoihin.

Sen sijaan syynä on maapallon pyörähdysakselin kaltevuus, tällä haavaa noin  23,5°. Juuri tänään talvipäivänseisauksen aikaan akseli osoittaa poispäin Auringosta, ja klo 11.20 Suomen aikaa akseli on täsmälleen poispäin. 

Pohjoisella pallonpuolella yö on pisimmillään, eikä napapiirin pohjoispuolella Aurinko nouse lainkaan. Napapiiri sijaitsee tuon 23,5° etelään pohjoisnavalta, eli leveyspiirillä 66,5°. Auringon keskipiste näkyisi siellä keskipäivällä talvipäivänseisauksen aikaan horisontissa, jos ilmakehä ei taittaisi Auringon valoa.

Luonnollisesti myös etelässä on napapiiri, kohdassa 66,5° eteläistä leveyttä. Sen eteläpuolella on näinä aikoina yötön yö, eli Etelämantereella nautitaan jatkuvasta päivänpaisteesta.

Seisausten ajankohdat on nimetty pohjoisen pallonpuolen mukaan, joten kesäpäivänseisauksen aikaan täällä pohjoisessa tilanne on juuri päinvastainen: yö on pisimmillään eteläisellä pallonpuolella ja päivä pisimmillään täällä pohjoisessa. Maapallon akseli osoittaa kohti Aurinkoa.

Kevätpäivän- ja syyspäiväntasausten aikaan Aurinko on suoraan sivulla, joten niiden aikaan päivä ja yö ovat yhtä pitkät joka puolella rakasta kotiplaneettaamme.

Maapallon akselin kaltevuus muuttuu noin 41 000 vuoden jaksoissa. Muutos on tosin hyvin pientä, sillä kaltevuus soutaa välillä 22° – 24°. 

Myös akselin suunta Auringon suhteen muuttuu hitaasti, eli seisausten ja tasausten ajankohdat siirtyvät. Muutosjakson pituus on 19 000 – 23 000 vuotta.

Tällä hetkellä maapallo on lähimpänä Aurinkoa pohjoisen pallonpuoliskon keskitalven aikaan, mutta runsaat 10 000 vuotta sitten näin oli keskikesällä.

Maan rata Auringon ympärillä on lähes ympyrä, mutta ei aivan täsmälleen, sillä etäisyys vaihtelee 147 ja 152 miljoonan kilometrin välissä. 

Lähimpänä Aurinkoa olemme 4. tammikuuta ja kauimpana 4. heinäkuuta.

Juuri tänään maapallo on 147 165 829 kilometrin päässä Auringosta.

Maapallon rata Auringon ympärillä

Maan rata on tarkkaan ottaen ellipsi. Pyörimisakselin kaltevuudella ja suunnalla ei ole tekemistä radan kanssa. Johannes Kepler otti aikanaan käyttöön sanat apheli ja periheli Maan Aurinkoa kiertävän radan kaukaisimmalle ja läheisemmälle pisteelle. Sanat tulevat kreikasta: peri (περί) tarkoittaa läheisintä ja apo (ἀπό) kaukaisinta, ja Aurinko on (ἥλιος eli hēlíos). Samaan tapaan esim. Maata kiertävillä radoilla on apogeum ja perigeum, missä "geum" viittaa maapalloon (Γῆ eli Gē).

 

Jääkaudet seuraavat rataparametrien vaihtelua

Ilmastonmuutoksesta puhuttaessa monet ottavat esiin nämä maapallon radan ja pyörimisakselin suunnan jatkuvat, sykliset muutokset. Niillä ei ole olennaista vaikutusta maapallon kokonaisuudessaan saamaan vuotuiseen säteilymäärään, mutta ne vaikuttavat merkittävästi säteilyn jakautumiseen eri vuodenajoille ja leveyspiireille.

Ilmatieteen laitoksen hieno Ilmasto-opas ja erityisesti sen maapallon rataa sekä pyörimisakselia selittävä artikkeli kertovat hyvin, kuinka taivaanmekaniikka vaikuttaa maapalloon ja synnyttää välillä jääkausia. 

Olennaisinta on se, että tähtitieteellisistä syistä johtuvat lämpötilan muutokset ovat varsin hitaita - muutamia sadasosa-asteita vuosisadassa. Sen sijaan ihmiskunnan kasvihuonekaasupäästöjen vaikutus on lähimmän sadan vuoden aikana useita asteita.

Ilmastonmuutoksen kannalta ei maan pyörimisakselin ja kiertoradan hitaita muutoksia siis tarvitse huomioida – kuten ei myöskään Auringon kirkkauden pieniä muutoksia lyhyillä ja pitkillä aikaväleillä.

Auringon sielunelämä on kuitenkin ihan oman juttunsa väärti.

Yllätysten joulukalenteri: Eppur si muove!

Auringonpilkkuja Galileo Galilein piirroksessa. Kuvat: Istoria e dimostrazioni intorno alle macchie solari / Justus Sustermans/Galleria degli Uffizi
Auringonpilkkuja Galileo Galilein piirroksessa. Kuvat: Istoria e dimostrazioni intorno alle macchie solari / Justus Sustermans/Galleria degli Uffizi

Se liikkuu sittenkin! Näin tarina kertoo Galileo Galilein mutisseen, kun joutui inkvisition edessä perumaan puheensa aurinkokeskisestä maailmanmallista.

Arestiin joutuva tähtitieteilijä ilmaisi näillä sanoilla näkemyksensä, että katolisen kirkon hyväksymästä ja hartaasti vaalimasta ajattelutavasta huolimatta Aurinko ei kierrä Maata, vaan Maa kiertää Aurinkoa: Maa siis liikkuu.

Kyse voi olla tyypillisestä urbaanista legendasta, joka ei pidä kutiaan, mutta faktojen ei pidä antaa pilata hyvää kertomusta. Joskus Galilein sanomaksi väitetty lause on käännetty muodossa ”se pyörii sittenkin”, mikä sopisi hyvin hänen tekemiinsä havaintoihin Auringosta. Päivätähtemme pinnalla näkyi tummia läiskiä, jotka vaelsivat hitaasti Auringon kiekon poikki.

Galilei päätteli – aivan oikein – muodostelmien verkkaisen liikkeen johtuvan Auringon pyörimisestä, mikä oli päätelmänä yhtä mullistava kuin Galilein havainnot kraattereiden kirjomasta Kuusta, Venuksen vaiheista ja Jupiterin neljästä kuusta. Kaikki viittasi siihen, että Maa ei ollut kaikkeuden liikkumaton keskus.

Näkemiensä läiskien olemuksen suhteen Galilei sen sijaan ei osunut oikeaan. Hän arveli niiden olevan lituskaisia pilviä, jotka ovat jollain lailla jumittuneet pinnan suhteen paikoilleen. Siksi niiden liikkuminen paljasti myös Auringon pyörimisliikkeen.

Vanhemmiten Galilei sokeutui, minkä usein oletetaan johtuneen siitä, että hän katseli Aurinkoa kaukoputkensa läpi ilman mitään varotoimenpiteitä. Tuntuu kuitenkin kummalliselta, jos Auringon katselu olisi vaurioittanut Galilein näköaistia vuosikymmenien viiveellä – ja vielä kummassakin silmässä.

Todennäköisenä pidetäänkin, että Galilei kärsi harmaakaihista ja glaukoomasta, joiden oireilun alkaminen liki 70 vuoden iässä ei olisi ollut mitenkään harvinaista.

 

 

Auringossa on käynnissä jatkuva kisa

Protuberanssi (roihupurkaus) Hinode-satelliitin kuvaamana
Protuberanssi (roihupurkaus) Hinode-satelliitin kuvaamana
Protuberanssi

Auringon ”pinnalta” kohoaa protuberansseja, kymmenien- tai jopa satojentuhansien kilometrien korkeuteen kurkottavia plasmakielekkeitä. Atomit ja ionit käyvät niissä kaiken aikaa kiivasta kilpajuoksua. Ionit ovat alati voitolla

Kaasumaisesta olemuksestaan huolimatta Auringon aine ei ole kaasua vaan plasmaa, aineen ”neljättä” olomuotoa. Hiukkastörmäysten ja voimakkaan säteilyn vaikutuksesta atomit ovat menettäneet elektroneja, jolloin ne ovat muuttuneet sähköisesti neutraaleista sähköisesti varatuiksi.

Neutraalit atomit eivät piittaa magneettikentästä, mutta ioneihin se vaikuttaa niiden sähkövarauksen ansiosta. Jopa Auringon kaasukehän hurjassa myllerryksessä on sopivat olosuhteet, jotta siinä voi esiintyä varauksettomia atomeja ja sähköisesti varattuja ioneja yhtä aikaa.

Tutkijat ovat onnistuneet tarkastelemaan yksityiskohtaisesti tällaista osittain ionisoitunutta plasmaa Auringon ainevirtauksissa. Havainnot paljastavat, että strontiumionit kiitävät protuberansseissa 22 prosenttia suuremmalla nopeudella kuin neutraalit natriumatomit.

Protuberanssi

Atomit kuitenkin kirivät sinnikkäästi, sillä ionien vauhti hidastuu: 16 tuntia myöhemmin niiden nopeus oli enää 11 prosenttia suurempi kuin atomien.

”Ilmeisesti strontiumionit antavat neutraaleille natriumatomeille vetoapua”, arvelee kansainvälistä tutkimusta johtanut Eberhard Wiehr Göttingenin yliopistosta.

Se saattaa johtua kasvaneesta hiukkastiheydestä, joka kasvattaa törmäysten todennäköisyyttä. ”Lisäksi protuberanssin virtauksissa on saattanut tapahtua muutoksia 16 tunnin aikana”, Wiehr lisää.

Nopeammat ionit liikkuvat magneettikentän värähtelyjen tahdissa. Sen ansiosta protuberanssi pääsee kohoamaan korkealle, vaikka gravitaatio kiskoo plasmaa kaiken aikaa takaisin Auringon ”pinnalle”. Kentässä esiintyvät vaihtelut johtuvat virtauksista syvemmällä Auringon sisuksissa. Varatut ionit seuraavat orjallisesti magneettikentän vaihteluita, mutta atomit pysyvät mukana vain ionien törmäysten välityksellä.

Tutkimuksesta kerrottiin Göttingenin yliopiston uutissivuilla ja se on julkaistu Astrophysical Journal -tiedelehdessä (maksullinen).

Kuvat: Tenerife Observatory (otsikkokuva) ja Hinode JAXA/NASA

Lisää tarkkuutta avaruussääennusteisiin Markus Hotakainen Ma, 03/09/2018 - 09:33

Sään ennustaminen on haastavaa, mutta avaruussään ennustaminen on vielä haastavampaa. Uudella menetelmällä ennusteet saattavat kuitenkin parantua.

Avaruussää eli sähköiset ja magneettiset olosuhteet Maan lähistöllä kytkeytyy Auringon aktiivisuuteen. Voimakkaissa flare- eli roihupurkauksissa avaruuteen sinkoutuu valtaisia plasmapilviä, joiden sähköiset hiukkaset vaikuttavat Maan magneettikentän ominaisuuksiin. Näkyvimpänä merkkinä näistä geomagneettisista myrskyistä ovat revontulet.

Avaruudessa kiitävien plasmapilvien lisäksi Maan magneettikenttään vaikuttaa jatkuvasti puhaltava aurinkotuuli. Myös se koostuu sähköisesti varatuista hiukkasista, mutta niiden muodostama puhuri on huomattavasti heikompi kuin suurten purkausten aiheuttamat myrskyt.

Pahimmillaan geomagneettiset myrskyt voivat vaurioittaa satelliitteja ja aiheuttaa maanpinnalla laajoja sähkökatkoksia. Siksi niiden ennustaminen lyhyelläkin aikavälillä olisi tärkeää.

Reik Donner Potsdamin ilmastovaikutusten tutkimusinstituutista on ryhmineen kehittänyt uuden menetelmän, jonka avulla magneettikenttää koskevien mittausten perusteella pystytään laatimaan tarkempia ja pitävämpiä ennusteita lähiaikojen geomagneettisista myrskyistä.

Menetelmä perustuu voimakkaassa epätasapainossa olevien järjestelmien analyysiin. Maan magneettikenttä on tällainen järjestelmä, sillä voimakkuudeltaan vaihteleva aurinkotuuli suistaa sen pois tasapainosta. Silloin magneettikentässä voi tapahtua hyvin äkillisiä muutoksia ja rauhallinen tilanne voi äityä hetkessä rajuksi myrskyksi.

Menetelmän perustana on Dst-indeksi (Disturbance storm-time), joka kertoo Maan magneettikentän voimakkuuden keskimääräisen poikkeaman normaaliarvosta. Poikkeamat syntyvät Auringosta tulevien hiukkasten heikentäessä Maan magneettikenttää.

Kun tutkijat tarkastelivat kahta 2000-luvun alussa esiintynyttä geomagneettista myrskyä suhteessa niitä edeltäneisiin flare-purkauksiin, Dst-indeksin arvoista löytyi säännönmukaisuuksia, joiden avulla geomagneettisia myrskyjä koskevia ennusteita voidaan toivon mukaan parantaa.

Tutkijoiden kehittämän ”toistuvuuskaavion” avulla voidaan ennakoida magneettikentän käyttäytymistä ja geomagneettisten myrskyjen syntyä mutta se auttaa myös tunnistamaan erilaiset magneettikentän vaihteluun liittyvät ilmiöt – kaikki muutokset kun eivät saa aikaan voimakasta geomagneettista myrskyä.

Uudesta menetelmästä kerrottiin American Institute of Physics -sivustolla ja tutkimus on julkaistu Chaos: An Interdisciplinary Journal of Nonlinear Science -tiedelehdessä.

Kuva: NASA/SDO

Parker lähti surffaamaan aurinkotuulessa - kuusi asiaa, mitkä Nasan aurinkoluotaimesta kannattaa tietää

Parker lähti surffaamaan aurinkotuulessa - kuusi asiaa, mitkä Nasan aurinkoluotaimesta kannattaa tietää

Luotaimia on lähetetty melkein joka puolelle aurinkokunnassamme jättiläisplaneetoista pieniin komeettoihin saakka, mutta tällaista lentoa ei ole tehty koskaan aikaisemmin: Nasan aurinkoluotain hivuttautuu hyvin lähelle Aurinkoa ja pystyy etenkin tutkimaan Auringosta ulos virtaavaa kaasua erittäin tarkasti. Tämä on oikeasti eräs jännittävimmistä avaruuslennoista pitkiin aikoihin!


12.08.2018

Henkilöauton kokoinen Parker -aurinkoluotain laulaistiin avaruuteen nyt sunnuntaina 12. elokuuta klo 10.31 Suomen kesäaikaa. Matkaan lähtöä yritettiin jo lauantaina, mutta kahden lähtölaskennassa tapahtuneen epätäsmällisyyden tarkistamisen vuoksi sitä jouduttiin lykkäämään ensin hieman yli puolella tunnilla ja sitten toisen kerran sen verran, että laukaisua ei olisi enää ennätetty tehdä ajoissa.

Luotain pitää saada lähetettyä tarkalleen oikealle, hyvin monimutkaiselle radalle, ja siksi sitä ei voi laukaista milloin vain. Jos "laikaisuikkunan" kuluessa ei päästä lentoon, on seuraava mahdollisuus tyypillisesti seuraavana päivänä samaan aikaan – eli kunhan Maa on jälleen samassa asennossa. Näin oli tälläkin kerralla.

Kuten tämä video laukaisusta näyttää, lähti luotain upeasti matkaan. Aikaa tositoimiin on vielä muutama kuukausi, sillä ensimmäisen kerran luotain on lähellä Aurinkoa marraskuussa; niinpä tässä odotellessa on hyvää aikaa katsoa oheiset videot ja lukaista syyt, miksi tästä lennosta kannattaa innostua.

1. Luotain menee hyvin lähelle Aurinkoa

Mikään avaruusluotain ei ole uskaltautunut koskaan näin lähelle Aurinkoa. Lähimmillään se tulee olemaan vain noin kuuden miljoonan kilometrin päässä Auringosta, mikä on vain noin neljä prosenttia Maan ja Auringon välisestä etäisyydestä ja vain noin 8,5 Auringon sädettä. Luotain siis on tuolloin Aurinkoa ympäröivän kuuman kaasun vyöhykkeen, auringonpimennyksien aikaan kauniisti näkyvän hohtavan koronan sisällä, sillä sen katsotaan ulottuvan Auringosta noin 12 Auringon säteen päähän.

Luotain on kuitenkin lähellä hyvin vähän aikaa, sillä lähellä Aurinkoa ollessaan on sen ratanopeus hyvin suuri. Parhaimmillaan nopeus tulee olemaan noin 200 kilometriä sekunnissa, eli noin 720 000 kilometriä tunnissa. Tämä tekee siitä nopeimman koskaan ihmisen tekemän laitteen. Aikaisempi nopeusennätys oli myös Aurinkoa tutkineella luotaimella, Helios-B:llä.

Luotaimen rata Auringon ympärillä tulee olemaan hyvin soikea. Kun lähimmillään rata on hyvin lähellä Aurinkoa, on kaukaisimmillaan se Venuksen radan toisella puolella. Siellä luotaimen nopeus on puolestaan hyvin pieni.

2. Se näkee, miten aurinkomyrskyt syntyvät

Koska Parker tulee siis olemaan hyvin lähellä Aurinkoa, pystyy se kuvaamaan ja mittaamaan Aurinkoa monin eri tavoin sekä paljon paremmin kuin koskaan aikaisemmin millään luotaimella tai maanpäälisillä havaintolaitteilla.

Luotaimessa on WISPR -kameralaitteisto (Wide-field Imager for Solar PRobe), joka tulee kuvaamaan muun muassa Auringon pinnan, niin sanotun heliosfäärin, sekä koronan ilmiöitä ja ennen kaikkea laitteella tullaan seuraamaan aurinkopurkauksia. Vaikka WISPR ei ole kuin kenkälaatikon kokoinen, tulee se todennäköisesti tuottamaan todella hienoja ja kiinnostavia kuvia. Kokoahan ei kameralla täydy tuolla olla paljoa, koska valoa riittää vaikka kuinka.

Auringon tutkimisesta näin läheltä on samalla tähtien tutkimista hyvin läheltä. Aurinkohan on samanlainen kuin tähdet taivaalla, paitsi että se on hyvin lähellä. Kun ymmärrämme sitä paremmin, niin tiedämme enemmän muiden tähtien toiminnasta ja olemuksesta.

3. Se käy Aurinkoa ympäröivän kuuman kaasukehän sisällä

Paitsi että luotain voi kuvata ilmiöitä läheltä, se on myös itse näiden ilmiöiden keskellä: yksinkertaisesti havaitsemalla ympärillään olevia hiukkasia ja mittaamalla sähkö- ja magneettikenttää valtavasti kiinnostavaa tietoa Auringon toiminnasta ja siitä, miten siitä lähtevät hiukkaset muodostavat aurinkotuulen.

Näitä mittauksia varten luotaimessa on neljä instrumenttipakettia: FIELDS (Electromagnetic Fields Investigation) kerää tietoja sähkö- ja magneettikentästä, radioaalloista, plasman (sähköisesti varattujen hiukkasten) tiheydestä sekä elektronilämpötilasta; ISIS (Integrated Science Investigation of the Sun) laskee elektroneja, protoneita ja raskaita ioneita; ja SWEAP (Solar Wind Electrons Alphas and Protons) havaitsee elektronien, protonien ja heliumionien nopeutta, tiheyttä ja lämpötilaa. Laitteet siis tekevät samankaltaisia mittauksia, mutta hieman eri tavoilla ja toisiaan täydentäen.

Koronan olemuksen ymmärtäminen yleisesti on erittäin hyödyllistä myös yleisellä tasolla, koska korona on plasmaa, eli sähköisesti varautunutta, kuumaa kaasua. Esimerkiksi fuusioenergian tutkimuksessa ja toimivan fuusiovoimalan kehittämisessä suurimmat ongelmat liittyvät juuri plasman käyttämiseen ja hallintaan.

4. Se on myös kaukana Auringosta

Parker käy radallaan siis hyvin lähellä Aurinkoa, mutta sen soikea rata vie sen myös Venuksen rataakin kauemmaksi Auringosta. Kaikkia mittauksia voidaan siis tehdä kaikilla etäisyyksillä tällä välillä, joten luotaimen keräämien tietojen avulla saadaan erittäin hyvä kuva siitä, miten aurinkotuuli muodostuu ja kuinka se puhaltaa avaruudessa. Myös aurinkomyrskyjen etenemisestä planeettainvälisessä avaruudessa saadaan varmasti paljon lisätietoa. Tämä auttaa myös ennustamaan sitä, miten Auringon röyhtäisyt vaikuttavat maapalloon.

Suunnitelman mukaan luotain tekee ainakin 24 kierrosta Auringon ympärillä. Seitsemän kertaa luotain ohjataan hyvin läheltä Venusta, jotta rataa voidaan muuttaa painovoimalinkouksella siten, että radan Aurinkoa läheisin piste siirtyy yhä lähemmäs. Kun normaalisti painovoimalinkouksella kiihdytetään luotaimen nopeutta, niin nyt temppua käytetään ratanopeuden hidastamiseen. Luotaimen lento kestää ainakin seitsemän vuotta.

5. Luotain on todella badass

Auringon kuumentava vaikutus kuuden miljoonan kilometrin päässä on noin 520 kertaa voimakkaampi kuin täällä Maan seutuvilla. Se tarkoittaa sitä, että Parkerin täytyy kestää noin 1400°C olevan lämpötila – eikä vain kestää, vaan myös toimia tuossa kuumuudessa!

Tekninen ratkaisu kuumuusongelmaan on massiivinen lämpökilpi, jonka takana luotain piilottelee lähellä Aurinkoa ollessaan. Kilpi on lähes 12 cm paksu ja se on tehty hiilestä sekä hiilikuidusta samaan tapaan kuin esimerkiksi avaruussukkulan musta nokka, joka joutui kestämään maahanpaluussa ilmakehän kitkakuumennuksen vuoksi suurimman lämpökuorman. Vain tutkimuslaitteiden anturit ja kameran linssi, kurottavat ulos kilven takaa, kuten myös sähköä tuottavat aurinkopaneelit, jotka tosin on tehty hyvin kuumuutta kestäviksi. Aurinkopaneelien kulmaa Auringon suhteen muutetaan myös lennon eri vaiheissa: radan kaukaisimmassa osassa ne osoittavat suoraan Aurinkoon, mutta kaikkein lähimpänä oltaessa paneelit asiassa käännetään kokonaan lämpökilven taakse suojaan. Silloin sähkön tuottamiseen käytetään pienempiä, nestejäähdytettyjä lähes peilipintaisia aurinkopaneeleita.

Jos jostain syystä luotaimen asento häiriintyy hyvin lähellä Aurinkoa oltaessa, eikä kilpi ei osoittaisi suoraan Aurinkoon ja Aurinko paistaisi suoraan siihen, niin luotain menisi rikki vain muutamassa sekunnissa. Varmuuden vuoksi kaikkein herkimmät ovat ovat aivan luotaimen keskellä, varmasti lämpökilven suojassa.

Hyvin lähellä Aurinkoa toimiminen vaatii myös hyvin suurta automatiikkaa. Plasma häiritsee radioyhteyttä, ja lisäksi radiosignaalilta kestää noin kahdeksan minuuttia kulkea matka Maan ja Auringon välillä. Parker on eräs autonomisimmista koskaan tehdyistä avaruusluotaimista.

6. Luotain saa parin vuoden päästä seuralaisen

1990-luvulla Nasa ja Euroopan avaruusjärjestö harkitsivat yhteisen aurinkoluotaimen tekemistä, mutta lopulta kumpikin päätti tehdä oman luotaimensa. Eikä vain aurinkoluotaimen, vaan myös hieman samaan tapaan syntyi kaksi erillistä Merkurius-planeettaa tutkivaa luotainta, jotka ovet teknisesti hieman saman kaltaisia aurinkoluotaimen kanssa, koska Merkurius kiertää niin lähellä Aurinkoa, että lämpöhallinta on iso ongelma.

Nasan Merkuriusta tutkinut luotain MESSENGER laukaistiin vuonna 2004 ja se tutki Merkuriusta vuosina 2011-2015. Esan merkuriusluotain BepiColombo laukaistaan vasta nyt lokakuussa matkaan.

Nasan ja Esan aurinkoluotaimet eroavat myös toisistaan samaan tapaan kuin merkuriusluotaimet: MESSENGER oli teknisesti hyvin suoraviivaisesti ja yksinkertaisesti tehty luotain, joka luotti lämpöhallinnassaan paksuun lämpökilpeen, kun BepiColombo käyttää varsin edistyksellistä tekniikkaa lämpötilansa tasaisena pitämiseen ja tekee paljon enemmän erilaisia havaintoja kuin MESSENGER. Esan aurinkoluotain Solar Orbiter hyötyy paljon BepiColombosta ja sen tekniikasta (jonka kehittämiseen meni paljon suunniteltua enemmän aikaa), ja myös se on Parker -aurinkoluotainta "edistyksellisempi" teknisesti.

Vaikka Nasa ja Esa ovat tehneet omat luotaimensa, ne on suunniteltu toisiaan täydentäviksi. Solar Orbiterin rata on myös hyvin soikea, mutta vaikka se pysyttelee hieman kauempana Auringosta, sen ratatasoa muutetaan vähitellen siten, että se pystyy havaitsemaan Aurinkoa noin 34° ylhäältä ja alhaalta. Kun Parker voi tehdä havaintojaan vain planeettojen ratatasossa, saa Solar Orbiter kolmiulotteisen kuvan aurinkotuulesta ja Auringon ilmiöistä.

Nasalla onkin suuri osuus Solar Orbiterin lennossa ja se toimittaa siihen paitsi tutkimuslaitteita, niin myös kustantaa luotaimen laukaisun. Se lähetetään matkaan vuonna 2020 amerikkalaisella kantoraketilla Cape Canaveralista.

Bonus 1: Miksi nimi Parker?

Henkilöauton kokoinen luotain on saanut nimensä Eugene Parkerilta, nyt 90-vuotiaalta amerikkalaiselta astrofyysikolta, joka on eräs tärkeimmistä aurinkotuulta ja sen ilmiöitä tutkineita henkilöitä. Edelleen kohtalaisen hyvässä kunnossa oleva Parker oli nyt lauantaina Floridassa seuraamassa aurinkoluotaimen laukaisuyritystä.

Bonus 2: Miksi lentäminen alaspäin aurinkokunnassa on niin vaikeaa?

Parker-aurinkoluotain lähetetään matkaan Delta IV Heavy -kantoraketilla, joka on eräs äreimmistä nyt käytössä olevista raketeista. Lisäksi siinä on mukana voimakas ylin vaihe, jolla luotain saadaan singottua halutulle radalle. Alla oleva video selittää asiaa, mutta asian voi tiivistää tähän: alaspäin aurinkokunnassa mentäessä alusta ei tarvitse kiihdyttää, vaan hidastaa. Ja se vaatii paljon voimaa!

*

Alkuperäistä juttua on päivitetty onnistuneen laukaisun jälkeen.

Kuunpimennyksiä voi nähdä muulloinkin kuin vain täydenkuun aikaan

Kuva: Lucien Rudaux
Kuva: Lucien Rudaux

Tänään illalla Suomen taivaalla näkyy pitkä ja varsin komea kuunpimennys. Harva tulee ajatelleeksi, että vastaavaa sattuu muuallakin Aurinkokunnassa. Vielä harvempi hoksaa, että niitäkin tapahtumia voi katsella.

Kuunpimennyksessä planeettamme tulee suoralle linjalle kuumme ja Auringon väliin, ja Maan varjo peittää Kuun. Voisi oikeastaan sanoa, että täysikuu on täydellisimmillään vain ja ainoastaan kuunpimennyksen aikaan.

Kuunpimennyksiä voi kuitenkin yllättäen nähdä myös silloin kun kuu ei ole täysi. Se tosin onnistuu vain kolmella hieman epätavallisella tavalla. Kaikkiin tarvitaan laatikon ulkopuolella ajattelua, apuvälineitä, ja kenties pilkunkin viilausta.

(1) Ensimmäinen vaihtoehto on siirtyä planeetalta pois. Kansainvälisen avaruusaseman Cupolassa oleva astronautti voi nähdä sekä täydellisen kuunpimennyksen että vastakkaisessa suunnassa olevan Auringon vain hieman päätään kääntäen. Kuu on sieltä katsoen lähes, muttei aivan täysi.

(2) Avaruuteen meno ei tietystikään ole kaikille mahdollista. Toinen vaihtoehto on paljon helpompi, ja mahdollistaa kuunpimennyksen katselun huomattavasti useammin kuin normaalisti. Kuunpimennys-termi täytyy vain ymmärtää laajemmin ja suunnata katse kauemmas avaruuteen.

Jupiteria kiertävät "Galilein kuut" erottuvat selvästi neljänä pienenä valopisteenä emoplaneettansa vieressä jo hyvillä kiikareilla. Aika ajoin, tarkkaan katsottuna, joku niistä kuitenkin voi näyttää sammuvan. Tuolloin kyseinen kuu on joutunut joko Jupiterin tai jonkun kanssakuunsa varjon peittämäksi - eli emoplaneetta tai joku toinen kuu on mennyt "sammuneen" kuun ja Auringon väliin. Kyse on siis kuunpimennyksestä aivan toisaalla. Ja, koskapa tilanteen näkee Maasta katsottuna hieman vinosti, kuu ei meiltä katsottuna ole aivan täysi.

Esimerkki Jupiterin Europa-kuun rengasmaisesta pimennyksestä.

Lisää Jupiterin kuiden tapahtumia (okkultaatioita, ylikulkuja ja pimennyksiä) voi tarkastella joko Project Pluton tai Sky and Telescopen taulukoista. Niitä on itse asiassa yllättävän usein. Aikoja kannattaa kuitenkin verrata Jupiterin näkymiseen Suomessa, esimerkiksi Ursan tähtikartan avulla.

(3) Kolmas keino on sijoittaa käytetty apuväline hieman eri paikkaan kuin missä itse on. Näin pimennyksiä voi nähdä vieläkin enemmän, ja erilaisia.

Marsin kaksi kuuta joutuvat aika ajoin punaisen planeetan varjoon. Pienen kokonsa vuoksi ne kuitenkin uppoavat kokonaan näkymättömiin. Curiosity-mönkijän ottamassa kuvasarjassa näkyy oivasti kuinka Phobos himmenee hiljalleen Marsin kaasukehän vaikutuksesta ja lopulta sammuu täysin päästessään itse planeetan taa.

Planeettojen kummajainen on Uranus. Sen kuiden kiertotaso on kohtisuorassa planeetan kiertorataan nähden: Kuut siis kiertävät ikään kuin pystysuorassa planeetan ympäri. Siksi sen kuiden pimennyksiä sattuu vain muutamien kymmenien vuosien välein. Tällä hetkellä Uranus lähestyy vuonna 2028 koittavaa päivänseisausta, jolloin sekä Uranuksen että sen kuidenkin pohjoisnavat osoittavat kohti Aurinkoa. Seuraavan kerran kuunpimennyksiä voi sattua vasta vuonna 2049, päiväntasauksen aikaan - eli silloin, kun kuiden kiertotaso pyyhkäisee Auringon yli eli on linjassa sekä Auringon että Uranuksen kanssa. Edellisen kerran näin kävi vuonna 2007.

Aurinkokunnassa on lukemattomia muitakin kuunpimennyksiä. Kuita löytyy paitsi kuudelta planeetalta, myös sadoilta muilta kappaleilta. Niitä on useimmilla kääpiöplaneetoilla ja ainakin 300 muulla pienkappaleella. Useimmat kuista joutuvat aika ajoin joko toistensa tai emokappaleensa varjoon. Voi kysyä filosofisesti: tapahtuuko kuunpimennys, jos kukaan ei ole sitä näkemässä?

Kuunpimennyksiä ainakin löytyy, jos vain tietää mistä hakea.

Kaikki riippuu kuitenkin näkövinkkelistä - sieltä pimentyneestä kuusta katsottuna kun kyse on aina auringonpimennyksestä. Otsikkokuvana on Rudauxin maalaus aiheesta.

Otsikkokuva: Lucien Rudaux (1874–1947)

Hyvää aphelia! Miksi Aurinko on tänään kaukana Maasta?

Aurinko
Aurinko
Sisäplaneettojen radat

Aurinko on tänään kaukana, koska Maapallo kiertää Aurinkoa lievästi soikean muotoisella radalla. Tänään ollan radan kaukaisimmassa pisteessä.

Aivan tarkalleen ottaen maapallo on tänään illalla 6. heinäkuuta 2018 klo 19.47 Suomen kesäaikaa ratansa kaikkein kaukaisimmassa pisteessä. Vaikka siis on kesä ja kärpäset, olemme nyt radan kaikkein kauimmaisessa kohdassa ja siten Aurinko lämmittää meitä kaikkein vähiten.

Ero ei kuitenkaan ole kovin suuri, sillä kuuden kuukauden kuluttua, kun Maa on radan läheisimmässä pisteessä, olemme silloin noin viisi miljoonaa kilometriä lähempänä Aurinkoa. Kun keskimäärin etäisyytemme Auringosta on 150 miljoonaa kilometriä, ei tällä ole olennaista merkitystä.

Matka näin kaukaisimpaan aikaan vaihtelee myös hieman. Kun tänään Maan ja Auringon välinen etäisyys on 152 095 566 km, oli se viime vuonna (kun matka oli pisin heinäkuun 3. päivänä) kolmisen tuhatta kilometriä vähemmän, 152 092 504 km.

Numeroista innostuneille voi todeta vielä sen, että tänään Maan ollessa kaukaisimmillaan Auringosta, on Maan ratanopeus 29,5 kilometriä sekunnissa, eli 106 376 kilometriä tunnissa. Keskimäärin nopeus on 30 km/s.

Jos vauhti tuntuu suurelta, niin taivaanmekaniikan yksinkertaisten lakien mukaan laskettuna tämä vauhti ei ole paljoakaan verrattuna lähempänä Aurinkoa kiertäviin planeettoihin. Venuksen nopeus on keskimäärin 35 km/s ja Merkuriuksen yli 47 km/s. Ja samalla Aurinkokuntamme kiitää noin 200 kilometrin sekuntinopeudella (720 000 km/h) Linnunradan keskustan ympäri.

Sisäplaneettojen radat

Kaikkien sisäplaneettojen radat ovat varsin pyöreitä, vain Merkurius on selvemmin soikea. Tarkalleen mikään niistä ei kuitenkaan ole aivan pyöreä.


Vaikka kaikki näyttää siis kesäisen seesteiseltä ja rauhalliselta, kiidämme avaruudessa kovaa vauhtia. Yllättäen siis nyt kesällä olemme siis kaukana Auringosta. Vuodenajathan johtuvat maapallon pyörimisakselin kaltevuudesta, ei kiertoradan lievästä soikeudesta – ja kun sanotaan, että nyt on kesä, niin kannattaa muistaa, että eteläisellä pallonpuolella on nyt talvi.

Radan soikeus vaikuttaa kuitenkin siihen, että laskennallisesti täällä pohjoisella pallonpuolella kesä on viisi päivää pitempi kuin talvi; ratanopeus kun on kaukana ollessa hieman pienempi.

Tätä kiertoradan kaukaisinta pistettä kutsutaan apheliksi. Pohjana on kreikan sanat apo, joka tarkoittaa "kaukana", ja helios, joka puolestaan tarkoittaa Aurinkoa. Aurinkoa kiertävän radan läheisin piste sen sijaan on nimeltään periheli sanan peri, eli "lähellä" mukaan. Näitä sanoja muutetaan aina sen mukaan, mitä kappaletta kierretään: esimerkiksi Maan tapauksessa nämä ovat apoogeum ja perigeum.

Otsikkokuvassa on Aurinko kuvattuna tänään Big Bearin aurinko-observatoriolla GONG-teleskoopilla. Kuva näyttää Auringon näkyvän valon alueella ja kuten näkyy, ei siinä ole juurikaan tänään pilkkuja. Olemme Auringon aktiivisuusminimissä.

Leonardo da Vinci ratkaisi maatamon arvoituksen

Lähipäivinä kasvava Kuu on jälleen hyvin näkyvissä iltataivaalla – edellyttäen, että pilvet eivät peitä sitä taakseen. Kuten kansa ennen vanhaan lausui, silloin "vanha kuu on uuden kuun harteilla".

Kun Kuu laskee kohti läntistä horisonttia ja taivas hiljalleen tummuu, valaistuna näkyvän kapean kuunsirpin kupeella alkaa kajastaa himmeä kuvajainen Kuusta: maatamo.

Aikojen alusta taivaalle tähyävät lajitoverimme yrittivät pohtia, mistä oikein on kyse. Miksi sirppinä näkyvän Kuun pimeä puolikin erottuu himmeästi, mutta kun kuunsirppi lihoo, toinen puolisko katoaa näkyvistä?

Yleisnero Leonardo da Vinci selitti ilmiön 1500-luvun alussa. Codex Leicester -nimellä tunnetussa käsikirjoituksessa, jonka da Vinci laati vuosina 1506–1510, hän selittää, kuinka sekä Kuu että Maa heijastavat samalla tavalla auringonvaloa.

Uudenkuun aikaan Kuu on Auringon suunnassa, joten emme näe sitä ollenkaan. Jos Kuu on täsmälleen Auringon suunnassa, sattuu täydellinen auringonpimennys. Yleensä Kuu kuitenkin ohittaa Auringon sen ylä- tai alapuolelta.

Kuusta katsottuna on silloin "täysimaa" eli kiertolaisemme sysimustalla taivaalla näkyy kokonaan valaistu Maa. Se on aika lailla näyttävämpi spektaakkeli kuin täysikuu Maan taivaalla, sillä kotiplaneettamme läpimitta on melkein neljä kertaa suurempi kuin Kuun.

Pari päivää uudenkuun jälkeen iltataivaallemme ilmestyy kasvava kuunsirppi, mutta Kuusta katsottuna Maa on päinvastoin lähtenyt kutistumaan.

Melkein täytenä loistava Maa heijastaa kuitenkin pilvineen ja merineen yhä voimakkaasti valoa, joten Kuun pimeälläkin puolella on melko valoisaa, paljon valoisampaa kuin kirkkaimmankaan meikäläisen kuutamon aikaan. Siksi näemme Kuun pimeän puolen maatamona – ja tämän da Vinci siis oivalsi jo yli 500 vuotta sitten.

Kun Kuu illasta toiseen kasvaa, Kuusta katsottuna Maa vastaavasti pienenee. Kutistuvasta Maasta heijastuu päivä päivältä vähemmän valoa, joten maatamo himmenee. Huolimatta siitä, että Maa pysyttelee Kuun taivaalla lähes paikallaan.

Vastaavasti Maasta katsottuna Kuun valoisa osa kasvaa ja alkaa häikäistä niin, että maatamo ei senkään takia enää erotu, ei ainakaan paljain silmin. Viimeistään puolikuun eli Kuun ensimmäisen neljänneksen aikoihin maatamoa on käytännössä mahdoton erottaa paitsi hieman pidempään valotetuissa kuvissa.

Silloin myös Maa on Kuusta katsottuna puolikas. Pari viikkoa myöhemmin – kun siinä välissä on ollut täysikuu – on jälleen puolikuun aika. Kuu on viimeisessä neljänneksessä ja näkyy nyt aamupuolella taivasta.

Kuun yhä kutistuessa maatamo ilmestyy jälleen näkyviin, mutta nyt kapea kuunsirppi nousee aamuvarhaisella vähän ennen Aurinkoa. Siksi aamuinen maatamo jää usein huomiota vaille.

Kuvat: Markus Hotakainen, Codex Leicester