Avaruusaseman asukeille viedään uusi porstua

Nanoracksin ilmalukko

Avaruusasemalla on ongelma: sieltä on yllättävän vaikeaa saada tavaraa ulos avaruuteen. Tähän tulee pian parannus, kun ISS saa uuden ilmalukon – kaupallisen sellaisen.

NASA ja sen partnerit ovat hyväksyneet uuden kaupallisen hankkeen Kansainvälisellä avaruusasemalla toteutettavaksi: Nanoracks -yhtiö voi asentaa asemaan ilmalukon, jonka kautta voidaan lähettää paremmin pieniä satelliitteja avaruuteen.

ISS-asemalta lähetetään jo nyt (ja tulevaisuudessa yhä enemmän ja enemmän) pieniä Cubesat-tyyppisiä nanosatelliitteja, jotka ovat massaltaan muutamia kiloja ja jotka ovat kooltaan noin 10 x 10 x 30 cm. Suunnitteilla on myös lähettää suurempia samantyyppisiä satelliitteja, mutta hankaluutena asemalla on ollut se, ettei asemaa ole suunniteltu satelliittien lähetyspaikaksi.

Avaruusasemalta pääsee ulos avaruuteen tällä haavaa vain kolmesta paikasta. Asemalla on kaksi ihmisille tarkoitettua ilmalukkoa, joiden kautta avaruuskävelijät pääsevät siirtymään avaruusaseman paineistetusta sisätilasta avaruuden tyhjiöön ja päinvastoin.

Ilmalukko on vähän kuin talon eteinen, missä on kaksi ovea: yksi ulko-ovi ja toinen, joka sulkee sen talon sisäsuuntaan. Kun avaruuslentäjät menevät sisältä ilmalukon sisälle, he sulkevat sisäoven ja tyhjentävät eteisen ilmasta, jolloin he voivat avata luukun ulos ja siirtyä avaruuskävelylle. Takaisin tullessa tehdään päinvastoin, eli tullaan sisään, puhalletaan ilmalukko täyteen ilmaa ja siirrytään aseman sisälle.

Asemalla on tällaiset ilmalukot sen venäläisellä puolella ja läntisellä puolella. Kummatkin on suunniteltu siten, että ne sopivat parhaiten kummankin puolen avaruuspukujen kanssa käytettäväksi ja avaruuspuvut on varastossa ilmalukon luona.

Nämä ihmisten käyttöön suunnitellut ilmalukot ovat kuitenkin liian suuria pelkkien tavaroiden siirtämiseksi avaruuteen.

Tällaisia voivat olla tutkimuslaitteet tai pienet, avaruusasemalta omille teilleen vapautettavat pikkusatelliitit.

Niiden takia ei kannata tehdä riskaabelia ja hankalaa avaruuskävelyä, vaan homma voitaisiin hoitaa aseman robottikäsivarren avulla – kunhan vain tavarat saadaan ulos kätevästi.

Avaruusaseman japanilaisessa Kibo-tutkimusmoduulissa onkin pieni ilmalukko tutkimuslaitteiden ja näytteiden siirtämiseen aseman ja avaruuden välillä.

Sitä on käytetty viime aikoina aktiivisesti myös satelliittien siirtämiseen ulos. Satelliitit on laitettu erityiseen lähetystelineeseen, jota myös laukaisusovittimeksi kutsutaan. Se on laitettu ilmalukon sisään ja otettu sieltä robottikäsivarrella esiin ulkopuolella. Robottikäsi kurottaa satelliitit mukanaan kauemmaksi ja sinkoaa ne laukaisusovittimen sisältä sopivaan, aseman kannalta turvalliseen suuntaan.

Vuodesta 2009 alkaen tähän mennessä Kibosta on lähetetty yli sata pientä cubesatia avaruuteen.

Kibon ilmalukkoa ei ole kuitenkaan suunniteltu satelliitteja varten, ja sille on paljon muutakin käyttöä. Siksi nyt asemalle viedään uusi, erityisesti nanosatelliitteja varten suunniteltu ilmalukko.

Nanoracksin ilmalukko piirroksessa
Tältä uusi ilmalukko näyttää ulkoa. Sen keskellä oleva pieni luukku avatuu, ja satelliitit laukaistaan sen kautta avaruuteen. Alla on tartuntakohta robottikäsivarrelle; sitä tarvitaan ilmalukkoa paikalleen asennettaessa (ja jos sen sijoituspaikkaa asemalla täytyy myöhemmin muuttaa).

Sopimus Nasan ja NanoRacksin välillä perustuu siihen, että avaruusaseman käyttöä halutaan laajentaa yhä enemmän kaupalliselle puolelle. 

Alustava sopimus uudesta ilmalukosta tehtiin jo viime keväänä, mutta nyt suunnitelma on läpäissyt tarkistukset ja se voidaan toteuttaa. Asemalle ilmalukko viedään vuonna 2019.

Se nostetaan avaruusasemalle SpaceX:n Dragon-rahtialuksen paineistamattomassa osassa ja siirretään siitä avaruusaseman robottikäsivarrella Tranquility-moduulin päähän.

Nanoracks ostaa kiinnitysmekanismin Boeingilta, joka vastaa myös kaikista tarvittavista laitteistoista, jotka vaaditaan avaruusasemaan kiinnitettävässä lisämoduulissa.

Tranquilityssä on jo nyt kiinnitettynä ensimmäinen asemalle viety kaupallinen moduuli, Bigelow Aerospacen "puhallettava" moduuli BEAM, eli Bigelow Expandable Activity Module.

BEAM vietiin asemalle viime huhtikuussa ja sen toimintaa on siitä alkaen tarkkailtu koko ajan; moduulin ulkopinta on tehty taipuisasta materiaalista, jonka avulla se pystyttiin laajentamaan avaruudessa huomattavasti suuremmaksi kuin moduuli oli pakattuna avaruuteen lähetettäessä. Tällaista tekniikkaa voidaan käyttää vastaisuudessa tuomaan lisätilaa ja säästämään laukaisukustannuksissa – jos voin pintamateriaali kestää avaruuden olosuhteita.

Nyt näyttää siltä, että materiaali on kestävää ja moduuli toimii hyvin, joten Nasa ja Bigelow keskustelevat BEAMin ottamisesta normaaliin käyttöön. Asemalla kun tarvitaan lisätilaa.

 

Google heitti hyvästit avaruudelle – ainakin toistaiseksi

Skybox1

Hakukonemonialayhtiö Googlen takana oleva Alphabet on myynyt kovasti kohua herättäneen Bella Terra -satelliittiyhtiönsä Planet Labs -yhtiölle uudelleenorganisointinsa yhteydessä.

Hakukonemonialayhtiö Googlen takana oleva Alphabet on myynyt kovasti kohua herättäneen Bella Terra -satelliittiyhtiönsä Planet Labs -yhtiölle uudelleenorganisointinsa yhteydessä. Nykyisin vain nimellä Planet tunnettu sanfranciscolaisyhtiö on tällä hetkellä eräs kiinnostavimmista uuden avaruustoiminnan yhtiöistä.

Sen ideana on lähettää avaruuteen paljon pieniä nanosatelliitteja, joilla se voi ottaa kuvia melkeinpä milloin vain mistä vain maapallolla.

Satelliittien kuvat eivät ole valtavan tarkkoja, mutta niiden muutaman metrin yksityiskohtia näyttävät kuvat ovat täysin riittäviä moniin tarkoituksiin. Yhtiöllä on nyt 60 satelliittia avaruudessa ja se on lähettämässä tässä kuussa peräti 88 uutta satelliittia avaruuteen. 

Nämä ovat kooltaan Aalto-1:n kokoisia nanosatelliitteja ja osoittavat osaltaan uudenlaisten pikkusatelliittien tekniset ja kaupalliset mahdollisuudet.

Terra Bella puolestaan on keskittynyt hieman suurempiin, maapallon pintaa tarkemmin kuvaavin satelliitteihin. 

Kyseessä an alun petin Skybox-nimisenä perustettu yhtiö, jonka Google osti vuonna 2012. Yhtiöllä on nyt avaruudessa seitsemän satelliittia, jotka kuvaavat maata hyvin tarkasti, noin 90 cm:n resoluutiolla. 

Kuvien lisäksi satelliitit voivat ottaa 90 sekuntia kestäviä videoita.

Kaupan yhteydessä Google sitoutui ostamaan käyttöönsä yhtiön satelliittikuvia useamman vuoden ajaksi. 

Sinänsä kauppa ei ollut yllätys, sillä Alphabet on viime aikoina suoraviivaistanut organisaatiotaan ja hankkiutunut eroon "rönsyistä". Bella Terran myynnistä on puhuttu viime keväästä alkaen.

Bella Terran satelliitteja taivaalla taiteilijan näkemänä.

Suomeen pitää saada avaruuslaki – meistä tulee pian avaruusvaltio, joten juristit heräsivät

Kun SpaceX sai rakettinsa jälleen taivaalle viime viikonloppuna ja yhtiöllä on varsin selvät sävelet seuraavien laukaisuiden tekemisitä, on Aalto-1 -satelliittia kuljettavan lennon laukaisu tulossa nyt lopulta ajankohtaiseksi. Se tarkoittaa sitä, että Suomesta tulee avaruusmaa ja meillekin pitää saada myös avaruuslaki.

Päivän kuvaSuomessa on tutkittu jo pitkään avaruuslainsäädäntöä teoreettisella tasolla, mutta nyt tämä tietämys pitää saada käytäntöön.

Niinpä elinkeinoministeri Mika Lintilä asetti viime maanantaina työryhmän, jonka tehtävänä on valmistella kansallista avaruuslainsäädäntöä.

Työryhmän toimeksiantona on lisäksi tehdä ehdotukset avaruusesineiden rekisteröinti- ja lupamenettelyiden järjestämisestä. Käytännössä tämä tarkoittaa sitä, että lakiin pitää määritellä avaruustoiminnan edellytykset, joihin kuuluvat muun muassa hyvin konkreettisesti se, miten suomalaiset avaruusalukset ja -esineet tulee rekisteröidä sekä kuinka niille hankitaan tarvittavat luvat.

Jos esimerkiksi suomalaisessa rekisterissä oleva satelliitti putoaa jonkun päähän missä päin maailmaa tahansa ja tai siitä koituu avaruudessa harmia, on Suomi vastuussa siitä. Siksi lainsäätäjien tulee myös pohtia millaisia vakuutuksia rekisterissä olevien kappaleiden omistajilla pitää olla ja kuinka laajasti kappaleille tulee tehdä etukäteen erilaisia riskianalyysejä..




Juttu jatkuu mainoksen jälkeen


Nämä kaikki vaikuttavat hyvin yksinkertaisilta, mutta ne eivät ole – eikä kyse ole vain siitä, että juristit tekevät mistä tahansa asiasta hankalan, vaan oikeasti siitä, että avaruustoimintaa liittyy monia eri asioita ja se kattaa koko maapallon (ja avaruudenkin).

Suomessa ei ole tällä hetkellä avaruustoimintaa koskevaa lainsäädäntöä. Kansainvälisesti toimintaa ulkoavaruudessa säätelevät YK:n avaruussopimukset. EU:ssa avaruusalan säännöksiä on ainakin Tanskassa, Ruotsissa, Itävallassa, Belgiassa, Alankomaissa, Yhdistyneissä kuningaskunnissa ja Ranskassa.

Lakipuolen pohdinnalle on todellakin korkea aika. Aalto-1:n lisäksi avaruuteen on lähdössä tänä vuonna useita muitakin satelliitteja, muun muassa Aalto-2 ja Suomi 100. Tieteellisen tutkimuksen ja korkeakoulujen opinnäytetöiden lisäksi pienet kaupalliset satelliitit tulevat yleistymään, ja niitäkin on lähdössä kenties jopa kaksi tänä vuonna.

Asetetun työryhmän puheenjohtajana toimii kaupallinen neuvos Marjaana Aarnikka työ- ja elinkeinoministeriöstä, sekä jäseninä eri alojen asiantuntijoita ministeriöistä, Ilmatieteen laitokselta, Maanmittauslaitokselta, Tekesistä, kaupalliselta puolelta ja on mukana myös Aalto-1 -hankkeen vetäjä Jaan Praks Aalto-yliopistosta.

Ihmetystä tosin herättää se, ettei Lapin yliopistossa olevasta, kansainvälisestikin tunnetusta Ilmailu- ja avaruuslain instituutista ole mukana edustajia.

Työryhmä raportoi työstään työ- ja elinkeinoministeriön yhteydessä toimivalle avaruusasiain neuvottelukunnalle. Aivan nyt lähtökuopissa olevia satelliitteja varten lakipuolta ei vielä saada kuntoon, sillä työryhmän pesti päättyy vuoden lopussa.

Aalto-1 on asennettu laukaisusovittimeen (kuvaraportti)


Suomen ensimmäinen satelliitti Aalto-1 otti tärkeän – ja hyvin konkreettisen – askeleen kohti avaruutta viime torstaina Delftissä, Alankomaissa, kun se asennettiin niin sanottuun laukaisusovittimeensa. Sovitin asennetaan kesällä kantorakettiin ja se sinkoaa satelliitin avaruudessa oikealle kiertoradalle.

Satelliitti integroitiin Innovative Solutions in Space -yhtiön puhdastilassa niin sanottuun laukaisuadapteriin, eli erikoiseen kiinnityssäiliöön, jossa se kuljetetaan avaruuteen yhdessä muiden pienten satelliittien kanssa.  

Aalto-1 tiimistä Antti KestiläTuomas Tikka ja Nemanja Jovanović kuljettivat satelliitin Hollantiin ja tekivät sille viimeiset tarkistukset.

Säiliö satelliitteineen kiinnitetään myöhemmin Yhdysvalloissa SHERPA- järjestelmään, joka mahdollistaa useiden satelliittien kuljettamisen samalla raketilla. SHERPA- järjestelmä ja sen kantamat kymmenet satelliitit liitetään Falcon 9 -kantorakettiin myöhemmin kesällä.

Näillä näkymin raketin laukaisun on määrä tapahtua heinäkuussa.

Kuvaraportti integrointipäivästä

Siinä missä suuret satelliitit kuljetetaan laukaisupaikoilleen rahtikoneilla, matkasi Aalto-1 Hollantiin vuorokoneella käsimatkatavarana. Se oli erityisen kuljetuslaukun sisällä vaahtomuovin suojaaman telineen sisällä hermeettisesti suljettuna muovikääröön, jotta se ei pääsisi enää kostumaan eikä sen linsseihin tai aurinkopaneeleihin tulisi roskia.

Loppumatkan laukku sekä satelliitin testivarusteita sisältänyt laukku kulkivat komeasti taksilla.

Viimeinen silaus satelliittiboksiin

P-POD syynissä

Päivän kuva on otettu huhtikuun 5. päivänä Kouroun avaruuskeskuksessa Ranskan Guyanassa, kun ESAn Fly Your Satellite! -ohjelman kolme pientä cubesat-satelliittia sisältänyt kuljetuslaatikko asennettiin Sojuz-kantorakettiin myöhemmin liitettyyn alustaan.

Päivän kuvaP-POD on Cubesat-periaatteen aikanaan kehittäneen Kalifornian osavaltion polyteknisen yliopiston, eli California Polytechnic State Universityn, CalPolyn, suunnittelema lukitus- ja irrotusjärjestelmä, jonka avulla voidaan laukaista kerralla avaruuteen kolme Cubesat-yksikköä. Nimi P-POD tulee sanoista Pico-Satellite Orbital Deployer.

Cubesatit voivat olla myös suurempia kuin perusyksikkö, noin kymmenen senttiä kanttiinsa oleva kuutio, ja esimerkiksi Aalto-yliopiston Aalto-1 -satelliitti on kooltaan kolme kuutiota ja sen laukaisu yksinään vaatii yhden kokonaisen P-PODin. 

Kuvassa CalPolyn alihankkijana toimivan Tyvak-yhtiön edustaja Fabio Nichele on juuri kiinnittänyt P-PODin etupintaan pientä alumiiniteippipalan, joka toimii avaruudessa hyvänä Auringon valon heijastajana. Näin voimakas Auringon porotus ei pääse kuumentamaan metallipintaa liikaa P-PODin lyhyen, mutta tärkeän toiminta-ajan kuluessa. 

Satelliitit vapautetaan Sentinel-1B:n irrottamisen jälkeen, kun Sojuz-kantoraketin lentoonlähdöstä on kulunut kaksi tuntia, 48 minuuttia ja 11 sekuntia. Juuri sitä ennen raketin ylin vaihe Fregat on tehnyt ratamuutoksen siten, että satelliitit eivät joudu Sentinelin luokse, vaan sinkoutuvat kiertämään Maata soikealla radalla, jonka matalin kohta on noin 453 km ja korkein 665 km. 

Vaikka laukaistavat satelliitit OUFTI-1, e-st@r-II ja AAUSAT4 ovat pieniä ja vaatimattomia, ovat ne virallisestikin täysimittaisia satelliitteja, jotka vaativat omat radiolupansa ja ne kirjataan laukaisijamaansa "avaruusalusrekisteriin". Laukaisusta vastaava Arianespace puolestaan kohteli satelliittejaan Kouroussa kaitsineita opiskelijoita aivan kuten muita asiakkaitaan. Yhtiön listauksessakin satelliitit lasketaan 52., 53. ja 54. eurooppalaiskantoraketilla laukaistaviksi ESAn satelliiteiksi.

Satelliitteja esitellään tarkemmin tänään julkaistussa lennosta ja sen kyytiläisistä kertovassa artikkelissa.

Mikroskooppi ja nanosatelliitit liftaavat tuplatutkan kyydillä taivaalle

Sojuz nousee avaruuteen

Päivitys lauantaina klo 22: Laukaisua on siirretty uudelleen sääolojen vuoksi. Laukaisuaika on nyt sunnuntain ja maanatain välisenä yönä klo 00:02:13 Suomen aikaa.

Jos sää sallii, laukaistaan eurooppalaisen Copernicus-järjestelmän tuorein satelliitti Sentinel-1B ensi yönä avaruuteen Ranskan Guyanasta kaksi minuuttia jälkeen puolenyön Suomen aikaa. Sen mukana taivaalle matkaa neljä muuta satelliittia, joista kolme on pieniä nanosatelliitteja ja yksi jääkaapin kokoinen tutkimuslaite, jonka tehtävänä on mitata miten kappaleet leijuvat painottomuudessa.

Laukaisu oli tarkoitus tehdä jo viime yönä, mutta sääolosuhteet Kouroun avaruuskeskuksessa ja ennen kaikkea tuulet raketin reitillä yläilmakehässä eivät olleet suotuisia, joten kantoriaketin tankkaustakaan ei päätetty aloittaa. Samalla raketti ja satelliitit asetettiin odottamaan uutta yritystä vuorokautta myöhemmin, siis ensi yönä klo 00:02:13 Suomen aikaa.

Jo 14. eurooppalainen Sojuz-lento

Lennon päähyötykuormana on Sentinel-1B -tutkasatelliitti, mutta koska Sojuz kykenee kuljettamaan avaruuteen painavammankin lastin ja raketissa oli tilaakin lisämatkustajille, on mukana koko joukko pienempiä satelliitteja erityiseen kimppakyytiadapteriin liitettyinä: ranskalainen Microscope matkaa Sentinelin alla ja kolme cubesatia omassa lähetystelineessään sivulla.

Mukana piti olla myös norjalainen NORSAT-1, mutta se jouduttiin jättämään harmittavasti matkasta jo satelliitin oltua valmiina raketiin asennettavaksi. Telinettä, josta norjalaissatelliitti piti singota avaruuteen, oli modifioitu maaliskuussa, mutta simulaatiot sen kestävyydestä eivät valmistuneet ajoissa. Vaikka teline olisi erittäin todennäköisesti kestänyt, ei laukaisusta vastaava Arianespace halunnut ottaa riksiä. Tämä tiukkuus on eräs syy siihen, miksi yhtiön laukaisut ovat sujuneet niin luotettavasti ja ongelmitta. 

Vaikka Arianespace onkin vastuussa laukaisusta, on Sojuz-kantoraketin kokoaminen, lentokuntoon saattamisen ja laukaisu Kouroussa käytännössä kokonaan venäläisten vastuulla. Sitä varten laukaisun aikaan paikalla on yli 200 henkilöä, jotka valmistelevat raketin ja hoitavat sen taivaalle. 

Lähtövalmistelut sujuvat tropiikin keskellä täsmälleen samaan tapaan kuin esimerkiksi Baikonurissa, paitsi että Kouroun tilat ovat modernimpia ja hyötykuorma asennetaan raketin nokkaan vasta laukaisualustalla kantoraketin ollessa jo siellä pystyasennossa. Raketti kuljetetaan rautatietä pitkin kokoonpanohallista laukaisualustalle vaakatasossa ja nostetaan vasta siellä pystyyn.

Tämä menettely, sekä rakettia suojaava umpinainen, laukaisun aikaan sivulle rullattava suojahalli ovat osoitautuneet niin hyviksi, että Venäjän uudessa laukaisukeskuksessa Vostoshnissa käytetään samaa systeemiä.

Nyt illalla tehtävän laukaisun, numeroltaan VS14, raketti kuljetettiin laukaisupaikalle tiistaina 19. huhtikuuta, ja valmiiksi jo nokkakartion sisälle asennetut satelliitit liitettiin sen nokkaan keskiviikkona. 

Viime päivinä raketin ja sen satelliittien toimintakuntoisuus on varmistettu useaan kertaan, minkä lisäksi laukaisua sekä satelliittien ensi toimia avaruudessa on harjoiteltu niin Kouroussa kuin Euroopan puolellakin.

Kurkistus Sojuzin nokkakartion sisään: päällimmäisenä Sentinel-1B ja sen alla espanjalaisvalmisteinen ASAP-S -sovitusosa, jonka sisällä on Microscope ja mikrosatelliitit reunalla olevassa P-POD -räkissä (joka tosin ei näy kuvassa).

 

Copernicuksen toinen tutkasatelliitti

Copernicus on Euroopan komission kunnianhimoinen hanke, jonka tarkoituksena on tuottaa jatkuvasti tarkkaa kaukokartoitustietoa kaikkialta maailmasta. Siihen kuuluu koko joukko erilaisia satelliitteja ja mittalaitteita, joilla voidaan tehdä erilaisia havaintoja maapallosta, sen meristä, mantereista sekä ilmakehästä.

Euroopan avaruusjärjestö ESA vastaa satelliittien tekemisestä ja laukaisemisesta, kun taas Euroopan ympäristötoimisto EEA sekä jäsenmaat hoitavat havaintojen käsittelyn sekä hallinnan.

Tärkeimmät osat sitä ovat tutkasatelliitit Sentinel-1, optisen alueen Sentinel-2:t ja ennen kaikkea lämpötilaa havaitsevat Sentinel-3:t. Yksi kappale näitä jokaisia on jo Maata kiertämässä, mutta tarkoituksena on lähettää kutakin kaksi kappaletta, jotta havaintoja voidaan tehdä nopeammin ja tehokkaammin.

Sentinel-1B on ensimmäinen näistä tuplakappaleista. Se asetetaan samalle radalle kaksi vuotta sitten laukaistun Sentinel-1A:n kanssa, mutta siten, että se on koko ajan täsmälleen vastakkaisella puolella maapalloa. Näin ne pystyvät tekemään havaintoja yhdessä kaksi kertaa nopeammin kuin yksin, ja toisen ollessa mukana toiminnassa saadaan koko maapallon pinta periaatteessa kartoitettua puolessatoista vuorokaudessa.

Käytännössä tosin satelliiteille haetaan ratansa alta koko ajan kiinnostavia kohteita, joita ne havaitsevat jatkuvan tutkakartoituksen sijaan.

Mukana satelliitissa on myös suomalaistekniikkaa: forssalainen DA-Design Oy on toimittanut Sentinel-1 -satelliitteihin neljä olennaista elektroniikka- ja antennialijärjestelmää. 

Microscope

Pikkusatelliitti ja kaksi testimassaa

Ranskan avaruustutkimuskeskuksen CNESin 300-kiloinen Microscope mittaa kiertoradalla ollessaan periaatteessa samaa asiaa kuin Galileo Galilei 1600-luvulla pudotellessaan kappaleita Pisan tornista. Siis sitä vaikuttaako painovoima samalla tavalla eri massaisiin kappaleisiin.

Ellei ilmanvastusta oteta huomioon, putoaisi höyhen yhtä nopeasti tornista alas kuin usean kilon massainen käsipaino.

Albert Einstein nimitti asiaa ekvivalenssiperiaatteeksi, ja hänen tulkintansa mukaan kyse on siitä, että painovoiman aiheuttama voima ja kiihtyvyyden seurauksena tunnettu voima on sama; siis kappaleiden inertia- ja gravitaatiomassat ovat samat.

Asia on aivan fysiikan perusasioiden ytimessä, joten sitä on tutkittu hyvinkin tarkasti. Nykykäsityksen mukaan periaate on voimassa vielä muutaman triljoonasosan tarkkuudessakin, mutta Microscopen toivotaan pystyvän parantamaan tarkkuutta jopa satakertaiseksi.

Satelliitin sisällä on kaksi kappaletta, yksi titaanista ja toinen platina-rodiumseoksesta tehty, ovat vapaassa pudotusliikkeessä. Siis ne ovat vapaina, irrallaan satelliitin keskellä olevassa kammiossa, missä niiden tarkkaa käyttäytymistä voidaan mitata. Periaatteessa koejärjestely on suojattu mahdollisimman hyvin maapallon aiheuttamilta häiriöiltä.

Painovoiman pitäisi vaikuttaa kappaleisiin samalla tavalla, eli niiden pitäisi olla satelliitin mukana yhtäläisessä vapaassa pudotusliikkeessä. Jos näin ei ole, niin fyysikoille tulee töitä.

Tyypilliseen tiedesatelliittitapaan on nimi Microscope lyhenne, joka tällä kertaa tulee ranskankielisistä sanoista Micro-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence, eli "ekvivalenssiperiaatteen havaitsemiseen tarkoitettu kompensoitu mikrosatelliitti".

Kolme kuutiota

Lisäksi Sojuz kuljettaa avaruuteen kolme opiskelijavoimin tehtyä cubesat-luokan satelliittia. Ne ovat kooltaan vain 10 x 10 x 11 cm, ja niitä on tehty ja testattu usean vuoden ajan samaan tapaan kuin suurempia satelliitteja ESAn yliopisto-opetusta tukevan Fly Your Satellite! -ohjelman puitteissa.

OUFTI-1 on belgialaisen Liègen yliopiston tekemä satelliitti, jonka tehtävänä on testata avaruudessa uudenlaista radioamatöörien käyttämällä taajuudella toimivaa tietoliikennejärjetelmää. 

Italialainen, Torinon polyteknisen yliopiston e-st@r-II, puolestaan kokeilee uutta maapallon magneettikenttää apunaan käyttävää asennonmäärityslaitteistoa.

AAUSAT4 on puolestaan numerostaan huolimatta jo viides cubesat tanskalaisesta Aalborgin yliopistosta. Kuten edeltäjänsä, viime lokakuussa Kansainväliseltä avaruusasemalta avaruuteen lähetetty AAUSAT5, se ottaa vastaan laivojen lähettämiä alusidentifikaatiosignaaleita, joiden perusteella voidaan kehittää uusia tapoja seurata ja tarpeen vaatiessa avustaa aluksia maailman merillä. Tanskalaisten päähuomio tässä on Grönlannin vesillä olevien alusten tarkkailu, joskaan tätä poliittisesti hieman kyseenalaista seikkaa ei ole juuri tuotu esiin. 

Usein opiskelijoiden tekemät cubesatit on varsin nopeasti ja ylimalkaisesti koottuja, mutta näitä satelliitteja on tehty huolellisesti. Ne on myös testattu ESAn teknisessä keskuksessa ESTECissä – ja kaikkiin satelliiteista jouduttiin tekemään muutoksia ja parannuksia testien perusteella.

Satelliitit vapautetaan Sojuzin kyydistä avaruuteen erityisestä P-POD-säiliöstä, jonka sisälle satelliitit laitettiin jo maaliskuussa. Säiliön pohjalla on jousi, joka ponnauttaa satelliitit hellävaraisesti, mutta varmasti ulos, kun päällä oleva kansi avataan kauko-ohjauksella. 

Kolmikon P-POD on tänään Tiedetuubin päivän kuvassa.

Tässä on Suomen ensimmäinen satelliitti: se on valmis ja lähtee pian avaruuteen

Ydintiimi potretissa


Pitkään ja hartaasti tehty Suomen ensimmäinen satelliitti, Aalto-1, on edennyt tärkeään pisteeseen: varsinainen avaruuteen lähtevä satelliitti esiteltiin tänään yleisölle ja se lähtee nyt maaliskuun aikana kohti laukaisupaikkaa. Avaruuteen se päässee näillä näkymin touko-kesäkuussa.


Aalto-1 syntyi vuonna 2010 hullulta tuntuneesta ajatuksesta. Aalto-yliopiston Sähkötekniikan korkeakoulun Radiotieteen ja -tekniikan laitoksella päätettiin laittaa pystyyn opiskelijaprojekti, jonka päämääränä oli saada oma satelliitti avaruuteen parin vuoden kuluessa.

Hanke on ottanut sen jälkeen monta aikalisää, osin omista syistä, osin ulkoisista. Vaikka varsinainen satelliitti on valmistunut vasta nyt, on hanke ennättänyt jo tuottamaan yli 50 opinnäytetyötä ja 12 tohtoriväitöstä.

Lisäksi se on luonut pohjaa kokonaiselle uudelle teollisuudenalalle, sillä piensatelliittien tekeminen on yhä suositumpaa ympäri maailman ja kokosuhteeltaan se on juuri sellaista avaruustoimintaa, mitä voitaisiin tehdä Suomessa.

Hankkeen tiimoilta onkin jo syntynyt uusi hankkeita ja lupaavia spin-off -yrityksiä. 

Aalto-1 on ennättänyt saamaan myös jo seuraajia, jotka sarjan ensimmäisestä saatujen oppien avulla ovat valmistuneet nopeasti; Aalto-2 saattaa päästä avaruuteen jo vuoden lopulla.

Ykkönen sen sijaan päässee matkaan loppukeväästä 2016 Space X –yhtiön Falcon 9 –kantoraketilla Kaliforniasta Vandenbergin laukaisuasemalta. Asiaan vaikuttaa vielä monta seikkaa, muun muassa se, saako yhtiö jo moneen kertaan lykätyn laukaisun Floridasta samanlaisella raketilla matkaan virheettä. Edellinen yritys oli viime yönä ja seuraavan kerran laukaisua yritetään perjantain sekä lauantain välisenä yönä Suomen aikaa.

Samalla laukaisulla touko-kesäkuussa viedään noin 600 kilometrin korkeudessa olevalle kiertoradalle nousee raketin kyydissä ennätysmäärä nanosatelliitteja. Falcon 9 rahtaa niitä taivaalle noin 80 kappaletta.

Tie tästä taivaalle

Nyt valmiina olevan satelliitin matka alkaa varsinaisesti maaliskuun aikana sen ensimmäiseen pysähdyspaikkaan Hollannissa. Siellä se liitetään laitteistoon, joka sinkoaa satelliitin omalle kiertoradalleen kantoraketin nokasta.

Ennen lähettämistä Hollantiin satelliittia kuumennetaan sen verran, että siinä mahdollisesti oleva kosteus haihtuu. Sen jälkeen se pakataan huolellisesti ja viedään erikoislaatikossaan Delftissä sijaitsevaan Innovative Solutions in Space -yhtiöön. Yhtiö on toiminut laukaisuvälittäjänä, kerää kaikki satelliitit yhteen ja asentaa ne tiloissaan laitteistoon, joka vapauttaa satelliitit avaruuteen.

Laitteisto viedään Yhdysvaltoihin, Kaliforniaan, missä se asennetaan ennen laukaisua kantoraketin nokkakartioon päähyötykuormana olevan kaukokartoitussatelliitin alapuolelle.

Tätä ennen satelliittia sekä sen koemalleja on suunniteltu, rakennettu ja testattu lähes viiden vuoden ajan Otaniemessä. Testejä on takana kymmeniä ja viimeiset tarkistukset tänään esiteltyyn, avaruuteen lähtevään versioon tehdään vielä Hollannissa.

Satelliitteja on rakennettu itse asiassa kaksi kappaletta, joista toinen, niin sanottu insinöörimalli jää Otaniemeen.

Testejä ja ohjelmistokehitystä voidaan siten jatkaa sillä, vaikka itse lentomalli on jo matkalla avaruuteen. Myös sen jälkeen, kun satelliitti on avaruudessa, voidaan insinöörimallilla jäljitellä lentävän satelliitin toimintaa ja testata mahdollisia kriittisiä ohjelmistopäivityksiä etukäteen.

Satelliitti tuotiin tänään esille Otaniemessä

Itse tehty on aina parempi

Aalto-1 on suosittua CubeSat-standardia seuraava moderni nanosatelliitti, jonka järjestelmistä lähes kaikki on suunniteltu ja tehty itse. 

Esimerkiksi radiot, rungon osat, antennit sekä aurinkopaneelit, jotka tuottavat satelliitin tarvitseman sähkön, ovat omaa työtä. Satelliitin pitkälti omatekoinen päätietokone välittää kaiken tarvittavan tiedon avaruudesta Otaniemen maa-asemalle – joka sekin on itse tehty ja suunniteltu.

Monet opiskelijaryhmät ostavat laitteita valmiina, mutta suomalaiset halusivat oppia koko systeemisuunnittelun. Tällä on lisäksi se hyvä puoli, että ongelmatilanteissa voidaan ymmärtää mahdolliset viat ja niiden yhteydet erilaisiin asiaan vaikuttaviin laitteistoihin paljon paremmin.

Satelliitissa on mukana kolme tutkimuslaitetta: VTT:n rakentama spektrikamera, Helsingin yliopiston ja Turun yliopiston yhteinen säteilyilmaisin ja Ilmatieteen laitoksen kehittämä plasmajarru, joka perustuu sähköisen aurinkopurjeen ideaan ja tähtää avaruusromun vähentämiseen. Säteilyilmaisin on myös tehty opiskelijavoimin.

Näillä kaikilla laitteilla on käyttöä paitsi tutkimuksessa, niin ne myös toimivat demonstraattoneina tuleville laitteille. Esimerkiksi kameralle ja plasmajarrulle on selviä markkinamahdollisuuksia ja ne voivat olla myöhemmin jopa sarjatuotantona tehtäviä osia muille pienille, edistyksellisille satelliiteille.

Koko Suomi mukana

Projektissa on ollut mukana yhteensä yli 80 opiskelijaa, ja sen parissa on tehty kymmeniä diplomi- ja kanditöitä, useita konferenssijulkaisuja sekä tiedejulkaisuja. 

Apua hankkeeseen on saatu apua useilta asiantuntijatahoilta, tutkimuskeskuksilta ja yrityksiltä. Satelliitin tutkimuslaitteiden kehitystyön lisäksi yhteistyötä on tehty muun muassa yritysten kanssa. Esimerkiksi Space Systems Finland antanut laboratorioitaan työryhmän käyttöön.

Lisäksi osa projektilaisista on ollut harjoittelussa Berlin Space Technologies -yrityksessä. Yhteistyökumppanit ovat tarjonneet niin opinnäytemahdollisuuksia, suunnitteluapua kuin työpaikkojakin projektista valmistuneille.

Tekstissä on mukana osia Aalto-yliopiston tiedotteesta.

Tämä on Qarman, takaisin Maahan palaava nanosatelliitti


Viime aikoina Suomessakin on puhuttu paljon pienistä nanosatelliiteista, muutaman kilon massaltaan olevista, 10 cm kanttiinsa olevista kuutioista koostuvista pienistä satelliiteista. Suomen ensimmäinen satelliitti Aalto-1 on kolmen kuution kokoinen satelliitti ja eilen julkistettu Reaktor-yhtiön Hello World on kahden kokoinen.

Nanosatelliitit putoavat tehtävänsä jälkeen takaisin Maahan ja tuhoutuvat ilmakehän kitkakuumennuksessa kokonaan.

Yleensä kyseessä on lennon surullisin vaihe, koska suurella työllä tehty satelliitti sulaa ja höyrystyy ilmanvastuksen pätsissä.

Nyt kuitenkin ESAn Hollannissa olevan teknisen keskuksen ESTECin suuressa radiotestaustilassa on pieni satelliitti, jonka tarkoituksena on tutkia juuri sitä, mitä pienelle satelliitille tapahtuu maahanpaluussa. Miten ilmanvastus vaikuttaa siihen ja kuinka se osat tuhoutuvat vähitellen?

Qarman (QubeSat for Aerothermodynamic Research and Measurements on Ablation) on belgialaisen Von Karman -instituutin ESAlle valmistama satelliitti, joka tulee mittaamaan sisäistä  ja ulkoista lämpötilaa, painetta ja mm. kirkkautta, jolla ympärillään oleva plasma (kuumenemisen vuoksi sähköisesti varautuneen kaasun) hohtaa.

BLOG

Hello World! – Reaktorin satelliitti lentää ensi vuonna avaruuteen

Suomalainen digitaalisten palveluiden yhtiö Reaktor kurottaa avaruuteen: aamun uutiset kertoivat yhtiön Hello World -nimisestä satelliitista, joka on tarkoitus laukaista avaruuteen jo ensi vuoden kuluessa.

Tämä aivan yksityisellä rahalla toteutettu satelliitti kiilaa siis toiseksi suomalaiseksi satelliitiksi Aalto-1:n jälkeen – ellei mikään tule sotkemaan suunnitelmia.

Viime kesän Falcon -kantoraketin onnettomuus sotki kummankin hankkeen aikataulua, mutta nyt näyttää siltä, että Aalto-1 pääsee matkaan jo talven kuluessa.

Hello World seurannee sitä vuoden loppupuolella, tosin hanketta vetävän Juha-Matti Liukkosen mukaan laukaisusta on käynnissä nyt kilpailutus ja voi olla, että se tullaan lopulta laukaisemaan matkaan Baikonurin kosmodromista.

Hello World on nykysuunnitelman mukaan muutaman kilon painoinen ja kooltaan 20 x 10 x 10 cm; se siis luokitellaan nanosatelliitiksi ja perustuu yleiseen cubesat-formaattiin.

"Meillä tämä hanke alkoi reilu vuosi sitten, ihan henkilöstön oman kiinnostuksen kautta, ja viime kesänä päätimme polkaista tämän satelliittihankkeen käyntiin nyt syksyllä", kertoo Liukkonen.

"Alkukiinnostuksemme johti ensin yhden kehittäjän osallistumiseen Aalto-1 -hankkeeseen. Samalla lentokonepuolen liiketoimintamme on edennyt hyvin, ja avaruusalan ymmärryksen parantuessa alkoi tuntua luontevalta laajentaa toimintaa sinne suuntaan. Piensatelliittisektorilla on hyvinkin mielenkiintoiset näkymät."

Hahmotelmat erilaisista nano- ja piensatelliittien käyttötavoista ovatkin herkullisia, sillä niitä voidaan käyttää paitsi yksinkertaiseen kuvaamiseen kuin edistyneiden, tarkasti rajattujen tieteellisten havaintojen tekemiseen. Niiden opetuksellinen merkitys on myös suuri, sillä 'oikean' satelliitin tekemisen kautta on helppoa ja innostavaa tutustua suuremmillakin satelliiteilla tehtäviin tutkimuksiin.

Nanosatelliiteilla on mahdollista toteuttaa tulevaisuudessa monia kiinnostavia palveluita, kuten suomalainen Iceye on tekemässä. Edullisten, teknisesti näppärien ja innovatiivisten piensatelliittien tekeminen Suomessa ja niiden palveluiden suunnittelu sekä tarjoaminen sopisivat erinomaisesti Suomen kokoiselle ja kaltaiselle maalle.

"Hello World -satelliittiin liittyy myös Aalto-yliopiston ajatus mahdollisesta avaruuslaboratoriosta, joka voisi tukea hanketta. Eräs keskeinen tavoitteemme onkin potkia alan ekosysteemiä Suomessa käyntiin", jatkaa Liukkonen.

"Suomesta löytyy osaamista ja Aallolta on käytössään kaikki keskeiset testilaboratoriot, joille löytyy kaupallista kysyntää. Projektimme toimii pilottina Aalto-yliopistosta syntyvälle kaupalliselle spin-offille, jolle on jo muitakin asiakkaita näköpiirissä."

Reaktorilta hankkeen alkuvaiheissa on ollut mukana noin 10 hengen kiinnostuneiden joukko, joka on selvittänyt teemaa osin vapaa-ajallaan. Satelliitin projektitiimi koostuu kahdesta ydintekijästä, ja yhtiössä pyritään kierrättämään kaikkia kiinnostuneita osallistumaan hankkeeseen, jotta siihen liittyvä osaaminen ja ymmärrys saadaan levitettyä. 

"Huimaltahan tämä tässä vaiheessa tuntuu", Liukkonen päivittelee. 

"Kuluneen vuoden aikana on tullut pikaopiskeltua joukko yliopistotason kursseja, tutustuttua kiertoratamekaniikkaan sekä avaruusalusten systeemisuunnitteluun, ja nyt kokonaisuus alkaa konkreettisesti valmistua. Prosessi piirustuspöydältä kiertoradalle on pitkä, mutta nyt tuntuu siltä, että lähtölaskenta on jo alkanut - vaikkakin se kestää vielä vuoden!"

Näillä näkymin satelliitin hyötykuormana on kamera, jolla se tulee lähinnä kuvaamaan Maata ja tutkailemaan avaruutta kiertoradalta. Olennisinta hankkeessa onkin vakavan tutkimisen sijaan alan tutkiminen, koulutus, kokemuksen kerääminen ja innostaminen varsinaisten, myöhemmin tulevien sovellusten tekemiseen. Niinpä jo nyt reaktorilaisten mielessä pyörivät seuraavan sukupolven satelliitit...

Avaruustehdasta kaavaillaan Otaniemeen

Aalto-1 avaruudessa

Yliopistojen lisäksi myös tutkimuslaitokset ja täysin kaupalliset yhtiöt laukaisevat avaruuteen yhä useammin pieniä nanosatelliitteja. Elektroniikan pienenemisen ja mikromekaniikan paranemisen ansiosta pieneen pakettiin voidaan pakata nykyisin yhä enemmän.

Vaikka isoille, "oikeille" satelliiteille on toki oma paikkansa edelleenkin, pystytään näillä pienikokoisilla ja edullisilla satelliiteilla tekemään monia asioita lähes yhtä hyvin, mutta ennen kaikkea kustannustehokkaasti ja nopeasti.

Niinpä nanosatelliittiala on hurjassa nousussa ja satelliittien lukumäärä kasvaa nopeasti. Riskirahoittajat maailmalla ovat sijoittaneet miljardeja uudentyyppisten palvelujen rakentamiseen uuden sukupolven edullisten piensatelliittien avulla.

"Nykyään nanosatelliitit mahdollistavat muidenkin kuin perinteisten avaruusjärjestöjen ja suurvaltioiden toiminnan avaruudessa", toteaa avaruustekniikan professori Jaan Praks

"Monet yliopistojen piensatelliittiprojektit ovat laittaneet alulle pienissä maissa kokonaisia avaruusohjelmia."

Rahoitusmarkkinat kaipaavat mullistavia ideoita ja niitä keksimään ja toteuttamaan tarvitaan nuoria neroja. Niitä on syntynyt parhaiten yliopistojen CubeSat-projekteissa.

"Avaruustekniikan opetuksemme perustuu Cubesat-luokan nanosatelliitteihin. Suomen historian ensimmäinen satelliitti Aalto-1 on rakennettu pääosin opiskelijaprojektissa laajassa yhteistyössä muiden suomalaisten yliopistojen ja instituuttien kanssa. Aalto-1 laukaistaan avaruuteen loppuvuodesta, ja pian sen jälkeen myös Aalto-2, joka on jo melkein kokonaan rakennettu Otaniemessä."

Avaruustekniikka tarvitsee huippuosaamista ja Suomella on tässä hyvä mahdollisuus luoda oma erikoisalueensa.

"Kekseliäästi rakennetut nanosatelliitit eivät häviä paljoakaan isoille satelliiteille ja koulutuksellisesta näkökulmasta Aalto-1 on ollut erinomainen", tohtorikoulutettava Antti Kestilä muistuttaa.

Kuva: Kaikki toiminta ei suinkaan ole Aalto-yliopistossa. Aalto-1:n säteilyilmaisin on tehty Turun yliopistossa käytännössä kokonaan opiskelijavoimin.

Onnistuminen edellyttää yhteistyötä

Aalto-yliopistossa järjestetty sidosryhmätapaaminen nanosatelliittien tulevaisuudennäkymistä keräsi kokoon perjantaina 21. elokuuta noin viisikymmentä asiantuntijaa ja vaikuttajaa Suomen avaruustekniikan kentältä. Töitä tehtiin kolmessa työryhmässä ja päivän päätteeksi osallistujat kirjoittivat suositukset, joita käsitellään seuraavissa tapahtumissa. Pohdinnassa oli erilaiset rahoitusmallit, liiketoiminnan mahdollisuudet tulevaisuudessa ja tutkimuksen merkitys kehityksessä.

"Me Aallossa haluamme panostaa opetukseen ja tutkimustyöhön. Yhteinen ymmärrys oli, että nanosatelliiteilla on paljon käyttöä tieteessä ja suuri potentiaali avaruustekniikkaan perustuvien palveluiden ja liiketoimintamallien kehittämisessä", Praks kertoo.

Mukana olleet yritykset kiinnostuivat ideasta perustaa Aalto-yliopistoon Space Factory -osaamiskeskus. Space Factory voisi auttaa uuden sukupolven avaruustekniikkaa hyödyntäviä yrityksiä kehittämään nopeammin palveluita ja tuotteita, kun itse tekniikkaan ja testaamisen opetteluun ei menisi niin paljon aikaa. Aallolla on valmis ratkaisu sekä tekniikan että testaamisen puolella.

"Alan nopea kasvu synnyttää yrityksiä myös Suomeen yhä kiihtyvällä tahdilla", jatkaa Praks. "Iceye Oy on ensimmäinen suomalainen yritys, joka rakentaa omia satelliitteja palvelun alustaksi. Tuore start-up yritys on ponnistanut eteenpäin Aalto-1 projektista."  

Aalto-2Suomi 100 -satelliitti avaruuteen itsenäisyyden juhlavuotena

Aalto-1 ja Aalto-2 (kuvassa oikealla) saavat jatkoa Suomi 100 -nimellä kulkevasta satelliitista. Nanosatelliitti on valittu Suomen itsenäisyyden satavuotisjuhlavuoden 2017 ohjelmaan, jonka tavoitteena on tarjota jokaiselle suomalaiselle ainutkertainen avaruuskokemus.

Opiskelijavoimin rakennettavaan satelliittiin tulee kameroita ja radiovastaanotin, jotka tallentavat maapalloa, avaruutta ja revontulia sekä erityisesti Suomea.

"Projektissa on vahvasti mukana myös alan koulutus LUMA-keskus Aallon ja avaruusrekka-kiertueen myötä", professori Esa Kallio kertoo ja toivoo mahdollisten yhteistyökumppaneiden yhteydenottoja.

Kalliolle on viime aikoina tullut tutuksi Euroopan avaruusjärjestön Rosetta-lento, mihin verrattuna cubesatit ovat aivan toisenlaisia: pieniä ja notkeita.

"Nopeat pienillä resursseilla toteuttavat projektit kiehtovat, kun tätä ennen kokemusta on lähinnä kaksikymmentä vuotta kestävistä avaruusprojekteista", sanoo Kallio.

Teksti perustuu Aalto-yliopiston tiedotteeseen.