Eksoplaneetan kaasukehän rakenne selvitetty ensi kertaa Toimitus Ti, 18/02/2025 - 20:47
Visualisointi eksoplaneetan kaasukehän kerroksista
Visualisointi eksoplaneetan kaasukehän kerroksista

Tämä on todella jännää ja ainutlaatuista: tutkijat ovat onnistuneet kartoittamaan ensimmäistä kertää kolmiulotteisesti eksoplaneetan kaasukehän rakenteen.

Tylos, eli WASP-121b, on noin 900 valovuoden päässä meistä Peräkeulan tähdistössä sijaitseva eksoplaneetta. 

Se on vähän kuin iso ja kuuma Jupiter, kaasujättiläinen, joka kiertää tähteään niin lähellä, että vuosi siellä kestää vain noin 30 Maan tuntia. Koska planeetta on vuorovesilukittunut tähtensä kanssa, on sen toisella puolella koko ajan kuumaa ja toisella kylmää.

Tutkijaryhmä on onnistunut selvittämään nyt Tyloksen kaasukehän rakenteen kolmiulotteisesti. Kiinnostavinta ovat erityisesti tuulet kaasukehän eri kerroksissa. 

Kyseessä on ensimmäinen kerta, kun eksoplaneetan kaasukehästä on saatu näin yksityiskohtaista tietoa. Aiheesta julkaistiin tänään artikkeli Nature-lehdessä.

"Se, mitä löysimme, oli yllättävää: suihkuvirtaus pyörittää kaasua planeetan päiväntasaajan ympäri, kun taas erillinen virtaus kaasukehän alemmissa kerroksissa siirtää kaasua kuumalta puolelta viileämmälle puolelle", kertoo Julia Victoria Seidel, artikkelin pääkirjoittaja ja tähtitieteilijä Euroopan eteläisessä observatoriossa (ESO) sekä Nizzan observatorion Lagrange-laboratoriossa.

Suihkuvirtaus kattaa puolet planeetasta ja kiihdyttää itsensä huimaan vauhtiin planeetan kuumalla päiväpuolella. 

"Voimakkaimmatkin hurrikaanit Aurinkokunnassamme ovat rauhallisia verrattuna tähän", Seidel toteaa ESO:n tiedotteessa.

Tutkijaryhmä käytti ESO:n VLT-observatorion kaikkia neljää teleskooppia, joiden valo yhdistettiin ESPRESSO-instrumentilla siten, että teleskoopit toimivat kuin yksi, todella suuri havaintolaite. Paitsi että neljän teleskoopin valoa keräävä peilipinta-ala on suuri, niiden välinen etäisyys saa aikaan sen, että kuva on yhtä tarkka kuin olisi koko observatorion kokoisella teleskoopilla.

Samaa tekniikkaa voidaan myöhemmin käyttää myös muiden eksoplaneettojen kaasukehien tutkimiseen.

"VLT:n avulla saatoimme tutkia eksoplaneetan kaasukehää kolmessa eri kerroksessa", sanoo tutkimuksen toinen kirjoittaja Leonardo A. dos Santos, joka toimii Space Telescope Science Institutessa Baltimoreissa, Yhdysvalloissa. 

Kaavio raudan, natrieumin ja vedyn liikkeistä

Tiimi seurasi raudan, natriumin ja vetykaasun liikkeitä kaasukehässä, ja näiden avulla saatiin selvitettyä tuulet syvällä, keskikerroksissa ja pinnnalla. 

Havainnot paljastivat myös titaanin olemassaolon juuri suihkuvirran alapuolella, kuten toisessa tutkimuksessa, joka julkaistiin Astronomy and Astrophysics -lehdessä. Tämä oli myös yllätys, koska  aiemmat havainnot olivat osoittaneet titaanin puuttuvan kaasukehästä kokonaan – sitä ei ole, tai mahdollisestise on piilossa syvällä kaasukehässä.

"Nämä ovat juuri sellaisia havaintoja, joita on hyvin vaikeaa tehdä edelleen avaruusteleskoopeilla. Maanpääliset, suuret havaintolaitteet ovat edelleen hyvin tärkeitä."

VLT:tä suurempi ja parempi Extremely Large Telescope (ELT) on tällä hetkellä rakenteilla Chilen Atacaman autiomaassa. Tutkijat ovat jo etukäteen innoissaan ANDES-havaintolaitteesta, jonka avulla voidaan tehdä tällaisia havaintoja paljon nykyistä paremmin. 

Fossiilit kävivät avaruudessa Jari Mäkinen Ti, 11/02/2025 - 00:04
Avaruudessa käynyt fossiili ja todistus lennosta
Avaruudessa käynyt fossiili ja todistus lennosta

Kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja ammoisen etanan kuori kävivät 105 kilometrin korkeudessa viime elokuussa tehdyllä New Shepard -aluksen avaruushyppäislennolla NS-26. 

Blue Originin New Shepard -raketti ja avaruusalus tekivät edellisen hyppäyslentonsa juuri ja juuri avaruuden puolelle 4. helmikuuta 2025. Kyseessä oli miehittämätön lento, jonka kyydissä oli tutkimuslaitteita.

Kolme lentoa aikaisemmin, elokuun 29. päivänä 2024, oli kyydissä kuitenkin jotain hyvin erikoislaatuista: fossiileita. 

Lennon miehistöön kuului paitsi 21-vuotias Pohjois-Carolinan yliopiston opiskelija Karsen Kitchen, nuorin virallisesti avaruuden puolella käynyt nainen, niin myös Floridan yliopiston proferssori Rob Ferl.

Ferl on geenitutkija, joka on selvitellyt pitkään kiihtyvyyden ja mikropainovoiman vaikutuksia kasveihin.

Hän on ollut Floridan yliopiston professori vuodesta 1980 ja toimii tällä hetkellä UF Astraeus Space Instituten johtajana. Vaikka hän on innokas lentäjä, Ferlillä on kova korkean paikan kammo. Kuten monille korkeanpaikankammoisille lentäjille, ei koneessa oleminen ja lentäminen ole lainkaan haastavaa, mutta varsin absurdit lentämiseen liittyvät asiat saattavat olla: Fern kertoo Floridan yliopiston tiedotteessa, että hänen avaruusmatkansa vaikein osa oli lyhyt kävely laukaisualustalta rakettiin parikymmentä metriä korkealla olevan rampin päällä.

"Olin huolissani siitä, että kävely ramppia pitkin kapseliin saisi minut hermostumaan, ja se oli aika lähellä", Ferl kertoo.

Miehistä laukaisualustalla

NS-26 -lennon osanottajat laukaisualustalla. Ramppi tästä avaruusalukseen oli samanlaista ritilää kuin tässä. Ferl on kuvassa takana keskellä. Kuva: Blue Origin.

 

Ferlillä oli avaruuslennolla näytteenottoputkia, jotka sisälsivät pieniä kasveja ja jotka oli kiinnitetty hänen pukunsa jalkoihinsa tarranauhalla. 

Laukaisun, huippukohdan ja laskeutumisen aikana hän painoi kunkin putken kiinnitettyjä mäntiä, jotka vapauttivat kiinnitysaineen, joka kemiallisesti jäädytti jokaisen kasvin solutasolla. Myöhemmin, kun hän oli palannut Maahan, hän analysoi erot kolmen ryhmän välillä. 

Ferl oli liittynyt mukaan lennolle virallisesti tätä tehtävää tekemään – ensimmäisenä Nasan tukemana tutkijana – mutta luonnollisesti hän oli itsekin innoissan kokemuksesta.

"Kuvittele olevasi merentutkija, joka ei ole koskaan ollut veneessä, tai joku, joka tutkii metsiä mutta ei ole koskaan koskenutkaan puuhun, tai paleontologi, joka ei ole koskaan löytänyt fossiilia. Olen ollut avaruusbiologi 25 vuotta. Nyt olen vihdoin ollut avaruudessa."

Omien näytteidensä lisäksi Ferl halusi jakaa matkansa muiden yliopiston tutkijoiden kanssa.

Siten mukaan pääsi myös kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja pleistoseenikauden jääkausia edeltäneellä ajalla eläneen petoetanan kuorta.

Fossiilit olivat peräisin Floridan luonnonhistoriallisesta museosta. Jon Bloch, selkärankaisten paleontologian kuraattori, ja Roger Portell, selkärangattomien paleontologian kokoelman johtaja valitsivan avaruuskeikalle päässeet fossiilit.

 

Fossiilien piti olla pieniä, mutta Bloch halusi myös jotain merkittävää, ainutlaatuista. Siksi hän rajasi valintansa  selkärankaisten paleontologian kokoelmassa olevien yli 1,5 miljoonan näytteen joukosta lyhyeen, mutta merkittävään vaiheeseen Maan historiassa. 

Paleoseenia seurannut eoseenin ensimmäinen vaihe noin 48 – 56 miljoonaa vuotta sitten oli noin 200 000 vuotta kestänyt globaalin lämpenemisen jakso, joka tunnetaan epätavallisen pienistä eläimistä.

"Se oli intensiivinen aika, joka vastaa sitä, mitä ennustamme nykyiselle ilmastonmuutokselle, paitsi että nyt lämpeneminen tapahtuu paljon nopeammin", hän sanoi.

Maailmanlaajuiset lämpötilat nousivat 5–8 celsiusastetta tämän pari sataa tuhatta vuotta kestäneen termisen häiriön aikana. Jopa 50 % meren mikro-organismeista kuoli sukupuuttoon, kun maailman valtameret happamoituivat. 

Maalla nisäkkäät selvisivät sukupuuttoaallosta vähemmillä menetyksillä, koska evoluutio muokkasi niistä pienempiä. Kun esine kutistuu, sen tilavuus pienenee enemmän kuin sen pinta-ala. Tämä helpottaa pienempien eläinten lämmön haihduttamista verrattuna suurempiin.

Jotkut lajit kutistuivat jopa 30 % alkuperäisestä koostaan eoseenin alkurykäyksen lämpömaksimin aikana. 

Maailman ensimmäinen kädellinen oli Teilhardina, joka olisi mahtunut nykyihmisen kädelle seisomaan. Palanen sellaista piipahti avaruudessa. Kuva: Florida Museum / Jeff Gage.

 

Bloch valitsi mukaan myös varhaisimman tunnetun hevosen Sifrhippus sandraen fossiilipalasen. Hevonen painoi todennäköisesti vain 8,5 kiloa, eli ponikin on siihen verrattuna jättiläinen. Kuva: Florida Museum / Jeff Gage.

 

Portell, joka on paleontologiksi päätynyt ravintolapäällikkö ja pankkiiri, otti hieman erilaisen lähestymistavan fossiilin valinnassa.

"Yritin ajatella jotain avaruuteen liittyvää, kuten tähtikuoria ja kuuetanoita", hän sanoi.

Portell päätyi 2,9 miljoonaa vuotta vanhaan kuuetanaan osittain tämän ryhmän oudon ja kiehtovan luonnonhistorian vuoksi.

 

Fossiileita on ollut aikaisemminkin avaruudessa: pieniä fossiileja lepakoista, useista dinosauruksista, crinoidista, hominidista ja trilobiitista on kiikutettu avaruuteen ja takaisin.

Kyseessä oli kuitenkin ensimmäinen kerta, kun fossiileita oli mukana tällaisella suborbitaalisella hyppäyslennolla juur avaruuden puolelle. Tieteellistä iloa tällaisesta ei ole, mutta muuta iloa sen edestäkin!

Juttu perustuu Museum of Floridan tiedotteeseen ja kuviin.

Sodankylään ESAn satelliittien kalibrointi- ja validointikeskus Jari Mäkinen Pe, 07/02/2025 - 18:59
Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä
Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä

Euroopan avaruusjärjestö ESA perustaa yhdessä Ilmatieteen laitoksen kanssa Arktisen satelliittien kalibrointi- ja validointikeskuksen Sodankylään. Tällaista toimintaa on tehty Sodankylässä jo pitkään, mutta nyt toiminta saa virallisemman luonteen.

Jotta Maata havaitsevien satelliittien tuottamat kuvat ja keräämä tieto ovat luotettavia, täytyy satelliittimittauksia varmentaa Maan päällä tehtävillä mittauksilla. Esimerkiksi jos avaruudesta mitataan kosteutta tai hiilidioksidipitoisuutta, täytyy mittauksia näistä tehdä säännöllisesti myös alueella, jota satelliitti on tutkinut. 

Satelliittimittaukset kalibroidaan sitten paikan päällä tehtyjen mittausten kanssa.

Ilmatieteen laitos on tehnyt tällaisia mittauksia jo pitkään, ja näiden mittausten keskuspaikkana on yleensä toiminut Sodankylässä Tähtelän observatorioalueella sijaitseva Arktinen avaruuskeskus. Suomalaiset ovat osallistuneet myös mittauskampanjoihin muuallakin.

Tähtelässä sijaitsevat sekä Ilmatieteen laitos että Oulun yliopistoon kuuluva Sodankylän geofysikaalinen observatorio. Yhdessä nämä muodostavat varsin ainutlaatuisen tutkimuskeskittymän Lapissa.

SMOS-satelliitin maamittalaite

Sodankylässä Ilmatieteen laitoksen pihalla on mm. kosteutta mittaavan SMOS-satelliitin maatutkimuslaitteita. Tätä lokakuussa 2024 kuvattua tötteröä on käytetty jo 15 vuoden ajan. Kuva: Jari Mäkinen

 

Superkeskus Suomeen

Euroopan avaruusjärjestön Maan havainnointiohjelman ohjelmajohtokunta kokousti viime viikolla Saariselällä. Johtokuntaa johtaa tällä hetkellä Maanmittauslaitoksen apulaispääjohtaja Jarkko Koskinen.

Kokouksessa julkistettiin päätös perustaa Euroopan avaruusjärjestön ja Ilmatieteen laitoksen yhteistyönä Arktinen satelliittien kalibrointi- ja validointikeskus (Arctic-Boreal Earth Science, calibration and validation supersite).

”Keskus nostaa Suomen avaruustoiminnan vaikuttavuutta kansainvälisesti huomattavalla tavalla ja luo kasvun edellytyksiä suomalaiselle avaruustoiminnalle ja -teollisuudelle sekä parantaa tieteellisen tiedon tasoa", sanoo Ilmatieteen laitoksen pääjohtaja Petteri Taalas Ilmatieteen laitoksen tiedotteessa.

"Uudet satelliittimenetelmät yhdessä maanpintahavaintojen kanssa tarjoavat nykyistä merkittävästi tarkempaa tietoa hiilidioksidin ja metaanin lähteistä ja nieluista. Ilmatieteen laitos pyrkii olemaan maailman johtavia toimijoita alalla”, 

Hiilidioksidin ja metaanin lähteisiin ja nieluihin liittyy suurta epävarmuutta. Satelliittien ja tarkkojen maanpintahavaintojen avulla on mahdollista saada nykyistä huomattavasti parempaa tietoa näistä.

“Keskuksen sijainti korkeilla leveysasteilla, ja sitä ympäröivät boreaaliset metsät edustaen laajempaa ympäri napapiiriä ulottuvaa metsä- ja tundraekosysteemiä, tekevät siitä ihanteellisen paikan Maata kiertävien satelliittiemme keräämän datan käyttökelpoisuuden varmentamisessa", sanoo Simonetta Cheli, ESAn Maan havainnointi -ohjelmien johtaja.

"Uusi kalibrointi- ja validointikeskus parantaa satelliittipohjaisen tiedon laatua ja edistää uusien, arktiseen alueeseen liittyvien palveluiden ja sovellusten kehittämistä. Tämä ei ainoastaan hyödytä ESAa ja lisää ymmärrystämme metsä-tundra-ympäristöstä, vaan tarjoaa myös suomalaiselle teollisuudelle mahdollisuuksia kehittää ja testata uusia ympäristön mittalaitteita ja teknologioita."

Mittaustorni

Mittauksia tehdään myös mm. torneista ja lentokoneista. Tässä Ilmatieteen laitoksen tornissa on kaksi ESAn Elbara -radiometriä, toinen tornin huipulla ja toinen maanpinnan tasolla. Näillä mitataan sitä, miten pohjoinen havupuumetsä ja pehmeä maa (etenkin lumen sulamisen aikaan) vaikuttavat L-kaistan radiosignaalin voimakkuuteen. Kuva: Ilmatieteen laitos via ESA

ESAn Maan havainnointi -ohjelman mittauskampanjapäällikkö Malcolm Davidsonin mukaan ESA aikoo lisätä kykyään kalibroida ja validoida mikroaaltoalueella toimivia ja satelliittimittalaitteita hyperspektrihavaintoja tekeviä satelliitteja. 

"Tämän jo olemassa olevan keskuksen laajentaminen ns. superkeskukseksi vahvistaa sen kykyä osallistua tuleviin lukuisiin mittauskampanjoihin. Sellaisia ovat muun muassa Copernicus Anthropogenic Carbon Dioxide Monitoring, Copernicus Imaging Microwave Radiometer, Copernicus Hyperspectral Imaging Mission, Copernicus Polar Ice and Snow Topography Altimeter, Radar Observing System for Europe at L-band ja Earth Explorer FLEX -kampanjat."

ESA pyrkii lisäämään läsnäoloaan jäsenmaissansa, ja ns. Superkeskukset ovat uusi tapa tähän. Sodankylän keskuksen julkistus osuu hyvin Suomen ESA-jäsenyyden juhlavuoteen; Suomi liittyi ESAn täysjäseneksi 30 vuotta sitten.

ESAlla on jo Suomessa ESA BIC Finland -yrityskiihdyttämö ja vastaperustettu Phi-Lab Finland -innovaatiokeskus, jotka toimivat yhdessä Aalto-yliopiston kanssa.

Mittalaitteita Sodankylässä

Mittalaitteita Sodankylässä Arktisessa avaruuskeskuksessa. Kuva: Jari Mäkinen

Marsiin ennen vuotta 2030?

Mars väreissä (Kuva ESA)
Mars väreissä (Kuva ESA)

Monet tiedotusvälineet ovat kertoneet Yhdysvaltain presidentti Trumpin ja hänen uuden sydänystävänsä Elon Muskin visioista Marsin suhteen: virkaanastujaispuheessaan Trump hahmotteli ihmisten lähettämistä Marsin pinnalle aivan lähiaikoina. Kuinka todennäköistä tämä on?

Musk, tyypilliseen ylioptimistiseen tapaansa viestitti X:ssä viime syyskuussa, että "ensimmäinen miehitetty lento Marsiin tapahtuu neljän vuoden kuluessa" – siis vuonna 2028.

Trump puolestaan on usuttanut Nasaa toimimaan, ja avaruusjärjestö tutkii tällä haavaa mahdollisuuksia lähettää ihmiset lennolle Marsiin ja takaksin 2030-luvun alussa.

Helsingin sanomat kyseli asiaa myös Esko Valtaojalta, joka muisti mainita tuossa haastattelussa kanssani syksyllä 2016 lyömänsä vedon.

Esko kertoo vedostamme alun perin Kohti ikuisuutta -kirjassaan (sivu 221). Löimme vetoa siitä, pääseekö ihminen Marsiin ennen vuotta 2030; häviäjä antaa voittajalle pullollisen Château Latouria, "eikä sitten mitään halvempaa vuosikertaa", kuten Esko toteaa mielestäni hieman sovittua hieman täsmällisemmin kirjassa.

No, se mikä on painettu, on totta.

Kovasti toivon edelleen voittavani vedon, mutta nyt melkein kymmenen vuotta myöhemmin en usko voittavani. Joka tapauksessa nyt en löisi enää tuota vetoa.

Miksikö?

Lyhyesti: Starship on kovasti myöhässä siitä, mitä tuolloin oletettiin. Musk oletti tuolloin Starshipin tulevan käyttöön jo 2020-luvun alussa ja olisi tehnyt vuoden 2023 loppuun mennessä jo ensimmäisen turistilennon Kuun ympäri.

Starship Kuun luona (visualisointi)

Vaikka suhtauduin tuolloin hieman epäillen noihin aikatauluihin, niin on ollut pieni pettymys, että Starship teki ensilentosa vasta huhtikuussa 2023. Ja sen jälkeen on mennyt jo kaksi vuotta, eikä alus ole vielä päässyt edes kunnolla kiertoradalle.

SpaceX olisi kyllä jo voinut kiihdyttää Starshipin Maata kiertämään pitkän heittoliikkeen sijaan edellisillä koelennoilla, mutta ei tehnyt sitä turvallisuussyistä. Starship on sen verran suuri alus, että sen moottorien toiminta avaruudessa täytyy testata vielä kunnolla, ennen kuin alus uskalletaan viedä kiertoradalle. Elleivät moottorit toimi, alus jäisi avaruuteen jättimäisenä avaruusromuna ja putoaisi aikanaan holtittomasti alas. Se ei olisi kivaa.

On siis hyvä, että cowboy-maineestaan huolimatta SpaceX tekee koelentojaan varsin varovasti.

Mutta se, että Starship saataisiin tästä lentämään Marsiin vain neljässä vuodessa, on erittäin epätodennäköistä. SpaceX pystyy selvästi paljoon, mutta tuskin tähän. Kaiken täytyisi mennä tulevilla koelennoilla täydellisesti, ja paitsi SpaceX:n, niin myös Nasan ja Yhdysvaltojen pitäisi keskittyä marsmatkaan lähes yhtä totaalisesti kuin 1960-luvulla keskityttiin lentämään Kuuhun.

Ja sittenkin tekee tiukkaa, koska Marsiin ei lennetä ihan noin vain.

Edellisellä kaudellaan presidentti Trump sekoitti useammankin kerran Marsin ja Kuun keskenään, ja voi olla, että hänen mielessään Mars on jossain vain hieman Kuuta kauempana. Musk sen sijaan tietänee miten Marsiin mennään, mutta pitää tyypilliseen tapaansa ilmassa toiveikkuutta.

Käyn seuraavassa läpi edessä olevia haasteita.

1. Taivaanmekaniikka

Paras tapa lähettää alus Marsiin on tehdä se niin sanotun opposition aikaan. Eli silloin, kun Maa ja Mars osuvat kiertoradoillaan siten, että olemme lähellä toisiamme. Näin käy kerran noin kahdessa vuodessa, tarkalleen keskimäärin 779,94 vuorokauden eli vajaan 26 kuukauden välein.

Juuri nyt olemme oppositiossa: Mars oli 16. tammikuuta 96,08 miljoonan kilometrin päässä meistä. Viime vuosikymmeninä Marsiin on lähetetty luotaimia jokaisen opposition aikaan, mutta sitten 2020 laukaistun Perseverance-kulkijan on ollut hiljaisempaa.

Nyt tosin on lähdössä kaksi ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) -luotainta. Näiden uudenlaisten pikkuluotainten piti lähteä matkaan jo lokakuussa, mutta nyt laukaisu on suunnitteilla huhtikuulle.

Parasta olisi lähettää luotaimet siten, että ne olisivat juuri opposition aikaan noin puolimatkassa. Siis kolme-neljä kuukautta ennen oppositiota, jolloin ne saapuvat perille nelisen kuukautta opposition jälkeen. ESCAPADE-luotaimet laukaistaan uudella New Glenn -raketilla, ja sen ensilento viivästyi, eikä lopulta luotaimia uskallettu lähettää ensilennolla, joten nyt matkaan päästään vasta keväällä. Luotaimet ovat pieniä ja New Glenn on voimakas, joten puolen vuoden myöhästyminen ei haittaa.

Marsiin voitaisiin kyllä laukaista luotaimia milloin vain, mutta se vaatii vain paljon energiaa ja siitä huolimatta matka-aika saattaa olla hyvin pitkä. Vaikka käytössä olisi todella voimakas raketti, kuten Starship (tai jotain vieläkin äreämpää), niin laukaisut kannattaisi tehdä oppositioiden aikaan.

Marsin ja Maan radat

Seuraava oppositio on helmikuussa 2027 ja sitä seuraavat maaliskuussa 2029 sekä toukokuussa 2031. Ne kaikki ovat "huonoja", koska planeettojemme välinen etäisyys on pienimmilläänkin varsin suuri: 101, 96 ja 82 miljoonaa kilometriä. Tämä tarkoittaa käytännössä sitä, että aluksen massa voi olla varsin pieni verrattuna "hyviin" oppositioihin, jolloin välimatka on vain kuutisenkymmentä miljoonaa kilometriä.

Näin on sitä seuraavina oppositioina kesäkuussa 2033 ja syyskuussa 2035, jolloin välimatkat ovat 63 ja 56 miljoonaa kilometriä.

Käytännössä siis ennen vuotta 2030 on enää kaksi mahdollisuutta lähettää Marsiin alus ja/tai aluksia.

Starship nousee 4. lennolleen.

2. Starship vaati paljon lentoja vielä

Jos Starshipin koelennot olisivat alkaneet aikaisemmin ja koelento-ohjelma olisi mennyt eteenpäin nopeasti, niin periaatteessa ensimmäinen koelento Marsiin olisi voinut olla nyt tänä vuonna. Mutta nyt se voi olla aikaisintaan 2027.

Ja ennen kuin Starship voi lähteä Marsiin, pitää tapahtua todella paljon.

Starship – itse avaruusalus ja sen matkalle laukaiseva Super Heavy -boosteri – on monimutkainen systeemi, joka on suunniteltu tekemään lopulta lentoja hyvin usein. SpaceX:n mukaan boosteri voisi olla valmis uuteen lentoon vain noin kolmen tunnin päästä laskeutumisestaan, joka tapahtuu nykyisten Falcon 9 -rakettien ensimmäisten vaiheiden tapaan, mutta suoraan laukaisutelineen viereen.

Kahdella koelennolla Super Heavy on onnistunut jo palaamaan lähtöpaikalleen. Visio tulevasta näyttää toteutuvan, vaikka laukaisualustaa on täytynyt vielä korjailla paljon kunkin laukaisun jälkeen.

Starship on avaruuteen päästyään aika kuivilla ajoaineista, joten sitä pitää tankata ennen kuin se voi jatkaa kohti Kuuta tai Marsia. Lentoja voi olla viisi tai kuusi, riippuen siitä kuinka suureksi Starship lopulta tehdään. Nyt koelennetty versio 2 on jo suurempi kuin alkuperäinen.

Starship tankkaa avaruudessa

Joka tapauksessa lento Kuuhun tai Marsiin vaatii yhden laukaisun sijaan yhden ja lisäksi monta tankkeriavaruusaluksen laukaisua. Kenties jopa kuusi.

SpaceX on suunnitellut tälle vuodelle 2025 kaikkiaan 25 Starship-lentoa, joista suuri osa liittyy syksyllä aikaisintaan olevaan koelentoon kohti Kuuta.

Nasa on tilannut SpaceX:ltä laskeutujan kuulentojaan varten, ja tuon aluksen koelennot ovat vielä edessä. Samaa, tai hyvin samanlaista alusta voidaan käyttää myös Mars-lentoihin. Ennen lentoa Marsiin pitää alusta testata vielä Kuussa – ja nähtäväksi jää, miten Nasa järjestelee uudelleen tulevia kuulentoja.

Starship Kuussa (visualisointi)

3. Lento Marsiin on PALJON vaikeampi kuin lento Kuuhun

Starshipin ensimmäiselle lennolle Marsiin ei varmasti laiteta ihmisiä mukaan. Musk on puhunut yhden aluksen sijaan useammista, joilla paitsi lentämistä Marsiin testataan, niin viedään sinne myös myöhemmin tarvittavaa rahtia.

Jos lento tai lennot sujuvat hyvin, niin voisivatko ihmiset sitten lähteä kyytiin vuonna 2029? Kyllä – mutta vain jos turvallisuudesta tingitään.

Tällä hetkellä ei ole olemassa kaikkea tekniikkaa, mitä miehitetyn Mars-lennon tekemiseen vaaditaan. Tiedämme kyllä periaatteessa hyvin mitä tarvitaan, mutta perinteiseen tapaan tekniikkan kehittämiseen ja testaamiseen menisi vuosikaupalla aikaa. Orion-kuualusta on tehty jo vuosikymmenen, eikä sillä uskalleta vielä lähteä matkaan.

Starship laskeutuu Marsiin

Vaikka SpaceX laittaisi kehitykseen vauhtia, niin ihmisten Marsiin kuljettamiseen tarvittavan Starshipin tekeminen kestää vielä kauan. Ongelmia kun on paljon tekniikan yleisestä luotettavuudesta aurinkomyrskyjä vastaan suojautumiseen. Ihmisen fyysinen ja psyykkinen kesto näin pitkällä JA kauas planeettainväliseen avaruuteen menevällä lennolla on myös iso kysymysmerkki.

Kymmenen vuoden takaisessa Mars500 -kokeessa kuusi koehenkilöä teki matkan Marsiin ja takaisin maanpäällisessä Mars-aluksen mallikappaleessa, ja tulokset olivat ristiriitaisia. Olin itse tuolloin työssä Euroopan avaruusjärjestössä ja seurasin koetta hyvin läheisesti, ja suhtaudun oikeaan Mars-lentoon tuohon tyyliin varauksin.

Kolme kuudesta Mars500-osanottajasta

Mars500:n aikana tehtiin useita hätätilanneharjoituksia. Kuva on yhdestä sellaisesta. Suuri ero oikeaan Mars-lentoon verrattuna oli se, että Mars500-miehistö olisi voinut kävellä ulos "aluksestaan" koska tahansa. Oikeasta aluksesta ei voi.
Kuva: ESA/Mars500 (muut kuvat SpaceX, paitsi otsikkokuva, joka on myös ESA:n)

 

Ainoa tapa toteuttaa lento on lähteä matkaan vain vähän testatulla aluksella, olettaa että matkan aikana tulevia vikoja voidaan korjata mukana olevilla laitteilla ja luottaa yksinkertaisesti hyvään onneen. Paluumatkaa ei myöskään voida taata.

Lähtijöitä tuollaisellekin matkalle varmasti löytyy. Voi ajatella, että samaan tapaan kuin ihmisten annetaan vapaasti kiivetä Himalajalle tai tehdä muita vaarallisia temppuja, niin miksi vapaaehtoisten ei annettaisi lähteä tällaiselle avaruusmatkalle?

Yli 900 ihmistä on kuollut Himalajalla vuoden 1950 jälkeen, eikä se pahemmin saa aikaan kauhistusta. Kuolema avaruudessa sen sijaan saisi aikaan suurta älämölöä.

Siis: ainoa tapa, millä voisin edelleen voittaa vedon Eskon kanssa on antaa vapaaehtoisille lupa lähteä vaaralliselle matkalle Marsiin ja tehdä Starshipillä niin paljon koelentoja, että se olisi valmis miehitettyyn lentoon vuonna 2029. Muussa tapauksessa aika ei riitä.

Vuosi 2033 sen sijaan voisi olla mahdollinen. Jos voisin lyödä nyt uudelleen vetoa, niin sanoisin 2033.

Kuvitelma Mars-siirtokunnasta

SpaceX:n Mars-visioihin kannattaa suhtautua varsin varauksin.

---

Teksti on julkaistu myös Ursan blogina.

Punainen tupa on matkalla Kuuhun Jari Mäkinen Su, 19/01/2025 - 12:05
MoonHouse pienen kuukulkijan kyydissä
MoonHouse pienen kuukulkijan kyydissä
MoonHouse piirrettynä Kuun pinnalle maapallo taustalla

Kohti Kuuta on parhaillaan menossa kaksi kulkijaa. Toisessa niistä on mukana pieni ruotsalainen punainen talo. Kyseessä on taideprojekti, jota Mikael Genberg on suunnitellut jo 25 vuotta.

Punaisen kuutuvan tarina alkaa vuodesta 1999, kun Euroopan avaruusjärjestön pientä SMART-1 -kuuluotainta valmisteltiin matkaan. Luotain tehtiin Ruotsissa ja luonnollisesti hankkeesta kerrottiin tiedotusvälineissä.

Taiteilija Mikael Genberg sai silloin vision pienestä punaisesta tuvasta Kuun pinnalla. Ruotsissa perinteinen punainen mökki on hyvin samanlainen stereotypia kuin Suomessa: se heijastaa jotain ihanteellista, omaa ja lämmintä ihmiselle.

MoonHouse piirrettynä Kuun pinnalle maapallo taustalla

Genberg on puskenut ideaansa kuutalosta eteenpäin siitä alkaen, ja punainen mökki on kiertänyt maapalloakin – niin täällä Maan pinnalla kuin avaruudessakin. Se on ollut merten syvyyksissä ja Kansainvälisellä avaruusasemalla astronautti Christer Fuglesangin mukana

Nyt mökki pääsee lopulta Kuuhunkin. Siitä on tulossa ensimmäinen talo Kuun pinnalla, joskin hyvin pieni, sillä kuumökki on kooltaan 12 x 8 x 4 cm.

Mökki on japanilaisen ispace-yhtiön tekemän Hakuto-R Mission 2 -laskeutujan mukana olevan pienen kuukulkijan kyydissä. ispacen ensimmäinen kuulento keväällä 2023 päättyi ikävästi, sillä laskeutuja syöksyi Kuun pinnalle ohjelmistovirheen vuoksi.

Uudessa, Resilience-nimisessä laskeutujassa viat on korjattu ja yhtiö on toiveikas onnistuneesta laskeutumisesta tällä kerralla. Laskeutumispaikka on Kuun Maahan näkyvän puolen koilliskulmassa (ylhäällä oikealla) oleva Mare Frigoris, Kylmyyden meri, minne laskeutuminen tapahtuu keväällä.

Laskeutumispäivä päätetään myöhemmin, mutta yhtiö kertoo, että matka-aika on neljästä viiteen kuukautta. Matkaan kulkija lähti Falcon 9 -raketilla 15. tammikuuta yhdessä Firefly Aerospace -yhtiön Blue Ghost -laskeutujan kanssa. Blue Ghost taittaa matkaa nopeammin ja sen laskeutuminen tapahtuu suunnitelman mukaan maaliskuun 2. päivänä.

Kuun pinnalle laskeuduttuaan Resilience vapauttaa matkaan Tenacious-nimisen kulkijan, joka kantaa mukanaan Genbergin punaista mökkiä. 54 cm pitkän, 32 cm leveän ja 26 cm korkean, viisi kiloa massaltaan olevan kulkijan on valmistanut ispacen Luxemburgissa sijaitseva osa. Kulkijan tehtävänä on paitsi mökittää Kuu, niin ennen kaikkea tutkia laskeutumispaikkaa ja kerätä Kuun pinta-ainetta, regoliittia.

Laskeutujan ja kulkijan mallikappaleet näyttelyssä

ispace esitteli lasketujaansa ja kulkijaa (ilman mökkiä) viime lokakuussa avaruusmessuilla Italiassa.

Piirros laskeutujasta Kuun pinnalla

Piirros laskeutujasta Kuun pinnalla.

Kuumökkiä on suunniteltu ja rakennettu kahden vuoden aikana. Se on tehty kestämään laukaisun ja lennon rasitukset sekä avaruuden ja Kuun olosuhteet. 

Kuutalon piirrustus

Genberg on julkaissut myös talonsa teknisen piirrustuksen. Sen voi vaikkapa printata pahville, värittää ja rakentaa omaksi kuutaloksi!

 

Kuutalo on yksi kuudesta laskeutujassa mukana olevasta hyötykuormasta. Vakavampihenkisiä ovat laitteisto, jolla koetetaan tuottaa ruokaa, ja mittari, joka tutkii kosmista säteilyä.

Taiteellishenkisempi on japanilaisen leluyhtiö Bandai Namcon muistolaatta, joka on tyylitelty anime-sarjasta "Mobile Suit Gundam Unicorn". Kyydissä on myös UNESCOn tuottama muistitikku, missä on näytteet 275 kielestä ja kuvia eri puolilla maailmaa olevista kulttuurikohteista.

Sympaattisin on luonnollisesti tuo ruotsalaistalo, joka luonnollisesti on periaatteessa täysin hyödytön. 

"Kenties tämä taideteos, ensimmäinen talo Kuussa, voi olla symboli sille, miten elämä pyskii aina selviytymään ja kehittymään", toteaa Mikael Genberg.

"Se antaa uuden ulottuvuuden olemassaoloomme ja katsoo kohti maapalloa."

Lisätietoa talohankkeesta on sen nettisivuilla osoitteessa themoonhouse.se

Michael ja talo
Malariaan tulossa rokote Toimitus Ke, 08/01/2025 - 16:24
Kaksi Vivaxin-rokotepulloa
Kaksi Vivaxin-rokotepulloa

Malaria on eräs maailman ikävimmistä sairauksista. Vuonna 2023 maailmassa oli noin 263 miljoonaa malariaan sairastunutta, ja heistä noin 597 000 kuoli siihen 83 maassa. Nyt näyttää siltä, että malariaan olisi tulossa rokote.

(Agência FAPESPin tiedote) Brasilialaistutkijat ovat hakeneet patenttia rokotteelle, joka on suunnattu Amerikan yleisintä malariaa vastaan. Plasmodium vivax -malariarokote on jo läpäissyt esikliiniset testit, jotka arvioivat laatua, tehoa ja turvallisuutta lupaavin tuloksin. 

Tutkijat ovatkin hakemassa tammikuussa 2025 lupaa kolmannen vaiheen kliiniselle kokeelle.

Malariaa aiheuttavat viisi Plasmodium-alkueläinlajia, joista kolme löytyy Brasiliasta (P. vivax, P. falciparum ja P. malariae). Loisten ihmisiin tartuttaa infektoituneet naaras-Anopheles-hyttyset. Ainoa käytössä oleva rokote on suunnattu P. falciparumia vastaan. Maailman terveysjärjestö (WHO) on suositellut tätä rokotetta myös lapsille muutamissa Saharan eteläpuolisissa maissa Afrikassa vuodesta 2021 lähtien.

“Tuotteemme on ainutlaatuinen maailmassa ja täysin Brasiliassa valmistettu", kertoi Irene Soares, tutkimushankkeen yhteisvastuullinen tutkija ja São Paulon yliopiston farmaseuttisten tieteiden osaston professori Agência FAPESPille. 

"Tavoitteeni tutkimuksen alusta lähtien yli kymmenen vuotta sitten on ollut rokotteen tuottaminen. Olemme nyt viimeisessä vaiheessa kliinisten kokeiden hyväksymiselle.” 

Rokote on nimeltään Vivaxin, ja se on läpäissyt testit hyvien laboratorio- ja valmistuskäytäntöjen varmentamiseksi. Se esiteltiin syyskuussa Minas Geraisin liittovaltion yliopiston (UFMG) ja sen rokoteteknologiakeskuksen CT-Vacinasin toimesta. Nämä ovat yhteistyössä Brasilian kansallisen rokotetieteen ja -teknologian instituutin ja Belo Horizonten teknologiapuiston kanssa.

Tutkimusryhmän julkaiseman artikkelin mukaan rokote aiheutti korkeita vasta-ainetasoja hiirissä ja kaneissa. Se osoittautui turvalliseksi ja hyvin siedetyksi esikliinisissä kokeissa. 

Koostumus yhdistää kolme P. vivax -proteiinin samalla kromosomipaikalla olevaa versiota yhteen molekyyliin, jotta rokotteen teho olisi parempi kaikkia variantteja vastaan.

P. vivax ei ole sama malaria kuin Afrikan yleisin, vieläkin harmillisempi malariavariatti P. falciparum

Se valittiin kuitenkin kohteeksi, koska se on runsain pinta-proteiini Plasmodium-alkueäinten tartuttamien hyttysten sylkirauhasessa. Allkueläimet liikkuvat aktiivisesti isännän ihossa ja pääsevät tartuttamaan isäntänsä juuri sylkirauhasten kautta.

Tutkimuksessa rokotetut hiiret tuottivat vasta-aineita, jotka tunnistivat kaikki kolme varianttia. Joidenkin tapauksissa tartunta estettiin kokonaan, kun taas toisissa loisten ilmestyminen verenkiertoon viivästyi.

Malaria Brasiliassa ja maailmalla

Malaria on Amazonin alueella ja maailmanlaajuisesti suuri kansanterveysongelma. 

Se aiheuttaa korkeaa kuumetta, vapinaa, hikoilua ja päänsärkyä. Vakavissa tapauksissa se voi aiheuttaa kouristuksia, verenvuotoa ja tietoisuuden häiriöitä. 

Brasiliassa raportoitiin vuonna 2024 tammikuun ja lokakuun välisenä aikana 117 946 malaria-tapausta, joista 80% (95 113) aiheutti P. vivax.

Tauti leviää etenkin alkuperäiskansayhteisöjen keskuudessa.

Artikkeli "Non-clinical toxicity and immunogenicity evaluation of a Plasmodium vivax malaria vaccine using Poly-ICLC (Hiltonol®) as adjuvant" löytyy osoitteesta: www.sciencedirect.com/science/article/abs/pii/S0264410X24002299?via%3Dihub.

Artikkeli "Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice” on puolestaan osoitteessa: www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1331474/full.

Parker-luotain lähes sukelsi Aurinkoon – ja selvisi hengissä

Parker-aurinkoluotain Nasan piirroksessa
Parker-aurinkoluotain Nasan piirroksessa
Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Nasan Aurinkoa tutkiva luotain liippasi joulun aikaan hyvin läheltä tutkimuskohdettaan, ja selvisi tästä lähes kamikaze-tyyppisestä tempusta hengissä (kuten odotettiinkin).

Aurinkoa tutkii parhaillaan kaksi luotainta lähietäisyydeltä: Nasan Parker Solar Probe ja Euroopan avaruusjärjestön Solar Orbiter. 

Kumpikin näistä kiertää Aurinkoa planeettojen tapaan radoilla, jotka tuovat ne aina välillä hyvin lähelle Aurinkoa. Koska luotaintlen tutkimuslaitteet ja lentoradat on suunniteltu toisiaan täydentäviksi, hoitaa Nasan luotain lähemmän tutkimisen ja eurooppalaisluotain katselee kauempaa.

Nyt jouluaattona 2024 Parker-luotain teki toistaiseksi kaikkein läheisimmän Auringon ohilennon. Kello 13.53 Suomen aikaa sen etäisyys Auringon pinnasta oli vain 6,1 miljoonaa kilometriä.

Koska Auringon halkaisija on noin 1,4 miljoonaa kilometriä, tapahtui ohilento hyvin läheltä.

Auringolla ei ole kiinteää pintaa, vaan höttöisä välialue, missä turbulenttisen, kuuman kaasun tiheys muuttuu noin 500 kilomerin paksuisessa kerroksessa läpinäkyväksi. 

Tuon "pinnan" päällä on laaja kaasukehä, jota kutsutaan koronaksi. Silläkään ei ole tarkkaa yläpintaa, vaan se vain hiipuu vähitellen avaruuteen muuttuen aurinkotuuleksi. Karkeasti koronan tiiveimmät osat kurottavat kuitenkin noin kahdeksan miljoonan kilometrin päähän Auringon näkyvästä pinnasta.

Parker siis hujahti nyt koronan lävitse – kuten se teki jo edellisilläkin kerroilla, kun se on tullut radallaan lähelle Aurinkoa. Luotain kiertää Auringon noin 88 vuorokaudessa, ja syyskuusta 2023 alkaen se on ollut perihelissä (ratansa Aurinkoa lähimmässä kohdassa) noin 7,26 miljoonan kilometrin päässä.

Ratansa kaukaisimmassa kohdassa luotain on etääntyy Auringosta Venustakin kauemmaksi. Itse asiassa Venusta käytettiin hyväksi radan muuttamiseen tätä läheisintä ohistusta varten marraskuun 6. päivänä, jolloin se ohitti Venuksen vain 317 kilometrin etäisyydeltä – siis lähes sen pilvipintaa hipoen.

Tämänhetkisen lentosuunnitelman mukaan Parker tekee vielä neljä lähiohitusta (22. maaliskuuta, 19. kesäkuuta, 15. syyskuuta ja 12. joulukuuta) ennen kuin sen ensisijainen tehtävä päättyy.

Jos luotain on näiden jälkeen vielä toimintakuntoinen, sen todennäköisesti annetaan jatkaa vielä tutkimuksiaan. Toimivaa ja ainutlaatuisia havaintoja tekevää luotainta ei kannata sammuttaa.

Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Aurinko lämmittää luotainta erittäin voimakkaasti lähiohituksen aikana. Siihen kohdistunut paahde oli nyt joulu aikaan noin 457 kertaa voimakkaampi kuin on Auringon lämpöteho täällä maapallon luona. 

Siksi Parker-luotaon on suojattu 2,3 metriä halkaisijaltaan olevalla 11,4 cm paksulla lämpösuojalla, joka kestää noin 1370°C:n lämpötilan ja auttaa pitämään luotaimen sisällä olevat laitteet alle 30°C:n lämpötilassa.

Lähiohituksen aikana Aurinko itse häiritsee niin voimakkaasti yhteydenpitoa luotaimeen, että siihen ei voitu olla yhteydessä. Se oli ohjelmoitu tekemään ennalta tutkimuksensa ja ottamaan yhteyttä pahimman kuumennuksen jälkeen 27. joulukuuta.

Ja yhteys onnistuttiin palauttamaan. Tietojen lataaminen tältä jouluiselta ohilennolta alkaa aikaisintaan 1. tammikuuta uuden vuoden puolella.

Matkaan luotain lähetettiin elokuussa 2018.

Rosettan komeetta uusin silmin

Jo puolen vuoden ajan olemme odottaneet tarkkoja kuvia ja yksityiskohtaisia tietoja komeetta 67P/Churyumov-Gerasimenkosta, jota Rosetta-luotain on kiertänyt elokuun alusta alkaen. Luotain toki aloitti komeetan tutkimisen jo aikaisemmin lähestyessään tätä omituista kaksijakoista komeettaydintä.

Odotuksen aika oli ohitse eilen torstaina illalla, kun ensimmäiset tutkimustulosten perusteella tehdyt artikkelit julkaistiin tänään Science-lehden erikoisnumerossa. Niissä on jo huimaavia kuvia ja erittäin kiinnostavia tietoja, mutta kyseessä on vasta maistiainen: nämä artikkelit perustuvat Rosettan 11 eri instrumentin komeetan luokse saapumisen aikana ja vain vähän aikaa sen jälkeen keräämistä tiedoista. Tarkimmat kuvat ja Philae-laskeutujan tulokset ovat tulossa vasta myöhemmin.

Lisää tuloksia julkaistaan Nature-lehdessä ensi viikolla.

Samalla on julkaistu myös pitkään vain tutkijoiden käytössä olleita OSIRIS-kameran kuvia. Näistä on erimomainen galleria ESAn sivuilla.

Vaikka Rosetta ei ole ollut nyt uutisotsikoissa niin paljon kuin marraskuussa, kun sen laskeutuja Philae pomppi komeettaytimen pinnalle, on lento itse asiassa nyt erittäin jännittävässä vaiheessa.

“Rosetta elää käytännössä komeetan kanssa ja lähestyy sen mukana  Aurinkoa”, selittää lennon tieteellinen johtaja Matt Taylor. 

“Opimme koko ajan lisää komeetan käyttäytymisestä niin pitkän ajan kuluessa, kuin myös päivittäin – miten sen aktiivisuus kasvaa, kuinka sen pinta muuttuu ja millä tavalla se vuorovaikuttaa aurinkotuulen kanssa.”

“Jo nyt näiden muutaman kuukauden aikana olemme tulleet tutuiksi komeetan kanssa, mutta mitä enemmän ja enemmän saamme tietoja ja  tutkimme komeettaa läheltä, sitä paremmin voimme selvittää sitä mistä se on peräisin ja kuinka komeetta oikeastaan toimii.”

“Chury” ja sen pinnanmuodot

Jo aiemmin julkaistut navigointikameran ottamat kuvat ovat näyttäneet komeettaytimen pinnan olevan täynnä jännittäviä yksityiskohtia, ja luotaimen tehokkaan OSIRIS-kameralaitteiston ottamat kuvat vain vahvistavat tätä ennakkokäsitystä. Pinta on erittäin monimuotoinen ja siellä oli jo puoli vuotta sitten käynnissä monia aktiivisia ilmiöitä.

Pienten yksityiskohtien lisäksi komeetan perusolemus tunnetaan nyt paremmin. Kaksiosaisen ytimen pienempi osa on kooltaan 2,6 × 2,3 × 1,8 km ja suurempi 4,1 × 3,3 × 1,8 km. Komeetan kokonaistilavuus on 21,4 kuutiokilometriä ja sen massa on 10 miljardia tonnia. Tästä voi laskea tiheydeksi 470 kg/m3.

Koska suurin osa komeetasta lienee hiekkaa, kiveä ja jäätä, joiden keskimääräinen tiheys lienee välillä 1500–2000 kg/m3, on varsin selvää, että ydin on rakenteeltaan varsin huokoisa. Sen sisällä on suuria höttöisiä alueita ja on mahdollista, että se ei koostu vain kahdesta selvästi erillisestä osasta, vaan nekin koostuvat itse asiassa vain klimpissä olevista palasista, joiden   ulkopinta on tasoittunut ajan kuluessa.

Noin 70% pinnasta on kartoitettu tähän mennessä tarkasti ja vain ns. eteläisellä pallonpuolella olevat, toistaiseksi huonosti päivänvalossa näkyneet alueet ovat tuntemattomia.

Kuvista on voitu erottaa tähän mennessä 19 toisistaan poikkeavaa aluetta, joiden keskinäiset visuaaliset eroavaisuudet ovat selviä. Näille on annettu lennon perinteiden mukaisesti egyptiläiset nimet.

Nämä alueet koostuvat viidestä eri tyyppisestä pintatyypistä: pölypintaisesta, kirkkaasta kuoppia ja pyöreitä muotoja sisältävästä, laajoja painautumia sisältävästä, tasaisesta ja kivenkaltaisesta ikään kuin alta pilkottavasta “peruskalliosta”.

Alueet pohjoisella pallonpuolella ovat pääosin pölyn peitossa, koska muualtakin ytimeltä ylös nouseva kevyt aine näyttää putoavan pääasiassa sinne. Kun Aurinko lämmittää komeettaa, jää muuttuu vesihöyryksi, joka pakenee nopeasti ydintä ympäröivään ohueen kaasukehään, niin sanottuun komaan, sekä sieltä ulos avaruuteen. Tähän virtaan tarttuu mukaan myös kiviperäistä pölyä, mutta suurin osa siitä ei liiku niin nopeasti, että se karkaisi avaruuteen, vaan putoaa takaisin pinnalle. Ja nähtävästi tätä pudonnutta pölyä on enemmän juuri pohjoisessa.

Kuvissa näkyy myös halkeamia ja kuoppia, joista virtaa kaasua ja pölyä avaruuteen. Kaikkein aktiivisin alue pinnalla on kuitenkin  kahden osan välissä oleva “kaula”, jonka tasaiselta pinnalta virtaa koko ajan ainetta ylöspäin. On vielä epäselvää onko kaula muodostunut siksi, että siitä on virrannut aikanaan paljon ainetta pois, vai onko kaula vain paljastanut alla olevia kerroksia, mistä lämpö irrottaa helpommin ainetta.

Pinnalta nouseva kaasuvirta on selvästi myös synnytänyt erikoisen näköisiä pinnanmuotoja. Jo aiemminkin ihmetystä herättäneet dyynit ja muut tuulen aiheuttamilta näyttävät piirteet johtunevat juuri tästä pölyä mukanaan kuljettavasta kaasuvirrasta. 

Pölyä on pinnalla paikoitellen jopa metrien paksuudelta, ja nähtävästi se toimii myös eristeenä. Paikoissa, missä pölyä on selvästi enemmän, on alla oleva jää selvästi viileämpää, koska pöly estää Aurinkon lämmön tunkeutumista syvemmälle.

Siinä missä navigointikameran kuvista ei voinut nähdä paljasta jääpintaa lainkaan, on sitä selvästi havaittavissa VIRTIS-instrumentin ottamissa kuvissa. Nyt tutkimuksissa olevien kuvien resoluution on parhaimmillaan 15 metriä. VIRTIS on näkyvän valon ja infrapunaisen alueella toimiva kuvantava spektrometri, joka pystyy havaitsemään juuri jäätä erittäin hyvin. Sen havaintojen mukaan suurin osa pinnasta on pölyn peittämää, mutta siellä täällä on myös runsaammin jäätä sisältäviä alueita. Nämä ovat tyypillisesti tuoreita halkeamia tai rikkoontumia pinnalla, jolloin alla oleva materiaali on paljastunut. 

VIRTIS on havainnut myös runsaasti hiilipitoisia molekyylejä.

Pinnalla voi nähdä myös runsaasti ytimen lämpenemiseen ja viilenemiseen liittyviä rakenteita. Kun komeetta kiertää Aurinkoa radallaan, jonka yksi kierros kestää 6,5 vuotta, ja kun se pyörii akselinsa ympäri kerran 12,4 tunnissa, se kokee lyhyen- ja pitkän ajanjakson lämpösyklejä, jotka saavat aikaan halkeamia. Suurin tällainen todennäköisimmin lämpösykleistä johtuva halkeama on 500 metriä pitkä, ja se sijaitsee pitkittäin kahta ytimen osaa kiinni pitävässä kaulassa. 

Paikoitellen komeetan pinta on myös kananlihalla; joissain jyrkkäreunaisissa halkeamissa on seinämissä noin kolme metriä halkaisijaltaan olevia muodostelmia, jotka saavat pinnan näyttämään hieman samalta kuin ns. kananlihalla oleva iho. Näiden syntyä ei ole vielä osattu selittää.

Samoin komeetan kaksiosainen olemus on toistaiseksi vielä suuri kysymysmerkki. Osat ovat hyvin samankaltaisia ja teoria siitä, että yksi suurempi komeettaydin olisi ajan kuluessa vain muotoutunut tällaiseksi, on kenties hieman todennäköisempi tähän saakka saatujen tietojen perusteella. Mutta voi yhtä hyvin olla niin, että Chury olisi syntynyt kahden komeetan ajautuessa hiljakseen yhteen ja muodostettua siten yhden, suuremman kappaleen.

Kuva: Churyn ytimen "mantereet" ja niiden nimet

Kaasua ja pyrstö

Chury tulee olemaan lähimpänä Aurinkoa 13. elokuuta 2015, jolloin sen ja Auringon välinen etäisyys on 186 miljoonaa kilometriä. Se on siis kauempana kuin Maa, mutta lähempänä kuin Mars.

Sitä mukaa kun komeetta tulee lähemmäs Aurinkoa, sen lämpötila nousee ja pinnalta alkaa virrata yhä enemmän kaasua ja pölyä avaruuteen. Siksi Rosetta-lennon päähuomio tähän saakka on ollut  komeettaytimen pinnan kartoittamisessa mahdollisimman tarkasti, ennen kuin kasvava aktiivisuus tekee havaintojen tekoa hankalammaksi. Samalla pääkiinnostus on nyt suuntautumassa komeetasta irtoavan kaasun, pölyn ja hitusten tutkimiseen.

Irtoavan aineen ja kaasun määrä on ollut kasvussa jo koko sen ajan kun Rosetta on ollut komeetan luona. Esimerkiksi irtoavan vesihöyryn määrä oli viime heinäkuussa 0,3 litraa sekunnissa, mutta jo elokuun lopussa se oli 1,2 litraa sekunnissa. Suurin osa tästä näytti tulevan kaulan alueelta. Mukana kaasuvirrassa on myös mm. hiidimonoksidia ja hiilidioksidia. Hetkittäin näitä on ollut jopa enemmän kuin vettä.

Kun mitataan ulosvirtauksen massaa, niin eniten ainetta pakenee komeettaytimestä pienten pölyhiukkasten muodossa. Pölyä on noin neljä kertaa enemmän kuin kaasua, kun siis lasketaan massan mukaan. Sitä mukaa kun Chury tulee lähemmäksi Aurinkoa, kasvaa todennäköisesti myös jäähitusten osuus – nyt niitä on ollut erittäin vähän.

Rosetta on tutkinut näitä hiukkasia, ja havainnut, että komeetan lähiympäristössä on itse asiassa pölyä kahdessa paikassa: virtaamassa ulospäin ytimestä sekä kiertämässä sitä ikään kuin ohuena pilvenä komeetan ympärillä noin 130 kilometrin etäisyydellä. On mahdollista, että tämä “pilvi” on jäänne komeetan edelliseltä kierrokselta Auringon lähellä, ikään kuin sen lähelle jääneet pyrstön rippeet, ja se mahdollisesti katoaa kun aktiivisuus taas lisääntyy.

Rosetta tosin ei pysty havaitsemaan nyt tätä 130 km:n päässä olevaa pilveä, koska se itse kiertää ydintä noin 30 kilometrin etäisyydellä.

Sitä mukaa kun ydintä ympäröivä kaasun ja pölyn alue, koma, sekä siitä irtoava pyrstö kasvavat, muodostuu komeetalle myös ionosfääri ja magnetosfääri. Rosetta tutkii myös näitä, mutta näistä ei vielä ole juurikaan tuloksia.

Kuva: Pinnalta eri alueilta nousevan kaasun keskimääräinen koostumus.

Suomalaiset mukana tutkimuksissa

Nyt julkaistuissa artikkeleissa on mukana havaintoja myös tutkimuslaitteista, joiden työhön Ilmatieteen laitos osallistuu. Näitä ovat esimerkiksi pölyhiukkasten koostumusta analysoiva COSIMA ja varattuja hiukkasia tutkiva laite ICA.

"Tällä hetkellä uutta tietoa komeetasta on jo tullut paljon ja osa saaduista tiedoista on yllättänyt tutkijat", kertoo IL:n Rosetta-vastaava, tutkimuspäällikkö Walter Schmidt.

“Jo saatujen tietojen pohjalta on esimerkiksi selvinnyt, että komeetan pölykerros on paksumpi kuin oli arvioitu. Pölyä on saatu analysoitavaksi useammasta paikasta Philaen tekemien laskeutumispomppujen ansiosta.”

Laskeutuja Philaen keräämiä tietoja ei vielä ole nyt julkaistuissa artikkeleissa, mutta ennen kaikkea laskeutujan kanssa työskennellut Schmidt ei malta olla kertaamatta sen saavutuksia. 

Esimerkiksi se, että Philaen ankkurointi pintaa ei onnistunut toivotusta ja se, että Philaen mukana oleva MUPUS-vasara ole päässyt läpi muusta kuin pölykerroksesta, viestii selvästi siitä, että komeetan pinta on paljon kovempi kuin aikaisemmin oli kuviteltu.

"Näin kova materiaali voi sisältää muutakin kuin aikaisemmin oletettua vesijäätä. Komeetan pinnalla on tehty havaintoja orgaanisista aineista, joka voi olla yksi selitys pinnan kovuudelle”.

Lisäksi veden isotooppianalyyseissä on selvinnyt, että veden koostumus on erilainen kuin maassa, joten Maahan vesi ei luultavasti ole tullut komeettojen vaan asteroidien mukana.

Myös professorit Esa Kallio Aalto-yliopistosta ja Hannu Koskinen Helsingin yliopistosta ovat analysoineet Rosetta-luotaimen mittauksia komeetta 67P/Churyumov-Gerasimenkosta elokuusta 2014 alkaen. Ensimmäiset komeetasta lähtevät vesisuihkut havaittiin jo syyskuussa 2014, eli hyvin varhaisessa vaiheessa komeetan syntyvaihetta.

"Olimme hämmästyneitä siitä, että komeetasta suihkunnut vesihöyry pystyi häiritsemään aurinkotuulta merkittävästi, vaikka komeetta on vielä kaukana Auringon lämmöstä", kertoo Esa Kallio. "Komeetan etäisyys Auringosta oli mittausten alkuaikana yli kolme kertaa Maan ja Auringon välinen etäisyys".

Suomalaisryhmä pystyi myös arvioimaan mittausten perusteella, että komeetalta karkasi vettä noin kilogramma sekunnissa. Kallion ja Koskisen tulokset ovat mukana tänään julkaistussa Science-lehdessä.

Kallion ryhmän tutkimus keskittyy luotaimen ICA (Ion Composition Analyzer)-hiukkasinstrumentin antaman aineiston tulkintaan. ICA-hiukkasmittalaite on yksi RPC-instrumentin (Rosetta Plasma Consortium) viidestä anturista ja se mittaa, milloin komeetassa syntyy vesihöyrysuihkuja ja niistä syntyneitä kevyitä sähköisesti varattuja hiukkasia. Ilmatieteen laitos on osallistunut ICA-laitteiston rakentamiseen jo 1990-luvun puolivälistä alkaen Walter Schmidtin johdolla.

ICA-hiukkasmittalaite oli todistamassa Auringon aiheuttamaa jäisen komeetan heräämistä ja höyrystymistä jo ennen Philaen irtautumista ja välitti uutta tietoa komeetan pinnan eroosiosta.

"Pyrstöstä lähtevät hiukkaset kertovat komeetan avaruussäästä eli komeetan avaruusympäristöstä, jossa Auringon valon aikaansaama lämpö ja aurinkotuuli yhdessä saavat aikaan komeetan pinnan eroosion", selventää Kallio, joka analysoi tutkimusryhmineen luotaimen mittauksia kolmiulotteisilla tietokonesimulaatioilla.

"Käyttämämme mallinnus syventää saamamme mittausaineiston ymmärtämistä merkittävästi. Kokonaiskuvaa komeetan tapahtumista ei saada pelkillä yksittäisissä paikoissa tehdyillä mittauksilla eikä myöskään yhdestä mittalaitteesta, vaan analysoimalla ja yhdistelemällä mittaustuloksia ja tekemällä niistä mallinnuksia."

Seuraavaksi Kallio tutkimusryhmineen toivoo saavansa tutkittavaksi raskaita pölyhiukkasia, jotka olisivat peräisin komeetan ytimestä. Tutkimustyön seuraava vaihe on verrata tuloksia muiden mittalaitteiden kanssa.

"Tutkimme erityisesti eroosion voimakkuuden vaihteluja komeetan elinkaaren aikana. Eroosion uskotaan vahvistuvan komeetan lähestyessä Aurinkoa ja aktiivisimmillaan sen oletetaan olevan elokuussa 2015. Siksi odotammekin vesisuihkujen lisääntyvän kesää lähestyttäessä."

Alla on Kallion tutkimusryhmän tekemä animaatio Churyn lähiavaruuden varatuista hiukkasista ja niiden vuorovaikutuksesta aurinkotuulen kanssa. Kuvassa näytetään komeetan ytimestä purkautuvan, Auringon UV-säteilyn ionisoimien vesi-ionien pilvi, jota aurinkotuulen virtaus puhaltaa pois komeetalta. Aurinkotuuli esitetään värillisillä nuolilla, joiden väri kuvaa aurinkotuulen tiheyttä: valkoinen väri kuvaa matalaa, punainen suurta tiheyttä. Osuessaan komeetan ionipilveen aurinkotuulen virtaus kääntyy alaspäin sekä hidastuu lähellä komeetan ydintä.

Herääkö Philae?

Tällä hetkellä Rosetta-lennon johtajat ja tutkijat ovat toiveikkaita sen suhteen, että laskeutuja voisi herätä keväällä uudelleen toimintaan. Se hiipui marraskuussa parin päivän toiminnan jälkeen, kun sen akuissa olleen varauksen taso putosi liian alas, mutta se todennäköisesti kykenee parhaillaan keräämään aurinkopaneeleillaan sen verran energiaa, että se paitsi pysyy toimintakunnossa, niin myös voi herätä uudelleen henkiin, kun auringonpaisteen määrä lisääntyy vähitelleen.

Ensimmäisenä komeetan pinnalle tömähtänyt Ilmatieteen laitoksen valmistama PP-mittalaite, joka mittaa komeetan vesipitoisuutta, sai tehtyä mittauksia. Ilmatieteen laitoksen PP-mittarit ovat optimaalisessa tilassa, joten tarvittava mittaussarja voidaan viedä läpi heti herätyksen jälkeen, sillä PP-mittaukset eivät liikuta Philaeta ja tehtävät mittaukset eivät vie paljon energiaa. Mittausmenetelmää joudutaan kuitenkin muuttamaan, sillä mittaukset oli suunniteltu tehtäväksi eri tavalla alkuperäisessä sijaintipaikassa.

Lisää aiheesta Ilmatieteen laitoksen tiedotteessa ja ESAn artikkelissa.