Ariane 5

Video: Näin BepiColombo rynnisti matkaan kohti Merkuriusta – tältä se näytti laukaisupaikalta suomalaissilmin

Viimeinkin! Tätä on kyllä odotettu! BepiColombo-luotain on matkalla kohti Merkuriusta. Suuri (ja pitkään kestävä) tutkimusmatka on alkanut.


Pitkään rakenteilla ollut luotain lähetettiin matkaan kohti Merkuriusta aikaisin lauantaina 20. lokakuuta Suomen aikaa Kourousta, Etelä-Amerikasta.

Mukana luotaimessa on suomalaistekoinen mittalaite SIXS, jonka tekijöistä kolme oli mukana paikan päällä seuraamassa laukaisua. Tässä on mittalaitteen tieteellisenä johtajana toimivan Juhani Huovelinin kuvaama video laukaisusta ja tunnelmien kommentointia.

Suomalaiset ovat osallistuneet aikaisemminkin suurella osuudella Euroopan avaruusjärjestön satelliitteihin ja luotaimiin, mutta koskaan ei planeettatutkimusluotaimessa ole ollut näin paljon suomalaista tietotaitoa. 

Suurin osuus tulee SIXS-nimisen tutkimuslaitteen tekemisestä. Sen kehittämisestä on vastuussa Helsingin yliopisto ja siellä yliopistonlehtorina toimiva Huovelin on mittalaitteen päätutkija. SIXS toimii luotaimessa kimpassa brittiläisen MIXS-mittalaitteen kanssa, ja professori Karri Muinonen on sen toinen päätutkija. Professori Rami Vainio Turun yliopistosta vastaa puolestaan SIXS:in hiukkasilmaisimesta.

Kaikkiaan Suomesta BepiColombon tieteelliseen työhän osallistuu kaikkiaan toistakymmentä tutkijaa Helsingin ja Turun yliopistojen lisäksi Aalto-yliopistosta ja Ilmatieteen laitokselta.

Tutkijoiden lisäksi mukana hankkeessa on paljon suomalaista avaruusteollisuutta:

- Oxford Instruments Technologies Oy ja turkulainen Aboa Space Research Oy ovat vastanneet SIXS-instrumentin teknisestä suunnittelusta ja rakentamisesta.

- TalviOja Consulting Oy on vastannut SIXS-instrumentin lämpösuunnittelusta ja -mallinnuksesta.

- Space System Finland Oy on kehittänyt ohjelmistot SIXS- ja MIXS -mittalaitteiden yhteiseen ohjaus- ja tietojenkäsittely-yksikköön.

- Patria Aviation Oy (nykyisin RUAG Space Fnland Oy) on valmistanut SIXS:n ja MIXS:n yhteisen ohjaus- ja tietojenkäsittely-yksikön.

Näiden lisäksi Ilmatieteen laitos on ollut vastuussa projektipäällikön ja laadunvalvonnan työosuuksista.

Työn on rahoittanut pääosin Tekes, joka on ollut tämän vuoden alusta osa Business Finland -organisaatiota.

Siinä missä BepiColombon suunnittelu ja rakentaminen ovat olleet täynnä teknisiä haasteita sekä viivytyksiä, sujuivat Ariane 5 -kantoraketin valmistelu matkaan ja laukaisu avaruuteen erittäin sujuvasti. Kaikki meni juuri suunnitellusti, sää laukaisupaikalla oli hyvä, eikä raketin kanssa ollut teknisiä hankaluuksia.

BepiColombo kuljetettiin keväällä Euroopan avaruusjärjestön teknisestä keskuksesta ESTECistä osina rahtilennoilla Ranskan Guyanaan, missä kesän aikana osat testattiin vielä kerran sekä laitettiin yhteen. Lisätietoja osista on mm. tässä artikkelissamme.

Luotain liitettiin kantorakettiin aiemmin tällä viikolla, sen nokkakartio laitettiin paikalleen ja raketti kuljetettiin laukaisualustalle torstaina. Perjantaina illalla raketin tankkaaminen aloitettiin ja matkaan se päästi tarkalleen suunniteltuun aikaan klo 4.45 lauantaina Suomen aikaa.

Kun laukaisusta oli kulunut 27 minuuttia, oli BepiColombo oikealla radallaan kohti planeettainvälistä avaruutta ja se irtosi Ariane 5:n ylimmästä vaiheesta. Ensimmäinen signaali luotaimesta saatiin noin klo 5:20 aamulla, kun lentoonlähdöstä oli kulunut hieman alle 40 minuuttia.

Aurinkopaneelit avautuivat sen jälkeen ja vahvistus siitä, että ne olivat auki normaalisti saatiin noin tunti ja 14 minuuttia matkan alkamisen jälkeen. Tänään luotaimessa olevat pienet kamerat ottavat kuvia, joilla aurinkopaneelien oikea avautuminen voidaan myös visuaalisesti tarkistaa.

Merkuriusta kiertämään luotain saapuu joulukuussa 2025, mutta sitä ennen se tekee useita planeettojen ohilentoja – ensimmäinen on 13. huhtikuuta 2020, jolloin luotain vilahtaa Maan ohi 11 264 kilometrin etäisyydeltä. Ohilennoilla luotaimen rataa muutetaan sopivaksi.

Alla on vielä ESAn ja Arianespacen video raketin laukaisusta.

Harvinaista: kaksi kantorakettia lähdössä lentoon vain vartti välissä

Ke, 07/25/2018 - 12:00 By Jari Mäkinen

Luvassa ihan kohta on harvinaista herkkua: voit katsoa netissä kaksi rakettilaukaisua ihan peräjälkeen. Ensin Ariane 5 lähtee lentoon klo 14.25 ja sitten Falcon 9 klo 14.39.

Tänä vuonna maailmassa on tähän mennessä tehty 59 kantoraketin laukaisua, eli raketti on lähtenyt avaruuteen keskimäärin kolmen ja puolen vuorokauden välein. Tämä tarkoittaa noin kahta laukaisua viikossa.

Avaruuslennot ovat siis nykyisin tulleet niin arkisiksi, ettei niistä kirjoiteta uutisissa juuri lainkaan. Edes vuoden ainoa epäonnistuminen ei noussut otsikoihin, koska raketti ei räjähtänyt, eikä tuloksena ollut muuta kuin lisävaivaa satelliittioperaattoreille. Ariane 5 koki nimittäin alkuvuodesta olleella lennollaan harvinaisen häiriön, jonka vuoksi sen lentorata poikkesi olennaisesti suunnitellusta. Satelliitit pääsivät avaruuteen, mutta niiden ohjaaminen oikeille radoilleen kesti kuukausia ja verotti satelliittien polttoainetta. Ne siis toimivat todennäköisesti laskettua lyhyemmän ajan.

Syy Arianen harhautumiseen selvisi nopeasti ja sen jälkeen raketti lensi jo uudelleen. Ja nyt sellainen on siis jälleen lähdössä.

Arianen kyydissä on tällä kerralla neljä eurooppalaisen Galileo-satelliittipaikannusjärjestelmän satelliittia. Kunhan nämä satelliitit saadaan taivaalle, on Galileo viimein valmis ja sen käyttäminen on yhtä sujuvaa kuin amerikkalaisen GPS:n. Tosin nyt Galileostakin ollaan jo suunnittelemassa uutta, ja parempaa versiota, sillä tekniikka on mennyt järjestelmää rakennettaessa eteenpäin.

Näitä uusia satelliitteja ei kuitenkaan enää laukaista Ariane 5:llä, sillä sen on tarkoitus jäädä pois käytöstä vuonna 2022. Siihen saakka nämä erittäin luotettavat työjuhdat nostavat ennen kaikkea tietoliikennesatelliitteja taivaalle Kouroun rakettikeskuksesta noin viitisen kertaa vuodessa.

Kourou sijaitsee sopivasti päiväntasaajan tuntumassa Ranskan Guyanassa, Etelä-Amerikan koilliskulmassa.

SpaceX -yhtiön Falcon 9 on olemukseltaan aivan erilainen kuin Ariane 5, sillä siinä missä Ariane 5 oli 1990-luvulla yksinkertaisin ja uudenaikaisin raketti, on Falcon 9 sitä nyt. Falcon 9 on hieman pienempi, mutta se on osittain uudelleenkäytettävä, sillä raketin ensimmäinen vaihe palaa takaisin alas ja voi lentää uudelleen.

Falcon 9 -raketteja laukaistaan paitsi Floridassa olevasta Cape Canaveralista, niin myös Kaliforniasta Los Angelesin yläpuolella rannikolla olevasta Vandenbergin lentotukikohdasta. Kyseessä on alun perin sotilaallisten rakettien laukaisuun tarkoitettu keskus, mistä laukaistaan nykyisin myös kaupallisia raketteja. Samaan tapaan SpaceX käyttää Cape Canaveralissa sotilasalueella olevaa laukaisualustaa.

Floridassa yhtiöllä on käytössään myös aivan vieressä siviilien (siis Nasan) hallinnassa olevassa Kennedyn avaruuskeskuksessa sijaitseva laukaisualusta, kuuluisa 39A, mistä aikanaan lähtivät matkaan Apollo-kuulennot sekä monet avaruussukkulat.

Falcon 9 -raketteja laukaistaan nyt varsin usein, ja edellinen lento tapahtui juuri sunnuntaina Cape Canaveralista. SpaceX on tehnyt tähän mennessä tänä vuonna jo 13 laukaisua, joista yksi oli uuden, raskaan Falcon 9 Heavyn lento. Tänään Kaliforniasta lähtevä raketti vie mukanaan avaruuteen kymmenen Iridium Next -tietoliikennesatelliittia.

Linkit laukaisuiden katsomiseen

Ariane 5 laukaistaan matkaan (jos kaikki käy suunnitellusti) klo 14.25 Suomen aikaa. Lentoa voi seurata Euroopan avaruusjärjestön sivuilla.

Falcon 9 laukaistaan klo 14.39 ja laukaisua voi katsoa suorana SpaceX:n sivuilla.

Ariane 5:n ylin vaihe irtoaa noin yhdeksän minuutin (tarkalleen 8 minuuttia ja 56 sekuntia) kuluttua lentoonlähdöstä. Tuolloin on hyvä hetki siirtyä katsomaan Falcon 9:n laukaisua, koska muutamat minuutit ennen moottorien käynnistämistä ovat aina jännittäviä.

Sääolot kummallakin laukaisupaikalla ovat hyvät.

Harvinainen vika iski Ariane-rakettiin – toimitti satelliitit avaruuteen, mutta sai hengityksen lamaantumaan

Pe, 01/26/2018 - 11:34 By Jari Mäkinen

Eurooppalainen Ariane 5 -kantoraketti laukaisi viime yönä Suomen aikaa kaksi satelliittia avaruuteen. Tällä kerralla kaikki ei kuitenkaan mennyt suunnitelman mukaisesti, sillä yhteys rakettiin menetettiin kesken lennon. Onneksi raketti teki työnsä ilman lennonjohtoakin ja satelliitit nyt ovat avaruudessa.

Vaikka 1990-luvulla Ariane 5 koki muutaman takaiskun, on euroraketti osoittautunut sen jälkeen erittäin luotettavaksi työjuhdaksi. Ennen eilistä laukaisua se oli lentänyt 82 kertaa ilman ongelmia, joten jos lento olisi epäonnistunut, niin kyseessä olisi ollut ensimmäinen huti sitten vuoden 2002.

Nyt tosiaan näyttää siltä, että rakettien laukaisusta vastaava Arianespace pääsi pelkällä säikähdyksellä; jos lento olisi epäonnistunut, olisi tälle vuodelle suunniteltu tiivis laukaisuohjelma ollut vaarassa, koska onnettomuuden syy olisi pitänyt selvittää ennen seuraavaa lentoa. Laukaisuihin ja tulevien rakettien valmisteluihin olisi tullut kuukausien viive.

Tämä olisi ollut erityisen hankalaa siksi, että tänä vuonna Ariane 5 tulee laukaisemaan avaruuteen tavallisten kuormien lisäksi kohti Merkuriusta lähtevän BepiColombo -luotaimen sekä Hubblen avaruusteleskoopin seuraajan James Webb Space Telescopen. Näistä JWST voidaan laukaista milloin vain, mutta Merkuriukseen täytyy lähteä ensi lokakuussa – tai lento lykkääntyisi jälleen kerran myöhemmäksi.

Mitä lennolla tapahtui?

Ariane 5:n lento VA541 nousi lentoon suunnitellusti eilen 25.1. klo 19.20 paikallista aikaa Kouroussa, eli klo 00.20 Suomen aikaa. 

Lento sujui normaalisti aina siihen saakka, kunnes raketin ensimmäinen vaihe lopetti toimintansa ja irtosi. Kun aikaa lentoon lähdöstä oli kulunut hieman yli yhdeksän minuuttia, aloitti toisen vaiheen moottori toimintansa ja raketin lähettämän telemetriasignaalin piti tulla kuuluviin maa-asemalla. 

Näin ei käynyt, vaan raketin toinen vaihe pysyi mykkänä. Lennonjohto ei pystynyt seuraamaan lentoa ja siksi epäilykset lennon epäonnistumisesta alkoivat nopeasti kasvaa.

Lennonjohdolla tosin ei ollut tässä vaiheessa enää mitään muuta tekemistä kuin lennon seuranta, sillä raketti teki työtään omien tietokoneidensa ja niihin tallennetun lentoprofiilin mukaisesti. 

Ja Ariane nähtävästi hoiti hommansa itsenäisesti loppuun saakka, sillä myöhemmin kumpikin satelliitti irtosi omille radoilleen ja niiden omistajat saivat niihin yhteydet.

Toistaiseksi ei kuitenkaan tiedetä vielä – ainakaan virallisesti – kuinka täsmälleen SES 14- ja  Al Yah 3 -tietoliikennesatelliitit ovat niille aiotuilla radoillaan. 

Ne piti viedä niin sanotulle supersynkroniselle radalle, mikä on noin 9000 kilometriä normaalia korkeammalla.

Tietoliikennesatelliitit, joiden lopullinen kiertorata on noin 36 000 kilometrin korkeudessa päiväntasaajan päällä, viedään yleensä raketilla "vain" radalle, joka vie niitä kohti lopullista rataansa.  Satelliitit siirretään tältä omin pienten moottoriensa avulla lopulliselle radalle.

Tavallista korkeampi siirtorata kuitenkin vähentää satelliittien omaa työtä ja säästää siten polttoainetta varsinaiseen toimintaan. Voi olla, että tällä kerralla säästö jääkin varsin vähäiseksi, mikäli satelliitit joutuvat korjaamaan rataansa epätarkan laukaisun vuoksi.

Vaikka Ariane 5 näyttääkin toimineen suunnitellusti, tutkitaan telemetrian katkeaminen varmasti perin pohjin ennen seuraavaa lentoa. Tämä kuitenkaan ei todennäköisesti aiheuta suuria paineita laukaisuohjelman suhteen. 

Tämän viikon rakettibonanza saatiin käyntiin: kaksi neljästä laukaisusta jo tehtiin illalla

Ti, 12/12/2017 - 23:32 By Jari Mäkinen

Kuten aika usein vuoden lopussa, on tällä viikolla tekeillä useampia rakettien lentoja, kun ne halutaan saada tehtyä ennen joulunaikaa. Laukaisusarjan piti alkaa jo sunnuntaina, mutta viivytysten vuoksi meno alkoi vasta tänään: ensin Ariane 5, sitten New Shepard ja Electron sekä Falcon 9 ovat vielä lähdössä. Lisäksi kiinalaiset ennättivät jo laukaisemaan oman kantorakettinsa!

Satelliitteja laukaistaan avaruuteen nykyisin jatkuvalla syötöllä, eikä näistä enää jakseta raportoida – edes täällä Tiedetuubissa – koko aikaa.

Tilanne on luonnollisesti toinen, jos lennoilla jokin menee pieleen, tai edessä on tällainen laukaisusuma kuin juuri nyt. 

(Alla olevassa jutussa olevia tulevia laukaisuajankohtia on päivitetty)

Falcon 9 CRS-13

Tämän rakettilaukaisusarjan piti alkaa alun perin jo viime viikolla, kun Kansainväliselle avaruusasemalle rahtia vievän Falcon 9 -raketin oli tarkoitus lähteä matkaan. Tätä laukaisua on lykkätty sittemmin useaan otteeseen, mutta nyt uudelleenkäytettävän, SpaceX -yhtiön Falcon 9 -raketin on tarkoitus lähteä matkaan perjantaina 15. joulukuuta klo 5.36 Suomen aikaa (päivitys: se lähti).

Kyseessä on siinä mielessä historiallinen lento, että raketissa on paitsi jo kertaalleen lentänyt ensimmäinen vaihe, niin myös aiemmin jo avaruudessa käynyt Dragon-rahtialus. Lento on siis kaksinkertainen kierrätyslento ja siten ennakkotapaus tulevasta, kun jo aikaisemmin lentäneitä avaruusaluksia ja kantorakettien vaiheita käytetään uudelleen.

Molemmat on kunnostettu lentojensa jälkeen ja testattu huolellisesti, joten ne varmastikin toimivat hyvin  – mutta tietenkään tästä ei ole varmuutta.

Kyseessä on jo 15. Dragon-aluksen lento ja 13. operationaalinen rahtilento ISS-asemalle. 

Laukaisu on myös merkittävä siinä mielessä, että se käyttää ensimmäistä kertaa SpaceX:n hallinnassa olevaa Cape Canaveralin laukaisualustaa, jolla tapahtui ikävä onnettomuus vuonna 2016. Raketti räjähti tuolloin testaamisen yhteydessä laukaisualustalla ja sai aikaan paitsi Falcon 9 -rakettien laukaisuohjelmaan suuren viivästyksen, niin myös tuhosi laukaisualustan lähes kokonaan.

Toisella yhtiön Floridassa olevalla alustalla, Cape Kennedyn puolella olevalla 39A:lla ollaan valmistelemassa lentoonsa Falcon Heavy -kantorakettia, jonka saaminen käyttöön olisi valtava askel eteenpäin nuorelle avaruusyhtiölle.

Ariane 5 ja Galileot

Tänään illalla Suomen aikaa rytisi Kouroun avaruuskeskuksesta matkaan Arianen lento VA240. Koodinimen V tarkoittaa ranskan kielen salaa vol, eli "lento", ja A merkitsee Arianea, joten kyseessä on jo 240. Arianen lento.

Tällä kerralla kyydissä oli neljä eurooppalaisen Galileo-navigointisysteemin satelliittia, jotka Ariane toimitti oikealle radalle, mistä satelliitit jatkavat kohti kukin omia ratojaan ja paikkojaan radoillaan.

Satelliitit 19, 20, 21 ja 22 tekevät Galileosta aimpaakin käyttökelpoisemman, sillä vaikka teoreettisesti systeemi on jo operationaalinen, kestää signaalin saaminen toisinaan hieman pitkään. Kunnolla toimiva Galileosta saadaan sitten, kun aktiivisten satelliittien määrä on 24 ja lisäksi avaruudessa on kuusi kappaletta varasatelliitteja. Tämä tapahtuu näillä näkymin vuonna 2020.

Ensi vuonna matkaan lähtee kaksi operationaalista satelliittia lisää ja kaksi varakappaletta. Seuraavaksi avaruuteen läheteään vielä neljä varakappaletta.

Arianen lento VA240 nousee lentoon.
Arianen lento VA240 nousee lentoon.

 

Pikkuraketti Electron

Toinen laukaisu, jonka piti jo tapahtua, mutta jota on nyt lykätty keskiviikkoon, on Rocket Lab -yhtiön pienen Electron-raketin koelento Uudesta-Seelannista. 

Kyseessä on nano- ja mikrosatelliittien laukaisuun tarkoitettu uusi kantoraketti, joka on tehnyt jo yhden lennon aikaisemmin, mutta lento ei aivan mennyt suunnitelmien mukaan: laukaisu sinänsä sujui hyvin, mutta raketti ei onnistunut saavuttamaan kiertoratanopeutta.

Nyt tavoitteena on laukaista kolme satelliittia avaruuteen – mutta nähtäväksi jää, toimiiko raketti tällä kerralla toivotusti.

Lentoa on lykätty eteenpäin jo viime kesästä alkaen, ja nyt kun raketti oli oikeasti tarkoitus lähettää matkaan, on lentoa jouduttu lykkäämään jo pari kertaa perjantaista alkaen. Seuraava yritys oli keskiviikkona, mutta sitäkin lykättiin ainakin päivällä eteenpäin liian voimakkaiden tuulien vuoksi.

Päivitys: yhtiö on lykännyt Electronin laukaisua tammikuuhun 2018

Onnistunut avaruushyppäys

Toinen tänään illalla tapahtunut rakettilaukaisu ei tavoitellutkaan kiertorataa Maan ympärillä, vaan "pelkkää" pomppausta juuri ja juuri avaruuden puolelle.

Blue Origin -yhtiö kehittää uudelleenkäytettävää New Shepard -rakettia, jonka kuljettama kapseli voisi nostaa avaruusturisteja hyppylennoille noin sadan kilometrin korkeuteen. Lennoilla matkustajat näkisivät avaruudellisesti mustan taivaan ja kaarevan maapallon horisontin sekä kokisivat viitisen minuuttia kestävän painottomuuden

Lento – siis niin raketin nousu kuin laskeutuminen, sekä kapselin laskeutuminen laskuvarjon varassa – onnistuivat nyt hyvin, aivan kuten tapahtui myös jotakuinkin vuosi sitten lokakuussa 2016.

Yhtiö uhoaa nyt saavansa ensimmäiset maksavat matkustajat avaruuslennolle vielä ensi vuoden kuluessa. Kilpailusta Virgin Galactic -yhtiön kanssa tulee siis kova, sillä yhtiön käyttämän lentokonemaisen SpaceShip2:n on tarkoitus tehdä ensimmäinen kunnollinen avaruuslentonsa milloin vain ja matkustajalentojen on tarkoitus alkaa vuoden sisällä siitä eteenpäin.

Ellei siis mitään ihmeellistä tapahdu, alkaa suborbitaalinen avaruusturismi viimeinkin vuonna 2018!

New Shepard tämänpäiväistä edellisellä lennollaan.

Lisää lentoja tulossa loppuvuonna

Vuoden lopun toimintapyrskäys ei lopu tähän viikkoon.

Seuraavan avaruusasemalle suuntaavan kolmihenkisen miehistön on tarkoitus nousta matkaan Sojuz-aluksellaan 17. joulukuuta Baikonurin kosmodromista.

Joulukuun 22. päivänä on vuorossa Kaliforniasta, Vandenbergin lentotukikohdassa olevalta alustalta matkaan lähtevä Falcon 9 -raketti. Sen kyydissä on kymmenen Iridium-satelliittimatkapuhelinsysteemin satelliittia. Lento käyttää myös aiemmin jo lentänyttä ensimmäistä rakettivaihetta ja sen on tarkoitus laskeutua jälleen takaisin alas, Tyynellä valtamerellä kelluvan lavetin päälle.

Samana päivänä toiselta puolelta valtamerta, Japanista, on aikomus lähettää H-2A -kantoraketti Tanegashiman avaruuskeskuksesta. Mukana on muun muassa ilmakehää tutkiva satelliitti ja koealus, jonka on tarkoitus lentää hyvin alhaisella kiertoradalla. 

26. joulukuuta on vuorossa Baikonurista lähtevä Zenit-raketti, jonka kyydissä on AngoSat, Angolan ensimmäinen satelliitti (jonka tosin on rakentanut venäläinen Energia-yhtiö).

Ja sitten joulukuun 27. päivänä on vielä lähdössä japanilainen pieni SS-520-5. Sen on tarkoitus viedä avaruuteen samoin pieni TRICOM 1R, joka kooltaan Aalto-1:n tapaan kolmen yksikön kuutiosatelliitti. Japanilaiset koettavat osaltaan tulla mukaan pikkusatelliittien laukaisuun näillä raketeillaan.

Kiina saattaa vielä laukaista myös yhden satelliitin vielä tämän vuoden puolella: Long March 2D -raketin on tarkoitus viedä kiertoradalle kaksi Superview -kaukokartoitussatelliittia Taiyuanin avaruuskeskuksesta. Satelliitit pystyvät kuvaamaan Maan pintaa alle metrin tarkkuudella ja kiinalaiset aikovat myydä kuvia ulkomaiseen malliin täysin kaupallisesti niin kiinalaisille kuin myös ulkomaisille asiakkaille.

BepiColombo on kuin avaruuslento pizzauuniin

Pe, 07/07/2017 - 10:20 By Jari Mäkinen
BepiColombo saapumassa Merkuriusta kiertämään

Euroopan avaruusjärjestön seuraava kunnianhimoinen planeettalento on BepiColombo, jonka kohteena on pätsimäisen kuuma Merkurius. Luotain esiteltiin viime viikolla Hollannissa, ja siksi lento on nyt tulossa ajankohtaiseksi. Katso myös puhdastilassa luotaimen luona tehty videomme aiheesta!

Aurinkokuntamme sisintä planeettaa, Merkuriusta, on käyty tutkimassa vain kahdella luotaimella aikaisemmin. Äkkiseltään katsottuna planeetta näyttää Kuulta – paitsi harmaalta, kraatteriselta ulkonäöltään, on se myös jotakuinkin Kuun kokoinen.

Kaukoputkella tai muilla maanpäällisillä tutkimuslaitteitta ei Merkuriusta voi juurikaan kuvata, koska se on aina hyvin lähellä Aurinkoa Maasta katsottuna. SIksi ainoa tapa saada siitä selvyyttä on mennä paikan päälle.

Merkuriuksen tutkiminen on kuitenkin paljon hankalampaa kuin Kuun tai muiden lähiplaneettojen jahtaaminen avaruusluotaimin.

Tärkeimpiä syitä on kaksi: Merkuriusta kiertämään on hankala mennä ja olosuhteet lähellä Aurinkoa ovat kirjaimellisesti helvetilliset. Auringon paahde kuumentaa aluksen pintaa siellä parhaimmillaan (tai siis pahimmillaan) jopa 430°C:n lämpötilaan, minkä lisäksi Merkuriuksen pinta hohtaa myös pizzauunin kuumuudella.

​Jos Aurinkoa katsoisi Merkuriuksesta, olisi se keskimäärin 2,5 kertaa suurempi kuin Maassa. Sen kirkkaus olisi puolestaan 6,5 kertaa suurempi.

Lennon vaikeus johtuu puolestaan siitä, että lentäminen "alaspäin" aurinkokunnassa vaatii omat temppunsa ja Merkuriuksen tapauksessa ongelmana on myös sen soikea kiertorata. Radan korkein piste vääntyy koko ajan vähän eteenpäin Auringon vetovoiman vuoksi, joten planeettaa kiertämään saapuvan luotaimen rataa pitää koko ajan säätää sen mukaisesti

Ensimmäisenä Merkuriusta tutki amerikkalainen Mariner 10 maaliskuussa 1974. Sen lento osoitti konkreettisesti myös Merkuriukseen menemisen vaikeuden, sillä 1970-luvun tekniikalla pystyttiin tekemään vain ohilentoja. Maaliskuun 1974 jälkeen se teki toisen ohilennon saman vuoden syyskuussa ja kolmannen maaliskuussa 1975, jolloin se lensi vain 327 kilometrin korkeudelta planeetan pinnasta. 

Mariner 10 kuvasi noin 45% Merkuriuksen rokonarpisesta pinnasta. Se havaitsi heikon magneettikentän ja löysi planeetan ympäriltä hyvin ohuen kaasukehän, joka koostui lähinnä heliumista.

Seuraavia luotaimen ottamia lähikuvia jouduttiin odottamaan vuoteen 2008, jolloin Nasan Messenger-luotain suhahti Merkuriuksen ohi. Sen jälkeen luotain teki kaksi ohilentoa lisää ja sääti kiertorataansa siten, että se pääsi lopulta asettumaan kiertoradalle Merkuriuksen ympärillä vuonna 2011.

Massiivisella lämpökilvellä varustettu Messenger onnistui kuvaamaan jo noin 90 % Merkuriuksen pinnasta jo ohilentojensa aikana, mikä auttoi tutkijoita etsimään kaikkein kiinnostavimpia kohteita jo ennen varsinaisen tutkimisen alkamista. Planeettaa kiertäessään luotaimen rataa muutettiin useampaan kertaan, jotta se pystyi paitsi kuvaamaan ja mittaamaan planeetan pintaa mahdollisimman tarkasti, niin myös tutkimaan avaruutta sen ympärillä eri puolilta ja etäisyyksiltä.

Lähimmillään luotain kävi Merkuriusta tammikuussa 2012, jolloin se kävi ratansa lähimmässä osassa vain noin 200 kilometrin päässä pinnasta. Tosin lentonsa lopuksi luotain pääsi vieläkin lähemmäksi, sillä Messenger ohjattiin osumaan planeetan pintaan lentonsa lopuksi huhtikuussa 2015. Se luonnollisesti lähetti tietojaan loppuun saakka.

Merkuriuksen pintaa väärävärikuvana MESSENGERin kuvaamana.
Merkuriuksen pintaa väärävärikuvana.

Merkurius on hyvin omituinen minihelvetti

Etenkin käsittelemättömissä, ilman värikorostusta olevissa kuvissa Merkurius näyttää varsin tylsältä, mutta silti se on hyvin kiinnostava, mutta koska sen avulla voidaan ymmärtää paremmin yleisesti lähellä Aurinkoa olevia kiviplaneettoja.

Pääosin Messenger vahvisti aiempia oletuksia siitä, että sen koostumuksessa raudan suhde silikaatteihin (siis kiveen) on varsin suuri ja että sillä on heikko magneettikenttä. 

Magneettikentän olemassaolo on erityisen kiinnostavaa, koska periaatteessa planeetta on liian pieni siihen, että sillä olisi magneettikentän synnyttävä sulasta nikkelistä ja raudasta muodostunut hyvin suurikokoinen ydin. Se muodostaa todennäköisesti joka kaksi kolmannesta planeetan massasta ja sen säde voisi olla jopa 1900 km. Siten kivikuoren paksuus olisi vain viitisensataa kilometriä.

Erään teorian mukaan Merkuriukseen olisi törmännyt joskus Aurinkokunnan alkuaikoina jokin suuri kappale, joka olisi singonnut suuren osan pinta-aineesta pois. Toinen teoria ehdottaa, että nuori Aurinko olisi ollut kuumempi ja se olisi yksinkertaisesti höyrystänyt pinnasta paljon ainetta avaruuteen.

Messengerin lähettämissä yli sadassa tuhannessa kuvassa näkyy kuunharmaata pintaa kraattereineen, tasankoineen, laavavirtoineen ja satoja kilometrejä pitkine halkeamineen. Merkurius on selvästi ollut ainakin aikaisemmin aktiivinen, mutta suurelta osin pinnanmuodot on selitettävissä siten, että planeetta on jäähtynyt ja kutistunut syntynsä jälkeen. 

Suurin Merkuriuksen pinnanmuoto on halkaisijaltaan noin 1500 km oleva Caloriksen allas. Se on törmäyskraatteri, jonka reunalla olevat vuoret ovat noin kaksi kilometriä korkeita. Isku on aikanaan ollut niin voimakas, että planeetan pinnalla täsmälleen toisella puolella on sokkiaaltojen aikaansaamia ruhjeita.

Vaikka Merkuriuksessa on hyvin kuumaa, on sen napa-alueilla paikkoja, minne Aurinko ei paista (tällä hetkellä) lainkaan. Siellä, esimerkiksi syvällä kraattereissa, saattaa olla jäätynyttä vettä. Messenger löysi pohjoisnavan luota merkkejä jäästä, kuten myös yksinkertaisista orgaanisista yhdisteistä.

BepiColombo näyttää vähän omituiselta, suurelta alasimelta. Sen mukana matkaan lähtevä magnetosfääriluotain on puolestaan kuin täytekakku, jonka päällä koristeena on antenni.

BepiColombo jatkaa Messengerin työtä 

Jos alkuperäiset suunnitelmat olisivat toteutuneet, olisi BepiColombo lähtenyt matkaan lähes saman tien Messengerin jälkeen. Mutta luotaimen eteen kerääntyi paljon teknisiä ongelmia, ennen kaikkea siksi, että lento on hyvin kunnianhimoinen. 

Amerikkalaiset tekivät luotaimensa varsin suoraviivaisesti piilottamalla sen kookkaan lämpösuojakilven taakse, mikä haittasi olennaisesti Merkuriuksen tutkimista. Euroluotain sen sijaan käyttää monia aivan uusia tekniikoita, joiden kehittäminen osoittautui varsin haastavaksi.

Lentoa alettiin suunnitella jo 1990-luvun lopulla ja 2000-luvun alussa hanke laitettiin ehdolle ESAn Cosmic Vision -tutkimusohjelman erääksi ns. lippulaivalennoksi. Se olisi siis Rosetta-komeettaluotaimen kaltainen kallis ja kunnianhimoinen lento, johon panostettaisiin runsaasti aikaa ja rahaa.

Virallisesti lento hyväksyttiin helmikuussa 2007, jolloin päätettiin myös toteuttaa lento yhdessä Japanin avaruustutkimusvirasto JAXAn kanssa: euroluotaimen kanssa Merkuriusta lähtisi tutkimaan samalla kyydillä pienempi japanilainen ennen kaikkea magneettikentän mittaamiseen erikoistunut alus.

Lento sai omalaatuisen nimen BepiColombo italialaiselta matemaatikolta Giuseppe "Bepi" Colombolta, joka keksi ja laski Mariner 10 -lennon omalaatuisen ohilentoradan.

Rata oli merkittävä myös siksi, että se käytti ensimmäisenä planeettojen ohilentoja luotaimen nopeuden ja lentoradan muuttamiseen rakettimoottorin polttojen sijaan. Mariner 10 ei olisi kyennyt tutkimaan Merkuriusta niin hyvin ilman Bepiksi kutsutun italialaisen ideaa, ja painovoimalinkousta on käytetty sen jälkeen lukuisten luotaimen lentoa avustamaan.

Alkuperäisen aikataulun mukaan laukaisu olisi tapahtunut jo vuonna 2011, mutta nyt se on lokakuussa 2018. 

Tekniset ongelmat on nyt ratkaistu, ja vain luotaimen viimeisissä testeissä tai sen laukaisuvalmisteluissa tapahtuvat onnettomuudet voivat enää lykätä lentoa. Tai jos kantoraketille tapahtuu onnettomuus ennen laukaisua.

Luotaimen varsinainen lentomalli on joka tapauksessa nyt valmis ja se on parhaillaan ESAn teknisessä keskuksessa ESTECissä, Hollannissa.

Kyseessä on itse asiassa kolmikko, joka näyttää omituiselta päällekkäin kasattujen palasten tornilta.

Varsinainen BepiColombo-luotain on vähän alasimen näköinen laatikkomainen laite, joka on viitisen metriä pitkä suurimmalta pinnaltaan. Sen yksi kylki on kuin metallinvärinen sälekaihdin: se on aina varjopuolella oleva lämpösäteilin, joka hohkaa luotaimen sisältä lämpöä ulos avaruuteen. 

BepiColombossa ei ole Messengerin käyttämää lämpökilpeä, vaan se luottaa vaaleaan lämpösuojaan pinnallaan sekä näppärästi suunniteltuun lämmönhallintasysteemiin, joka vie ylimääräisen kuumuuden lämpösäteilimeen. Lämpösuojaus on ollut yksi suurimmista syypäistä viivytykseen; esimerkiksi vaalean kangasmaisen lämpösuojapinnoitteen mustata ompeleet piti tehdä uudestaan, kun saumoista valuikin liikaa lämpöä läpi.

Yllättävä lisäviivästys tuli puolestaan lautasantennista, jonka kautta luotain on yhteydessä Maahan. Sen muoto muuttui liikaa tietyissä tilanteissa, joissa sen toinen puoli oli varjossa ja toinen Auringon paahteessa. Kun antennin lautasmuoto muuttui liikaa, ei tieto enää kulkenutkaan. Siis antennia suojaamaan piti kehittää erityinen valkoinen maali.

Verrattuna Messengeriin joutuu BepiColombon vielä suuremman lämpörasituksen kohteeksi, koska sen kiertorata tulee olemaan lähempänä pintaa. 

Toinen murheenkryyni on ollut aurinkopaneeli, joka toistaiseksi täytyy vielä kuvitella ESTECin hallissa olevaan luotaimeen kiinni. Alun perin käytettäväksi suunnitellut yhdistepuolijohdeaurinkokennot osoittautuivatkin lämmönkestävyydeltään luvattua huonommaksi, joten aurinkopaneelin lisäksi osa alijärjestelmiä piti suunnitella uudelleen.

Koska aurinkopaneelin pitää osoittaa kohti Aurinkoa, on sen suojaaminen ylimääräiseltä lämmöltä hankalaa. Siksi pintaan on asennettu kennojen lisäksi peiliä ja paneelit käännetään osoittamaan hyvin pienessä kulmassa Aurinkoon: se voi olla jopa 80° poispäin Auringosta.

Varsinaisen alasinmaisen luotaimen (josta käytetään myös lyhennenimeä MPO, Mercury Planetary Orbiter) kanssa Merkuriusta tulee kiertämään pienempi japanilainen magneettikenttää mittaava satelliitti, joka vapautetaan omille teilleen Merkuriuksen luona.

Tämä japanilaisten tekemä MMO-nimellä (Mercury Magnetospheric Orbiter) tunnettu alus on kuin aurinkopaneeleilla ja hopeapaperilla päällystetty täytekakku, jonka keskellä sojottaa antenni kuin yksittäinen kynttilä kakussa.

Ja lisäksi on viitisen metriä pitkä toiselta pinnaltaan kaareva laatikko MTM (Mercury Transfer Module), jonka tehtävänä on kuljettaa kaksi kiertolaista planeettainvälisen avaruuden halki Merkuriukseen. Siinä on omat aurinkopaneelit ja neljä voimakasta ionimoottoria. 

Oikeastaan lisäksi osiin tulee laskea vielä aurinkosuoja, metallinen tötterömäinen visiiri, joka tulee suojaamaan luotaimia Auringon paahteelta matkan aikana. 

Jos BepiColombon kehittämiseen on mennyt suunniteltua enemmän aikaa ja rahaa, on tästä ollut jo nyt hyötyä ESAn Aurinkoa tutkivan Solar Orbiter -luotaimen suunnittelun kannalta. Suurin osa ongelmista on liittynyt juuri siihen, että Euroopassa ei ole aikaisemmin tehty yhtä lämpöteknisesti haastavaa avaruusalusta.

Luotaimessa on neljä voimakasta ionimoottoria, jotka vievät BepiColombon mutkikasta rataa pitkin Merkuriukseen.

Lähelle on pitkä matka

Matkassa mitattuna ei Merkurius ole usein paljoakaan kauempana kuin esimerkiksi Mars keskimäärin, mutta sinne meneminen on paljon Marsia vaikeampaa.

Hieman yli neljä tonnia laukaisun aikaan painavalta BepiColombolta matkaan kuluu seitsemän vuotta ja pari kuukautta; Messengeriltä kului noin kahdeksan. Lyhempään matka-aikaan päästään tehokkailla ionimoottoreilla ja näppärällä lentoradalla.

Ensin luotain saapuu noin vuoden kuluttua laukaisunsa jälkeen Maan lähelle ja nappaa käyttää maapalloa ratamuutokseen kohti Venusta. Kaksi 225 vuorokauden välein toistuvaa Venuksen ohilentoa muuttavat soikean radan Aurinkoa lähintä kohtaa pistettä Merkuriuksen etäisyydelle. 

Sitten tehdään kuusi Merkuriuksen ohilentoa, joilla luotaimen nopeus saadaan hidastettua 1,75 kilometriin sekunnissa. Alkunopeus oli 3,36 km/s.

Lopulta luotain vempautetaan joulukuussa 2025 kiertämään Merkuriusta neljällä pitkällä ionimoottoreiden jarrutuspoltolla siten, että lopulta kohdeplaneetta oikeastaan nappaa luotaimen kiertoradalleen.

Aluksi luotain kiertää Merkuriusta hyvin soikealla kiertoradalla, jonka lähin piste on 450 kilometrin korkeudessa ja kaukaisin 175 000 kilometrin päässä planeetasta.

Japanilaisluotain irrotetaan, ja se jää kiertämään itsekseen Merkuriusta.

Sen jälkeen BepiColombo muuttaa rataansa vähemmän soikeaksi siten, että lopulta sen on radalla, joka kulkee planeetan napojen kautta ja vaihtelee korkeudeltaan 400:n ja 1500:n kilometrin välillä.

Pari kuukautta kestävän mittalaitteiden ja kameroiden tarkistuksen jälkeen luotain aloitta ainakin vuoden ajaksi suunnitellun tutkimusrupeamansa. Tosin yleensä avaruuslaitteet kestävät nykyisin minimivaatimuksia pitempään, joten jo nyt lennon arvellaan ja toivotan kestävän vähintään vuoteen 2027.

Ja jos luotain on niin hyvä kuin nyt oletetaan, saattaa se jatkaa tutkimuksiaan tuon jälkeenkin.

Ensi yönä jyrisee – eeppinen satelliittilaukaisu Kourousta

Ke, 08/24/2016 - 18:45 By Jari Mäkinen
VA230

Ariane 5 -kantoraketin laukaisut eivät ole mitenkään harvinaisia, mutta ensiöinen lento on hieman erikoisempi: kyydissä on kaksi Intelsat -yhtiölle kuuluvaa satelliittia. Tuplalaukaisukyky on ollut Arianen valtti, mutta nyt se on sen riippakivi...

Jos kaikki sujuu suunnitelman mukaan, nousee Ariane 5 lentoon Euroopan avaruuslaukaisukeskuksesta Kourousta Ranskan Guianasta tänään illalla klo 00:55 Suomen aikaa (6:55 paikallista aikaa) ja vie 45-minuuttia kaikkiaan kestävällä laukaisullaan kaksi tietoliikennesatelliittia radoilleen kohti geostationaarista kiertorataa.

Mikäli koodinimeä VA232 kantava lento onnistuu hyvin, tulee siitä 73. perättäinen täysin nappiin mennyt Ariane 5:n lento – Ariane 5 on tällä saavutuksellaan jo nyt eräs maailman luotettavimmista kantoraketeista.

Raketin nokassa olevan kuorman assa on 10 735 kg, mikä pitää sisällään kaksi satellititia ja niiden laukaisuun vaadittavien sovittimien ja kiinnikkeiden painot.

Intelsat 36 (vasemmalla) on pienempi, ja sen massa on 3 253 kg. Selvästi suuremman Intelsat 33e:n (oikealla) massa on puolestaan 6 600 kg. Kuvissa satelliitteja tankataan, jolloin henkilökunta joutuu käyttämään suojapukuja.

Satelliitit on asennettu kyytiin päällekkäin. Ylimmäisenä on Intelsat 33e, joka kuuluu yhtiön uusimpaan EpicNG-satelliittien sarjaan. Kyseessä on jo toinen tämän Boeing-yhtiön tekemien satelliittien kappale, ja tämä satelliitti sijoitetaan jotakuinkin Seychellien päälle geostationaariradalla. 

Toinen, nokassa alempi satelliitti, on vanhempaa sukupolvea edustava Intelsat 36. Sen on valmistanut Space Systems Loral -yhtiö, ja se sijoitetaan hieman idemmäs, 68,5° kohdalle itäänpäin nollameridiaanista. Sen työkenttänä tulee olemaan Etelä-Afrikka ja Intian valtameri.

Kyseessä on jo neljäs Ariane 5:n laukaisu tänä vuonna ja suunnitteilla on vielä yksi laukaisu lisää. Sen kyydissä on neljä kappaletta Galileo-satelliittinavigointijärjestelmän satelliitteja.

Ariane 5:n lentojen suunnittelu on nykyisin hieman hankalampaa kuin aikaisemmin, koska tietoliikennesatelliitit ovat aiempaa massiivisempia. Kun aikaisemmin Ariane 5 kykeni kuljettamaan helposti kaksi satelliittia avaruuteen, on nyt sopivien parivaljakoiden löytäminen hankalaa. Kun toinen satelliitti on suurempi ja painavampi, pitää toisen olla keskimääräistä kevyemmän. 

Tämä on yksi syy siihen, miksi Ariane on menettänyt hieman otettaan SpaceX -yhtiölle ja sen Falcon 9 -kantoraketille. Raketti on edullisempi, joten se pystyy kilpailemaan yhden satelliitin laukaisun kanssa Arianen kimppakyytiä vastaan. Ariane 5 pystyisi luonnollisesti laukaisemaan yksinään paljon nykysatelliitteja massiivisempiakin kuormia, mutta laukaisu maksaa liikaa. 

Tämä on yksi syy siihen, miksi Ariane 5:n seuraajasta, Ariane 6:stä suunnitellaan pienempää ja edullisempaa.

Päivitys 25.8. aamulla: laukaisu onnistui ja sen voi katsoa uudelleen alla olevalla videolla:

Webb-avaruusteleskoopin mosaiikkipeili on nyt valmis

To, 02/04/2016 - 19:34 By Markus Hotakainen
Webbin pääpeili

Parin vuoden kuluttua avaruuteen laukaistava James Webb -avaruusteleskooppi on ison askeleen lähempänä maalia: sen 6,5 metrin läpimittainen pääpeili on valmis.

Toisin kuin Hubble-avaruusteleskoopissa, Webbin peili ei ole yhtä kappaletta, vaan rakentuu 18 kuusikulmaisesta palasesta. Kukin niistä on 1,3 metrin läpimittainen ja painaa noin 40 kiloa.

"Pääpeilin valmistuminen on todella merkittävä virstanpylväs. Siihen kiteytyy yli vuosikymmenen kestänyt suunnittelu, valmistus, testaaminen ja nyt lopullinen kokoaminen", toteaa Lee Feinberg Goddardin avaruuslentokeskuksesta.

Kaikkinensa teleskoopilla on kokoa suunnilleen saman verran kuin tenniskentällä, joten peilin valmistumisen jälkeenkin on vielä paljon tehtävää  ennen kuin se voidaan lähettää avaruuteen. 

 

 

"Nyt kun peili on valmis, odotamme innolla muun optiikan asentamista ja kaikkien komponenttien testausta, joka varmistaa teleskoopin selviävän rakettilaukaisusta", sanoo Bill Ochs, teleskooppiprojektin vetäjä. "Vuosi 2016 alkoi upeasti!"

"Optiikan jälkeen asennetaan paikalleen teleskoopin sydän eli Integrated Science Instrument Module. Akustisten, tärinä- ja muiden Goddardissa tehtävien testien jälkeen teleskooppi siirretään Johnsonin avaruuskeskukseen, missä tehdään perusteelliset optiset testit kylmätilassa, jotta kaikki todella toimii kuten pitää", listaa Gary Matthews optiikan kokoamisesta vastanneesta Harris Corporation -yhtiöstä.

James Webb -avaruusteleskooppi on määrä laukaista Euroopan avaruusjärjestön Ariane 5 -raketilla Ranskan Guayanasta vuonna 2018.

Pääpeilin valmistumisesta kerrottiin NASAn uutissivuilla

Kuvat: NASA/Chris Gunn