kylmäfysiikka

Video: Saisiko olla superkylmää kvanttifysiikkaa nanojääkaapissa?

Kvanttitietokoneeseen tarvitaan nanojääkaappi. Sellaisen tekemiseen ja paljon muuta nanotekniikkaan ja kvanttifysiikkaan liittyvää tutkimusta tehdään Aalto-yliopistossa akatemiaprofessori Jukka Pekolan tutkimusryhmässä.


Akatemiaprofessori Jukka Pekola Aalto-yliopistosta on puuhannut koko ikänsä lähellä absoluuttista nollapistettä, koska siellä tapahtuu kaikenlaista kiinnostavaa. Luonnonlait eivät heitä kärrynpyörää, mutta lait ovat erilaisia kuin arkisessa maailmassamme.

Siellä toimivat suprajohteet, eli materiaalit, joissa sähkövirta kulkee ilman olennaista vastusta. Ja siellä tapahtuu kvanttimekaanisia ilmiöitä: esimerkiksi systeemit voi olla samaan aikaan kahdessa eri tilassa, tai että toisistaan erilliset kvanttisysteemit voivat kytkeytyä toisiinsa. Siis vähän sama kuin nanokokoinen auto voisi olla samaan aikaan punainen ja sininen, ja yhden auton ratin kääntäminen saisi toisen auton kääntymään samanaikaisesti sadan kilometrin päässä.

"Kun aikaisemmin vain tutkimme näitä ilmiöitä, niin nyt olemme jo toisessa vaiheessa, missä käytämme hyväksi aitoja kvanttimekaanisia ilmiöitä", iloitsee Pekola ja ennustaa, että tällä alalla on tulossa paljon läpimurtoja lähivuosina – myös Suomessa, mutta tästä lisää myöhemmin.

Suomi on kylmä maa

Suomessa on pitkät perinteet hyvin kylmän ja siellä tapahtuvien ilmiöiden tutkimuksessa. Professori Olli Lounasmaa, suomalaisen fysiikan eräs suuruuksista, nosti silloisen TKK:n Kylmälaboratorion maailman huipulle ja onnistui tekemään useita kylmyysennätyksiä, eli jäähdyttämään laitteitaan erittäin lähelle absoluuttista nollapistettä.

Absoluuttinen nollapiste −273,15°C on kylmin mahdollinen lämpötila, koska silloin atomienkin liike jähmettyy paikalleen. Fyysikot alkavat lämpötilojen laskun tuosta pisteestä, eli nollasta Kelvinistä (0 K). Kylmyysennätys on edelleen Espoossa. Vuonna 2000 siellä saavutettiin lämpötila, joka oli vain 0,000 000 000 1° nollan yläpuolella.

Samaan aikaan kuitenkin Suomessa oli toinen kylmäfysiikan tutkimusryhmä, Jyväskylässä, ja Pekola oli siellä.

"Olen opiskellut ja aloittanut työni täällä Otaniemessä Olli Lounasmaan ryhmässä", kertoo Pekola. "Olin ensin 1980-luvun alussa diplomityöntekijänä ja sitten väitöskirjatutkijana. Aiheenani olivat ultramatalat lämpötilat, eli käytimme Helium-3 -nestettä ja tutkimme suprajohtavuutta siellä. Tämä oli tuolloin tärkeä tutkimusala ja tästä myönnettiin myös Nobelin fysiikan palkinto vuonna 1996."

1990-luvun alkupuolella kiinnostus suuntautui laajemmin matalien lämpötilojen tutkimukseen. Siellä esimerkiksi lämpöliike pienenee ja siksi siellä tapahtuu paljon jänniä kvantti-ilmiöitä, joiden ymmärrettiin tarjoavan paljon mahdollisuuksia uudenlaisille mikro- ja nanovalmistustekniikoille.

"Suomalainen Mikko Paalanen oli ollut tuolloin tutkimassa näitä asioita Yhdysvalloissa kuuluisassa Bell-laboratoriossa, ja hän oli tulossa Suomeen. Hän sai professuurin Jyväskylän yliopistosta, missä haluttiin panostaa kylmä- ja nanotutkimukseen. Hän rekrytoi minut ryhmäänsä, joten lähdin Jyväskylään."

Pekola kertoo, miten he saivat tutkia Jyväskylässä muun muassa ensimmäisinä Suomessa yhden elektronin ilmiöitä, jäähdyttimiä, lämpömittareita. Ryhmästä tuli nanoelektroniikan ja nanofysiikan pioneereja Suomessa.

"Lämpömittarin kehittäminen oli ensimmäinen suuri innostukseni. Meillä oli kova halu tehdä yhden elektronin transistoreita, eli sellaisia mitä nyt tehdään täällä meidänkin laboratoriossa nyt ihan vasemmalla kädellä. Emme kuitenkaan onnistuneet siinä Jyväskylän yksinkertaisessa laboratoriossamme, mutta saimme tehtyä lämpömittarin. Se on vähän kuin köyhän miehen transistori, jossa on vain yksi elektroni. Nyt sellaisia käytetään nyt monissa paikoissa, koska se ei vaadi minkäänlaista kalibrointia."

Vuonna 2002 jo professoriksi edenneelle Pekolalle tarjottiin mahdollisuutta perustaa Aaltoon oma tutkimusryhmä, joten hän päätti palata Otaniemeen. Nyt hän johtaa Pico-nimistä ryhmää, joka jatkaa elektronien ja hyvin matalien lämpötilojen kanssa. Nykyisin tosin perustutkimuksen ohella superpakkasesta ja sen ilmiöistä koetetaan tehdä tylsää arkitekniikkaa.

Yksi hankkeista on nanojääkaappi. Se ei ole vielä lähelläkään arkikäyttöä, mutta sillä tai sen avulla kehitettävällä tekniikalla voisi olla paljon sovelluksia. Esimerkiksi kiihkeän kehityksen kohteena oleva kvanttilaskenta vaatii superkylmää ympäristöä, ja jos siitä joskus tulee tavallista, se vaatii sitä, että lähellä absoluuttista nollaa olevia lämpötiloja on joka puolella – ei vain tutkimuslaitoksissa.

Tunneloitumistemppu, ja miten se tehdään

"Tämä nanojääkaappi lähti liikkeelle ihan perustutkimuksesta. Olimme kiinnostuneita energian kuljetuksesta pienissä nanorakenteissa. Lämmönkuljetus on erittäin tärkeä asia jopa ihan tavallisissa mikropiireissä, joissa lämpö täytyy saada siirtymään ulos. Erityisen tärkeää tämä on kvanttilaitteissa, missä lämpö pitää saada siirtymään paikasta toiseen, jolloin voidaan tehdä täsmäjäähdytystä."

Yksinkertaistettuna nanojääkaappi toimii siten, että "siirrämme kappaleesta pois kaikkein kuumimpia elektroneja, jolloin se jäähtyy." Periaate on sama kuin kahvin jäähdyttäminen puhaltamalla: puhallus siirtää höyryä sivuun kahvikupista, jolloin kuumimmat kaasumolekyylit kahvin päällä lentävät pois ja viileämpiä atomeja jää jäljelle.

Tarkennusta kysyessä Pekola antaa suorat ohjeet nanojääkaapin tekemiseen; ihan kotioloissa sen nikkarointi ei kuitenkaan onnistu. "Teemme puhdastilassa monikerroksisia metallirakenteita nanomittakaavassa litografisesti. Ikään kuin piirrämme elektronimikroskoopilla kuvioita muovipintaan ja sitä voidaan käyttää maskina, kun pinnalle höyrystetään metallia. Tuloksena on noin kymmenen nanometrin, metrin miljardisosan kokoisia rakenteita. Kun tätä toistetaan monta kertaa päällekkäin eri metalleilla ja maskeina toiminut muovi lopulta poistetaan, saadaan haluttu kolmiulotteinen nanorakenne."

Metallien väliin voidaan myös laittaa eristekerroksia, joiden läpi sähkö kulkee ainoastaan tunneloitumalla. Tunneloituminen tarkoittaa sitä, että hiukkanen voi läpäistä potentiaalivallin, jonka ylittämiseen sillä ei klassisen fysiikan mukaan olisi riittävästi energiaa. Sähköstaattinen potentiaalivalli syntyy siitä, että materiaali tai sen ominaisuus vaihtuu.

"Jos käytetään hyvin tavallisia, tunnettuja materiaaleja kuten vaikkapa alumiinia tai kuparia, niin osa niistä muuttuu suprajohteiksi hyvin matalissa lämpötiloissa, toiset pysyvät tavallisina. Alumiini on suprajohde noin yhden kelvinin lämpötilassa ja kylmemmässä."

Suprajohtavassa materiaalissa sähkövirta kulkee käytännössä ilman vastusta, mutta lisäksi materiaaliin muodostuu niin sanottuja energia-aukkoja. Sen sisällä on elektronien kannalta kiellettyjä tiloja samalla tavalla kuin puolijohteissa on energia-aukkoja.

"Hiukkaset, jotka sattuvat osumaan energia-aukon kohdalle, eivät pääse tunneloitumaan, mutta ne, jotka ovat yläpuolella, pääsevät tunneloitumaan. Tämä saa aikaan sen, että energiaa siirtyy normaalimetallista suprajohteen puolelle."

Jääkaappien tekeminen on nykyisin varsin perustekniikkaa, ja siksi kiinnostavampaa onkin niiden variaatioiden ja sovellusten kehittäminen. Yksi näistä on kvanttitietokoneiden lämmönsiirtoon liittyvät ongelmat, jotka pitää ratkaista ennen kuin laitteet saadaan kunnolla käyttöön.

"Tämän suhteen meillä on varsin hullu ajatus käyttää tietokoneen perustana olevia laskentayksiköitä, kubitteja sinällään lämpövoimakoneina. Voisimme kontrolloida kubittien tilaa ulkoisesti ja tehdä siten niiden avulla perinteisistä jäähdyttimistä tuttuja monivaiheisia jäähdyttimiä. Mutta näidenkin kanssa ollaan vielä kaukana tuotteistamisesta – jäähdytys on kuitenkin tärkeä osa tutkimustamme."

Tuloksena myös jo arkitekniikkaa

"Yleensä ajatellaan, että kylmäfysiikka ja matalien lämpötilojen parissa puuhaaminen on jotain eksoottista puuhaa, mutta tästä on tullut jo ihan teollisuuttakin Suomessa", jatkaa Pekola. Hän mainitsee, että suomalaisyritys BlueFors Cryogenics Oy valmistaa muun muassa erittäin yksinkertaisesti käytettäviä jäähdyttimiä millikelvin-alueelle.

Kun perinteisesti kylmäfysiikan laboratorioissa on paljon nesteheliumpulloja, koska matala lämpötila saadaan aikaan nestemäisellä heliumilla, ei niitä enää tarvita. BlueForsin laitteissa on kompressori, joka kierrättää heliumia, jonka avulla saadaan aikaan perustoimintalämpötila.

 

"Se on iso muutos paitsi tutkimuksen, niin myös sovellusten kannalta, koska helium on kallista, pullojen käsittely on hankalaa ja nesteheliumin kanssa lotraaminen vaatii aina erikoisjärjestelyjä. Kun superkylmää saa aikaan töpselin seinään laittamalla, niin se on ollut pieni vallankumous. Nyt näitä laitteita käytetään joka puolella - ja tässä Suomi sekä Kylmälaboratorio ovat olleet tässä tiennäyttäjänä.

Seuraavaksi samaa tekniikkaa pitäisi soveltaa vielä erittäin haastaviin ja pieniin kohteisiin. Esimerkiksi avaruussovelluksissa tarvittaisiin jäähdytyslaitteita, jotka toimisivat sähköisesti, eikä niissä tarvittaisi suuria nesteheliumsäiliöitä. Niiden tulisi olla lisäksi avaruuden ja avaruuteen laukaisun olosuhteet kestäviä, helppokäyttöisiä ja kevyitä. Samoin muuallakin kuin kvanttilaskennassa tarvitaan hyvin pieniä jäähdyttimiä, jotka toimisivat yksinkertaisesti siten, että niihin liitetään jännite.

Eräs lupaava sovellusala on kvanttimekaaniset sensorit. Suomessa tehdään jo nyt paljon erilaisia sensoreita, ja kun tähän teollisen skaalan toimintaan yhdistetään osaaminen suprajohtavuudessa, kylmätekniikan tietotaito ja hyvä infrastruktuuri hankalien rakenteiden tekemiseen, voi Suomesta tulla kvanttimekaanisten sensorien tekemisessä varsin suuri tekijä.

Veri vetää laboratorion puolelle

Pekolan Pico-ryhmä ei ole mikään suuri, sillä siinä on hieman yli tusinan verran jäseniä. Ryhmä on ollut aikanaan isompikin, mutta Pekolan mukaan se oli hankalasti hallittava. Nyt ryhmään kuuluu kaksi senioritutkijaa, muutama tohtoritutkija ja puolen tusinaa jatko-opiskelijoita.

"Tällaisessa työssä on paljon erilaisia osaamisalueita. Tarvitaan teoreetikoita, ja niitä, jotka ovat näppäriä rakentamisessa. Ryhmänjohtamisen rikkaus on se, kun näkee erilaisia ihmisiä joilla on erilaisia taitoja, ja voi sitten tukea heidän urakehitystään myös jatkoa ajatellen."

"Haluan olla itse mukana oikeassa työssä ja oletan, että myös opiskelijoiden kannalta tilanne on parempi, koska joskus näkevät myös minua labrassa." Pekola tosin mainitsee monessa yhteydessä, että käytännön kokeiden tekeminen ja teorian yhdistäminen on hänelle tärkeää. "Siinä ei ole mitään mieltä, että vain räplää kokeiden kanssa, jos ei ymmärrä tarkalleen, mitä tapahtuu. Asioiden teoreettinen selittäminen on myös tärkeää, ja se on aina innostanut minua."

Eräs tällainen – jo pitkään Pekolan päässä pyörinyt – teoriaa ja käytännön tekemistä yhdistävä asia on sähkövirran standardin kehittäminen. Ideana on pyrkiä liikuttamaan elektroneja yksi kerrallaan samanlaisten rakenteiden läpi siten, että elektronien liikkeet kontrolloidaan ulkoisella jännitteellä.

"Minulla oli jo kymmenkunta vuotta sitten idea siitä, miten tämä voitaisiin saada hyvinkin tarkaksi, mutta se ei ole vielä edennyt sille tasolle, että se saataisiin metrologiassa hyväksytyksi virtastandardiksi. Olemme kuitenkin jo hyvin lähellä, ja tästä myös poikii koko ajan uutta tutkimusta."

Kvanttimaailmassa olisi paljon muutakin tekemistä, kuten esimerkiksi täysimittaisen kvanttitietokoneen rakentaminen. Siihen Pekolan mukaan Suomessa ei ole yksinkertaisesti rahkeita, joskin proof-of-concept –tyyppisen tutkimuksen kautta tässäkin työssä saadaan aikaan tärkeitä tuloksia.

"Lounasmaalta opin sen, ettei kannata tehdä työtä sellaisella alalla, minkä parissa maailmalla on jättimäisiä tutkimusryhmiä. On parempi löytää oma erikoisala, mihin pienikin ryhmä voi jättää jälkensä. Luulen, että olemme onnistuneet tässä aika hyvin."

Pekola kiittelee myös akatemiaprofessuuriaan siitä, että hän voi keskittyä varsin hyvin tutkimusryhmänsä johtamiseen ja myös tutkimukseen. "Tämä on tärkeää, sillä olen edelleen hyvin innostunut fysiikasta. Siinä riittää loputtomasti jännittävää tutkittavaa!"

*

Juttu on julkaistu ensin Suomen Akatemian nettisivuilla. Kirjoittaja on Tiedetuubin päätoimittaja ja tehnyt jutun Suomen Akatemian tilauksesta.

Uusi suprajohde - mullistavan lämmin ja hyvin epäkäytännöllinen

Ke, 08/19/2015 - 12:51 Jarmo Korteniemi
Kuva: Henry Mühlpfordt

Tutkijat ovat ensimmäistä kertaa onnistuneet luomaan suprajohtavuutta lämpötiloissa, joita esiintyy planeetaltamme aivan luonnollisesti. Suprajohtavuustutkimus suoritettiin Max Planck -instituutin kemian laboratoriossa Maintzissa, ja julkaistiin Nature-tiedelehdessä.

Rikkivety saatiin johtamaan sähköä ilman vastusta -70 asteessa. Vastaavia lämpötiloja esiintyy Etelämantereella, ja Siperiassakin päästään lähes samaan (ennätys -68°C). (Lue lisää aiemmasta artikkelistamme: Mistä löytyy maapallon kylmin paikka.)

Uutta suprajohdetta ei kuitenkaan voida vielä hyödyntää sen epäkäytännöllisyyden vuoksi. Aine täytyi altistaa yli puolentoista miljoonan ilmakehän paineeseen. Tämä saatiin aikaan puristamalla hyvin pientä rikkivetymäärää prässissä kahden timantin välissä.

Rikkivety on huoneenlämmössä pahalta haiseva ja väritön kaasu. Kylmennettynä se kiinteytyy, ja kovassa yli 900 000 ilmakehän paineessa se käyttäytyy kuin metalli. Tutkijat epäilevät, että kovassa paineessa aine muuttuu entistä tiheämmäksi, siten että jokaisella rikki-ionilla olisikin kahden sijasta kolme vetyseuralaista (H3S).

Tutkijat eivät ole aivan varmoja, miksi rikkivety muuttuu suprajohtavaksi. He epäilevät syypääksi kevyitä vetyioneja.

Suprajohtavissa aineissa korreloituneet elektroniparit (Cooperin parit) mahdollistavat sähkövirran nopeamman läpivirtauksen. Pariutuminen on kvanttifysikaalinen ilmiö, mutta voidaan esittää perinteisen fysiikan avulla: Metallissa olevat elektronit vetävät negatiivisella varauksellaan puoleensa aineen 'kehikon' positiivisesti varautuneita ioneja. Kun kehikko vääristyy hieman, syntyy heikkoja positiivisen varauksen tihentymiä, 'pilviä'. Ne taas vetävät puoleensa muita elektroneja -- voimakkaammin kuin elektronit hylkivät toisiaan. Syntyy Cooperin pareja. Elektronit tosin vuorovaikuttavat keskenään varsin heikosti, ja jo pienikin lämpötilavaihtelu voi tuhota parin. Tämän on syynä sille, että suprajohteet täytyy pitää varsin alhaisissa lämpötiloissa. Tätä tutkimusta ennen suprajohtavuutta oli onnistuttu luomaan vain aineilla, jotka on jäähdytetty reippaasti alle -100 asteeseen.

Tutkijoiden oletus on, että nyt kehitetyssä rikki-vety -suprajohteessa avainasemassa ovat kevyet ja pienet vetyionit. Elektronit onnistuvat liikuttamaan niitä helpommin, sekä enemmän, kuin raskaampia ioneja. Positiiviset pilvet muodostuvat siksi tiheämmiksi, ja elektronien vuorovaikutus voimistuu. Tällaiset elektroniparit sietävät myös enemmän lämpöliikettä.

Tutkijat toivovat, että lämpötilaennätys rikotaan pian. Huoneenlämmössä (tai ainakin sen lähellä) toimivien suprajohteiden kehittäminen voi mullistaa lähes kaiken sähkön käyttöön liittyvän.

Juttu perustuu New Scientistin artikkeliin sekä Nature-tiedelehdessä julkaistuun tiedeartikkeliin. Otsikkokuvan magneettien päällä leijuva suprajohde ei liity tapaukseen (Kuva: Henry Mühlpfordt / Flickr).

Päivitys 19.8. klo 21.30: Korjattu kirjoitusvirhe toiseksi viimeisestä kappaleesta.

Yhä kylmempää kyytiä

Ke, 10/01/2014 - 17:04 Markus Hotakainen

Yhdysvaltain ilmailu- ja avaruushallinnon NASAn Jet Propulsion Laboratoryssa on onnistuttu tuottamaan outoa ainetta. CAL-laitteella (Cold Atom Laboratory) jäähdytettiin atomeja niin alhaiseen lämpötilaan, että ne muodostivat Bosen-Einsteinin kondensaatin. Nimi ei sano välttämättä mitään eikä sillä arkimaailman ilmiöiden kannalta olekaan ihmeempää merkitystä.

Se on kuitenkin eräänlainen välitila mikro- ja makromaailman välillä. Ensimmäisen kerran vuonna 1995 aikaansaadussa Bosen-Einsteinin kondensaatissa atomit asettuvat samalle, alimmalle mahdolliselle energiatasolle, jolloin niiden muodostama makroskooppinen ainekasauma alkaa käyttäytyä kvanttimekaniikan lakien mukaisesti – kuin jättimäinen aalto (jolla ei myöskään ole mitään tekemistä järvissä ja merissä vellovien arkisten aaltojen kanssa).

CAL-laitteisto on prototyyppi, jolla testataan Kansainväliselle avaruusasemalle vuonna 2016 vietävää tekniikkaa. JPL:ssä saavutettiin nyt 200 nanokelvinin eli kelvinin kahdessadasmiljardisosan lämpötila. Kun CAL saadaan Maan kiertoradalla vallitsevaan mikrogravitaatioon, tutkijat odottavat pääsevänsä vielä matalampiin lämpötiloihin, jopa pikokelviniin eli triljoonasosakelviniin. Avaruusasemalle sijoitettu laitteisto olisi silloin koko maailmankaikkeuden kylmin paikka.

Näin alhaisissa lämpötiloissa voi tulla esiin uusia, aiemmin tuntemattomia kvantti-ilmiöitä, joiden tutkiminen liki painottomassa tilassa olisi helpompaa kuin maanpinnalla. Samalla olisi mahdollista tarkastella entistä yksityiskohtaisemmin fysiikan peruslakeja ja niihin liittyviä ilmiöitä. Lähellä absoluuttista nollapistettä perinteiset aineen olomuodot – kiinteä, nestemäinen, kaasumainen – menettävät merkityksensä, ja aineen käyttäytymistä hallitsevat kvanttimekaniikan lait.

CAL-laitteistolla päästään mataliin lämpötiloihin jäähdyttämällä rubidiumatomeja ensin laserien avulla. Sen jälkeen atomit vangitaan magneettiseen "loukkuun" ja niiden jäähdyttämistä jatketaan radiosäteilyllä. Radiotaajuuksilla säteily toimii kuin veitsi, joka leikkaa loukkuun jääneistä atomeista "kuumat" pois, jolloin jäljelle jäävät vain kaikkein kylmimmät. Prosessiin eli Bosen-Einsteinin kondensaatin tuottamiseen kuluu aikaa vain joitakin sekunteja.

CAL-laitteistosta ja sillä tehtävästä tutkimuksesta löytyy lisää tietoa laboratorion kotisivuilta.