Asteroidi 2024 YR4 - tänne törmäys voisi osua ja tällainen se voisi olla Jarmo Korteniemi Ke, 05/02/2025 - 15:31
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan

Seuraamme asteroidi 2024 YR4:n havaitsemista ja sen mahdollista törmäysuhkaa. Tässä jutussa  on analyysi sen koosta, mahdollisesta törmäyspaikasta ja siitä, miten törmäys saattaisi tapahtua.

Aloitetaan asteroiditapauksen analysointi kokoarviolla.

Kaikkein todennäköisimmin 2024 YR4 on läpimitaltaan noin 55-metrinen. Kuvittele siis eteesi 15-kerroksisen talon korkuinen kivimurikka, joka peittää jalkapallokentän (100x60 m) puolikkaan.

Tuollaisen asteroidin massa on noin 2 miljoonaa tonnia. Se on toisin sanoen 250 kertaa massiivisempi kuin raskain Suomessa operoiva tavarajuna, 18 kertaa massiivisempi kuin Turussa rakennettu Oasis of the Seas -jättiristeilijä, tai kolmanneksen Kheopsin kuulusta pyramidista.

Lisäksi mitat voivat olla jonkin verran suurempia tai pienempiä. Halkaisijasta voidaan sanoa varmasti vain että asteroidi on 40–100 -metrinen. Sen massa taas on 0,3–33 miljoonaa tonnia, tiheydestä riippuen. Materiaali kun voi olla komeettojen tapaan hötyistä jäätä, kivimurskaa, umpikiveä, tai jopa tiivistä rauta-nikkeliseosta. Kaikkea tältä väliltä.

Eduskuntatalo

Kokoja on varsin vaikea hahmottaa, mutta Eduskuntatalo Helsingissä on hyvä vertailukohta: sen leveys pohjois-eteläsuunnassa on 78 m ja länsi-itäsuunnassa 55 m. Ristimitta on noin 95 m. Kuva: Jari Mäkinen
 

Kokoarvio perustuu asteroidin oletettavasti heijastaman valon määrään. 

Aurinkokunnassa tiedetään kuljeskelevan niin kirkkaita kuin tummempiakin pienkappaleita. Jos 2024 YR4:n pinta sattuu heijastamaan paljon valoa, sen läpimitta olisi hieman alle 50-metrinen, kun taas tummempana ja huonosti heijastavana kappaleena halkaisija voisi olla jopa sadan metrin luokkaa. 

Edellisessä jutussamme mainittu ESA:n arvio on maksimissaan 95 metriä, mutta muutamalla metrillä ei ole ison kuvan kannalta merkitystä.

Jahka asteroidin spektri saadaan mitattua tarkemmin, nähdään kuinka se heijastaa eri aallonpituuksia. Tuolloin pintamaterian laatua voidaan arvioida tarkemmin ja sen koostumus ja halkaisija voidaan lyödä lukkoon varsin tarkkaan. Mutta sen massa on yhä tuolloinkin epäselvä, sillä näistä tiedoista ei vielä pystytä sanomaan että onko ehkä kyse soraläjästä, yhtenäisestä kiinteästä kappaleesta, vai jostain näiden ääripäiden väliltä.

Asteroidi Ida

Asteroidi 243 Ida on tyypillinen aurinkokunnan pienkappale, joskin se on kertaluokkaa suurempi kuin 2024 YR4. Halkaisijaltaan Ida on 59,8 × 25,4 × 18,6 kilometriä. Galileo-luotain lensi sen ohi Marsin ja Jupiterin välissä vuonna 1994. Kuva: Nasa.

 

Törmäystapahtuma hetki hetkeltä

Kuvitellaan, että 2024 YR4 todella törmää. Mitä tuolloin tapahtuisi?

Todennäköisin törmäyshetki näyttää tällä hetkellä olevan 22.12.2032 klo 11:37 Suomen aikaa. Epävarmuutta on tosin muutaman tunnin verran, eli se voi sattua joskus välillä klo 08.09–15.05. 

Kunhan törmäysaika lasketaan sekunnilleen, selviää myös lopullinen törmäyspaikka. Nykytiedoilla voidaan sanoa vain, että törmäyspaikka on luultavasti jossain hieman päiväntasaajan pohjoispuolella: Etelä-Amerikassa, Afrikassa, Intiassa, tai niiden välisillä merialueilla.

55-metrinen asteroidi on riittävän suuri näkyäkseen ihan paljaalla silmälläkin ehkä puolisen tuntia ennen törmäystä taivaalla nopeasti liikkuvana valopisteenä. Sen voi kuitenkin erottaa vain yöpuolelta, sieltä mistä katsoen Aurinko sattuu valaisemaan kappaleesta riittävän suurta osaa. 

Päiväpuolella asujat eivät kiveä voi nähdä ennen sen tuloa ilmakehään.

Sekä asteroidin kiertonopeus Auringon ympäri että Maan painovoiman vaikutus siihen on saatu laskettua jo varsin tarkkaan. Törmäyksessä asteroidi tunkeutuu ilmakehään huimalla 17 kilometrin sekuntivauhdilla.

Helsingistä pääsisi Tampereelle tuolla vauhdilla 10 sekunnissa. Asteroidin koko ilmalento hoituu samassa ajassa. Ilmassa ehtii kuitenkin tapahtua hyvin paljon.

Ilma asteroidin edessä puristuu kasaan, ionisoituu ja alkaa hehkua, kuumentaen samalla murikan pintaakin ehkäpä noin millin syvyydeltä. Taivaalla näkyy nopeasti suureneva ja paikoin hehkuva pallo. Sen perässä leviää sankka savuvana.

Ilmakehä jarruttaa asteroidia rankasti, rasittaen sen rakennetta äärimmilleen. Siihen syntyy pieniä rakoja ja halkeamia, jotka repeytyvät lopulta auki. 

Noin 50 kilometrin korkeudella asteroidi alkaa hajota, mikä tosin näkyy maanpinnalle vain välähdyksinä ja savuvanan hetkellisiä laajentumina. Lopulta 5 – 6 kilometrin korkeudella asteroidi hajoaa lähes täydellisesti suuressa räjähdyksessä.

Tseljabinskin asteroidi

Noin 15 metriä halkaisijaltaan ollut meteori törmäsi Maahan Tšeljabinskin luona 15. helmikuuta 2013. Se räjähti noin 30–50 kilometrin korkeudessa. Kuva: via ESA.

 

Räjähdyksen tuloksena pintaan alkaa parin sekunnin päästä ropista meteoriitteja, luultavasti yhä muutaman kilometrin sekuntinopeudella. Mukana on kaikkea tomusta pesukoneen kokoisiin järkäleisiin. 

Kivien jysähtelyä maahan voi verrata vaikkapa rypälepommien keskityksen. Rytäkässä syntyy pieniä kraatterinpoikasia sinne sun tänne. Mutta tämä pommitus rajautuu kuitenkin pääosin asteroidin alkuperäiseen lentosuuntaan. Se ei suinkaan ole pahinta mitä on luvassa.

Tiedetuubin klubi Arizonan meteorikraatterilla

Arizonassa oleva Barringerin kraatteri on noin 1200 metriä leveä ja 170 metriä syvä. Sen synnytti Maahan osunut noin 50-metrinen nikkelirauta-asteroidi 50 000 vuotta sitten. Tiedetuubin Klubi vieraili paikalla vuonna 2017. Kirjoittaja on eturivissä neljäs vasemmalta. Kuva: Jari Mäkinen.

 

Paineaalto

Törmäyksen suurin haitta tulee suoraan ilmassa tapahtuneesta räjähdyksestä. Voimakkuudeltaan posaus on noin kahdeksaa megatonnia TNT:tä, vastaten suurta vetypommia. Siitä lähtevä paineaalto suuntautuu tasaisesti joka suuntaan, kaataen ja murskaten taloja, puita, siltoja – lähes kaikki maanpäälliset rakenteet. Äänen nopeudella etenevä paineaalto saavuttaa minuutissa 20 kilometrin etäisyyden.

Tämä nähtiin selvästi vuonna 2013 tapahtuneessa Tšeljabinskin meteoritörmäyksessä: paineaalto sai aikaan suuria vaurioita, kappaleiden putoaminen maahan ei.

Suoraan räjähdyksen alla olevasta pisteestä täytyy mennä noin viiden kilometrin päähän, jotta selviäminen olisi mahdollista muutoin kuin aivan ihmeen kaupalla. Todennäköistä se alkaa kuitenkin olla vasta 15 kilometrin päässä.

Merellä sattuessaan paineaalto puskee alleen jopa parikilometrisen kraatterin, joka kuitenkin oikenee nopeasti. Samalla syntyy ulospäin leviävä tsunamiaalto. Aivan kraatterin reunalla sen korkeus on useita kymmeniä metrejä, mutta jo 10 kilometrin päässä vain 2–4 metriä. 

Symmetrisyydestä ja veden edestakaisesta loiskahtelusta johtuen tsunamia ei 20 kilometrin etäisyydellä enää ehkä edes huomaa.

Nyt määritellyllä vaaravyöhykkeellä elää vähintään 200 miljoonaa ihmistä. 

Miljoonakaupunkeja alueella on hieman yli 30 kappaletta. Äärimmäisen ikävästi osuessaan asteroidi voisi tuhota hetkessä vaikkapa jonkin jättimäisen metropolin, kuten Bogotan (11 miljoonaa asukasta), Kalkutan (15 milj.), Lagosin (21 milj.), Mumbain (23 milj.) tai Dhakan (24 milj.).

Törmäysriskialue

Rajattu alue osoittaa tämänhetkisen törmäysriskin alueen, pohjalla on vuoden 2020 väestöntiheyskartta. Kuva: Daniel Bamberger / Duncan Smith (LuminoCity3D) / Jarmo Korteniemi.

 

Onneksi törmäys on hyvin epätodennäköinen, ja osuminen kaupunkiin on vielä hirmuisen paljon epätodennäköisempää.

Nämä vaikutukset on laskettu uumoillun kokoiselle 55-metriselle kiviasteroidille. Laskennallisesti moisia törmää Maahan keskimäärin tuhannen vuoden välein.

Hieman pienempi tai harvempaa materiaalia oleva asteroidi räjähtäisi korkeammalla ja pienemmällä voimakkuudella. Sen synnyttämä paineaalto ei yltäisi yhtä vahvana yhtä kauas, eikä tuhovaikutus olisi yhtä mittava. Kaupungin päälle osuessaan kuolonuhreilta ei luultavasti voitaisi kuitenkaan välttyä, jos alla olevia alueita ei evakuoitaisi ajoissa.

Suurempi (tai tiheämpi) murikka räjähtäisi joko alempana ilmassa, tai yltäisi maahan asti ja siirtäisi energiastaan aimo osan kiveen. Tuolloin pahin ongelma ei lähiympäristössä olisi paineaalto, vaan niskaan satava kiviaines.

Kaikeksi onneksi 2024 YR4 on riittävän pieni (ja törmäyshetki on vielä tarpeeksi kaukana) että törmäys voitaisiin nykytekniikalla välttää. Toimeen täytyisi kuitenkin ryhtyä pian sen jälkeen jos ja kun törmäys varmistuu.

Riittää, että sen vauhtia hidastetaan tai nopeutetaan vain hieman, jotta se ei ole Maan kanssa samassa pisteessä aivan tismalleen samaan aikaan. DART-luotain osoitti vuonna 2022, että suurempikin asteroidi liikahtaa riittävästi kun saa vain riittävän nopean töytäisyn raskaalla laitteella.

DARTin törmäys Dimorphosiin kuvattuna Etelä-Afrikassa olevalla Lesedi-teleskoopilla. Kuva: SAAO

 

Mitä aikaisemmin asteroidia päästään tuuppimaan, sitä helpommin sen sijaintiin Maan luona vuonna 2032 voisi vaikuttaa.

Toisaalta, jos törmäyspaikka olisi riittävän syrjäinen, asteroidin kannattaisi ehdottomasti antaa törmätä. Törmäysprosessia ja sen vaikutuksia olisi nimittäin tärkeätä päästä tutkimaan ihan todellisessa maailmassa – tämä kappale kun on tarpeeksi suuri, mutta ei kuitenkaan niin iso, että sillä olisi maailmanlaajuisia vaikutuksia.

Olisi hyvä päästä varmistamaan että simulaatiot antavat edes suurpiirteisesti oikeata tietoa.

Tarkasti ennustettu ja seurattu isohko törmäys olisi täysin ainutlaatuinen tapahtuma koko ihmiskunnan historiassa. Pääsisimme kerrankin näkemään Aurinkokunnan yleisimmän geologisen prosessin toimessa.

Peukut pystyyn!

-

Otsikkokuvassa on liitetty yhteen Apollo-astronauttien kuvaama maapallo ja Lutetia-asteroidi. Alkuperäiset kuvat: Nasa.

Japanilainen sääsatelliitti kuvasi joulukuisen jättimeteorin

Kamtšatkan meteori Himawarin kuvaamana
Kamtšatkan meteori Himawarin kuvaamana

Juuri nyt Teksasissa meneillään olevassa planeettatutkijakokouksessa kerrottiin viime joulukuussa Maahan törmänneestä suuresta kappaleesta. Nyt sen törmäyksestä on löytynyt kuva: japanilainen sääsatelliitti Himawari sattui ottamaan kuvansa juuri oikeaan aikaan.

18. joulukuuta 2018, siis noin kolme kuukautta sitten, iskeytyi suurehko avaruudesta tullut kappale Maan ilmakehään. Sen suhteellinen nopeus maapallon suhteen oli 32 km/s,eli huimat 115 200 km/h, ja se osui noin seitsemän asteen kaltevuuskulmassa Beringin meren kohdalle.

Tapauksesta kertoi Nasan mahdollisesti Maata uhkaavia pienkappaleita tutkivan ohjelman johtaja Kelly Fast sunnuntaina pidetyssä lehdistötilaisuudessa.

Kappale räjähti Fastin mukaan noin 25,6 kilometrin korkeudessa Kamtšatkan niemimaan päällä noin kymmenen Hiroshiman ydinpommin voimalla.

Se havaittiin kyllä saman tien ohjuksia ja ydinräjäytyksiä valvovilla laitteilla, mutta koska räjähdys tapahtui korkealla ja hyvin harvaan asutulla alueella, ei siitä tullut suurta uutistapausta.

Tilanne oli siis päinvastainen kuin kuusi vuotta sitten, jolloin Tšeljabinskin päällä räjähti samankaltainen kappale. Se näkyi, tuntui ja kuului laajalti suurkaupungin alueella, ja siitä kiertää netissäkin paljon huimia kuvia ja videoita (niistä on hyvä kooste tässä).

Vaikka Maan päältä ei joulukuun törmäystä tiettävästi havaittu, löytyi meteorin aiheuttama kaasuvana juuri sopivaan aikaan kuvansa ottaneen japanilaisen Hinawari-sääsatelliitin kuvasta – kun sitä osattiin oikein etsiä. Kuvassa meteorin ilmakehän läpi syöksyessään synnyttämä pilvi näkyy oranssina viiruna. Isokokoinen versio kuvasta on täällä.

Tämä törmäys oli todennäköisesti toiseksi suurin kosminen törmäys 30 vuoteen. Vain Tšeljabinskin tapaus oli tätä suurempi. Arvion mukaan tässä joulukuisessa räjähdyksessä vapautui "vain" noin 40% energiasta, jonka Tšeljabinskin törmääjä sai aikaan räjähtäessään palasiksi.

Tällaisia törmäyksiä tapahtuu vain pari kertaa vuosisadassa. Suurempia kappaleita pystytään nykyisin havaitsemaan varsin hyvin, mutta näiden viimeaikaisten törmääjien kaltaisia kappaleita on vaikea löytää ennalta.

Joka tapauksessa niiden törmäysten estämiseksi on käytännössä mahdotonta tehdä mitään nykytekniikalla – eikä helposti kuviteltavissa olevallakaan. Niinpä avaruusjärjestöt keskittyvät parantamaan laitteistojaan, joilla pyritään löytämään ennalta kohti Maata tulevia kappaleita.

Jos esimerkiksi Tšeljabinskissa olisi tiedetty tulevasta törmäyksestä vähänkin etukäteen, olisi asukkaita ennätetty evakuoimaan tai ainakin kehottaa pysymään poissa ikkunoiden äärestä törmäyksen tapahtuessa. Suurin osa henkilövahingoista syntyi siitä, kun kummallisen äänen alettua ja etenkin väläyksen jälkeen ihmiset menivät ikkunan ääreen: pienellä viiveellä saapunut paineaalto rikkoi silloin ikkunan ja sinkosi lasinpalat päin ihmisiä.

Kuuntele avaruuden uhkia käsittelevä Tiedeykkönen

 

Tämän jutun kirjoittaja teki 8.2.2019 lähetetyn Tiedeykkösen ohjelman Avaruusturvallisuudesta, eli erilaisista avaruudesta Maahan kohdistuvista uhista sekä siitä, miten niitä vastaan voidaan varautua.

Haastateltavana ohjelmassa on Euroopan avaruusjärjestön Space Safety -osastossa työssä oleva Juha-Pekka Luntama. Jutussa kerrotaan myös kosmisista törmäyksistä; Nasan ohella myös ESA tutkii niitä.

Kuuntele ohjelma Yle Areenassa.

Nyt on aika bongata kevään viimeiset tähdenlennot

Yöt ovat jo kovin valoisia ja pilkkopimeyttä on hädin tuskin enää etelärannikollakaan. Jos sää sallii, kannattaa silti tähyillä tovi keväiselle yötaivaalle.

Lyyran tähdistön suunnasta sinkoilee näinä päivinä – tai öinä – tähdenlentoja eli meteoreja. Niitä on näkynyt harvakseltaan jo huhtikuun puolivälistä, mutta eniten niitä voi nähdä parina seuraavana yönä.

Kovin mahtavaa näytelmää lyridien meteoriparvi ei tarjoa, sillä maksimissaankin tähdenlentoja sujahtelee vain kymmenkunta tunnissa. Toisinaan aktiivisuus voi kuitenkin yllättäen kasvaa, mutta sitä on mahdoton tietää etukäteen.

Parven meteoreja aiheuttavat pölyhiukkaset ja kivensirut ovat peräisin jaksollisesta Thatcherin komeetasta, joka kiertää Auringon soikealla radallaan kerran 415 vuodessa.

Lyridien vaatimattomaan aktiivisuuteen vaikuttaa parven ikä, sillä ensimmäiset merkinnät lyrideistä ovat Kiinasta jo 600-luvulta ennen ajanlaskun alkua. Komeetasta irronnutta ainesta on avaruudessa vain hyvin harvakseltaan.

Aika ajoin Maa kulkee kuitenkin pölyvanan tiheämmän kohdan läpi ja silloin tähdenlentoja näkyy huomattavasti tavallista enemmän. Esimerkiksi 1800-luvun alussa lyridien maksimissa meteoreja suihki taivaalla noin 700 tunnissa eli toistakymmentä minuutissa.

Jos uni ei maita ja taivas on pilvetön, parhaat mahdollisuudet lyridien näkemiseen ovat aamuyön tunteina. Silloin Lyyran tähdistö on korkealla ja kasvava Kuu on laskenut häiritsemästä loistollaan.

Kuva: ESO/S. Guisard

Maa kulkee lähipäivinä komeetan pölyvanan läpi

Perseidien tähdenlentoparvi on taas tulossa! Vaikka monissa otsikoissa on tänään povattu järistyttävän upeaa taivaallista näytelmää, sellaista ei kuitenkaan ole tulossa – todennäköisesti. Sen sijaan kaunista katsottavaa saattaa elokuinen ilta ja yö tarjota huomenna ja ylihuomenna.

Tähdenlentoja näkee taivaalla joka yö, sillä Maahan törmää koko ajan kaikenlaisia planeettainvälisessä avaruudessa olevia hitusia.

Toisinaan tähdenlentoja näkyy selvästi enemmän, ja silloin puhutaan tähdenlentoparvista. Ne johtuvat siitä, että tuolloin maapallo kulkee radallaan jonkun komeetan aikanaan taakse jättämän pölyvanan läpi.

Nimet tähdenlentoparville on annettu niiden tähtikuvioiden mukaan, mistä suurin osa tähdenlennoista näyttää tulevan. Oikeasti tähdenlennot tulevat kaikki jotakuinkin samasta suunnasta, mutta perspektiivin vuoksi ne näyttävät sinkoilevan yhdestä paikasta taivaalla: samaan tapaan rautatiekiskot näyttävät yhtyvän horisontissa, vaikka ne kulkevat oikeasti rinnakkain.

Näin elokuussa iltataivaalla korkealla olevasta Perseuksen tähdistöstä tuleva Perseidien tähdenlentoparvi on yksi vuoden näyttävimmistä. Tähdenlentoja näkyy joka puolella taivasta, ja sen, että ne tulevat Perseuksesta, voi havaita vain tarkasti havaitsemalla tai valokuvista.

Perseidien aiheuttaja on komeetta Swift-Tuttle, josta irtoaa sen radalle jokaisella kierroksella Auringon ympäri pieniä kiviä, jäähitusia ja pölyä. Yleensäkin Perseidit ovat varsin aktiivinen tähdenlentoparvi, sillä tunnissa tähdenlentoja saattaa näkyä viitisenkymmentä. Siis lähes minuutin välein.

Toiset tähdenlennoista ovat vain pieniä valoväläyksiä, kun taas jotkut saattavat olla komeita ja kirkkaita valopalloja, bolideita, joiden hehku jää hetkeksi näkyviin taivaalle. Nämäkin kappaleet tuhoutuvat kokonaan yläilmakehässä ilmanvastuksen aikaan saaman kitkakuumennuksen vuoksi.

Tänä vuonna Perseidestä odotetaan hieman hienompia, koska Jupiter on hämmentänyt komeetan radalla olevaa materiaalia suurella vetovoimallaan, jolloin komeetta-aines osuu tavanomaista paremmin Maahan. On siis mahdollista, että tähdenlentoja näkyy enemmän kuin yleensä ja ne voivat olla hienompia.

Mitään taivaallista ilotulitusta ei kuitenkaan ole tulossa.

Jos taivaalla ei ole pilviä, kannattaakin taivaalle tähyillä mahdollisimman pimeissä oloissa huomenna ja perjantaina illalla sekä etenkin yöllä puolenyön ja kello kahden välillä. Pieni kuunsirppi täydentää kaunista maisemaa mukavasti, mutta peittoaa valollaan kaikkein heikoimmat tähdenlennot. Kuu laskee kuitenkin puoliltaöin, joten sen jälkeen se ei ole "häiritsemässä" havaitsemista.

Pohjoisessa yöt ovat vielä sen verran valoisia, että vain kirkkaimmat tähdenlennot näkyvät siellä.

Paras tapa havaita tähdenlentoja on maata vaikkapa retkipatjan päällä selällään ja katsoa suoraan ylöspäin. Niitä voi myös koettaa saada aikavalotuksella valokuviin; tällöin kannattaa käyttää jalustaa ja säätää valotusaikaa sekä aukkoa käsin.

Lisätietoja Perseideistä on mm. Ursan tiedotteessa.

Otsikkokuva: Flickr / Kathryn Alberts

USA:n sotilaslähteet: suurin meteoroidi sitten Tšeljabinskin törmäsi Maahan helmikuun alussa


Helmikuun 6. päivänä Atlantin päällä näkyi huima ilmiö: ilmakehään törmännyt meteoroidi räjähti noin 30 kilometrin korkeudessa niin suurella voimalla, että (ainakin) Yhdysvaltain sotilastiedustelu säpsähti.

Tähtitieteilijä Phil Plait kertoo Slate-lehden kolumnissaan tästä tapauksessa, joka tuli tutkijoiden korviin vasta jälkikäteen ja karsittuna.

Vähäisten saatavilla olevien tietojen mukaan räjähdyksen voima vastasi 12 000 TNT-tonnia. Se oli siten suurin tiedossa oleva kosminen törmäys sitten helmikuussa 2013 Tšeljabinskin yllä tapahtuneen räjähdyksen, joka tosin oli arvioiden mukaan 40 kertaa voimakkaampi kuin tämä tapaus. Silti näky olisi ollut huima, jos joku olisi ollut sitä paikan päällä katsomassa. 

Nyt saatavilla olevan tiedon perusteella Atlantin päälle osunut kappale oli kooltaan "vain" 5–7 metriä, kun Tšeljabinskin törmääjä oli noin 19 metriä.

Sotilaslähteet eivät paljasta, miten he ovat tarkalleen tiedon törmäyksestä saaneet ja mitä kaikkea informaatiota siitä heillä on, mutta on tiedossa, että suurvallat tarkkailevat kaikenlaisia ilmakehässä tapahtuvia räjähdyksiä satelliiteilla, seismometreillä ja jopa tarkoilla mikrofoneilla, jotka kuulostelevat ympäri maapallon kantautuvia paineaaltoja.

Näillä menetelmillä voidaan havaita yhtä lailla ydinräjäytyksiä kuin luontaisia tapahtumia, kuten meteoroidien iskeytymisiä maapalloon. Parikymmenmetrisen kivenmurikan osuminen ilmakehään saa aikaan tyypillisesti räjähdyksen, joka vastaa ydinpommia.

Tilastollisesti tapaus ei ole erityisen ihmeellinen, sillä Maahan osuu koko ajan planeettainvälisestä avaruudesta tulevia kappaleita. Näitä listataan muun muassa NASAn tulipallo- ja bolidiseurantasivulla, missä tätä kirjoitettaessa kyseessä oleva Atlantin päällä hajonnut kappale on toisena.

Näin kookkaita törmääjiä on keskimäärin pari kertaa vuodessa, ja jos ne osuvat asuttujen alueiden päälle, tuloksena on näyttävä taivaanilmiö sekä kenties heliseviä ikkunoita. Jos hyvin käy, pinnalle saakka putoaa pieniä kappaleita.

Joka päivä maapallolle tulee satakunta tonnia ainetta avaruudesta, tosin yleensä pienenpieninä hitusina, jotka saavat aikaan vain kauniita tähdenlentoja, kun ilmakehän kitkakuumennus polttaa ne poroksi noin sadan kilometrin korkeudessa.

Suuremmat kappaleet selviävät hieman syvemmälle. Niiden pinta kuumenee ja ne hohtavat kirkkaina alaspäin pudotessaan, kunnes ilmanvastuksen aikaansaama paine rikkoo ne. Tuloksena on räjähdys, joka saa aikaan meteoroidin hajoamisen, ja sen jälkeen osat saattavat räjähdellä erikseen.

Alla on arvioitu putoamispaikka kartalla.

Otsikkokuvassa EI ole kyseessä oleva Atlantin tulipallo, vaan leonidien tähdenlentoparveen kuulunut bolidi vuodelta 2009 Ed Sweedeyn kuvaamana.

Totuus näyttää tarinaa oudommalta Intian tappajameteoriittitapauksessa

Intian meteoriitti
Intian meteoriitti


Uutiset kertoivat tänään Intiaan pudonneesta meteoriitista, joka olisi surmannut ihmisen. Tarina vaikuttaa kuitenkin aika tavalla tuulesta temmatulta.


Tietojen mukaan bussikuljettaja olisi kuollut Bharathidasantin koulukampuksella Tamil Nadussa Intian kaakkoisosassa, kun kymmengrammainen taivaalta pudonnut kappale sai aikaan räjähdyksen, joka rikkoi ikkunoita ja vaurioitti lähellä olevia rakennuksia.

Kuvissa on myös pieni maassa oleva painautuma, jonka sanotaan olevan meteorin synnyttämä kraatteri.

Tarina on uutismielessä hyvä, joskin matkalla sairaalaan kuolleen uhrin kannalta ikävä. Valitettavasti vain faktat eivät puhu sen puolesta, että kyseessä olisi ollut oikeasti meteorin putoamisen johdosta syntynyt räjähdys.

On luonnollisesti täysin mahdollista, että taivaalta tippuu meteori, joka saa aikaa tuhoa. Näin on tapahtunutkin useita kertoja historiassa: Tšeljabinskin meteori sai aikaan laajaa tuhoa ja viimeksi viime viikolla kerrottiin mahdollisesti Suomeen pudonneesta meteorista. 

Aivan tuoreen uutisen mukaan Tanskassa meteoriitti putosi talon pihaan.

Intian tapauksessa kuitenkin onnettomuuspaikalta löytyi pieni, tumma kivenmurikka (otsikkokuvassa, joka Intian avaruustutkimusorganisaation, ISRO:n mukaan noin kaksi senttiä halkaisijaltaan ja massaltaan noin 50 grammaa.

Putoamisen aikaan ei kuultu tyypillisesti meteorien pudotessaan aiheuttamia yliäänipamauksia tai muuta jyrinää. Kappale on myös liian pieni saadakseen aikaan kuvatun kaltaisia vaurioita tai kraatteria.

Esimerkiksi Tšeljabinskiin helmikuussa 2013 pudonnut meteori sai aikaan ikkunoiden rikkoutumista ja paineaallon, mutta kyseessä oli suurikokoinen järkäle, joka lisäksi rikkoontui ilmassa pienemmiksi kappaleiksi.

Jos Intian räjähdys olisi johtunut meteorista, olisi sen aiheuttanut kappale siis saanut aikaan laajemminkin havaittavissa olleita ilmiöitä. Jos se oli vain pieni, isommasta kappaleesta irronnut osa, olisi varsinainen meteori saanut aikaan suurempaa tuhoa ja selvästi havaittuja ilmiöitä.

Paikallinen poliisi on lisäksi todennut, että koulun puutarhurit polttivat samaan aikaan roskia ja mahdollisesti silloin roskien joukossa olisi ollut rakennusajalta peräisin olleita, aiemmin huomaamatta jääneitä dynamiittipötkylöitä.

Vaikka tämä ei kuullosta yhtä hohdokkaalta, on se todennäköisempi tarina kuin meteori.

Säännöllisin epäsäännöllisesti uutisissa on kertomuksia maahan pudonneista meteoriiteista ja omituisesti syntyneistä kraattereista, mutta suurin osa niistä on joko vilkkaan mielikuvituksen tuotteita tai suoranaisia huijauksia. Nykyisen sosiaalisen median aikaan huhutiedot liikkuvat myös nopeasti ja saavat uskottavuutta, kun niitä tarpeeksi kopioidaan.

Tällä haavaa ainoa todennettu lähelle ihmistä pudonnut ja miltei vammoja aiheuttanut tapaus oli Alabamassa marraskuun 30. päivänä vuonna 1954. Silloin meteoriitti putosi talon katon läpi 31-vuotiaan Ann Hodgesin kotiin, ponnahti takaisin lentoon lattialta ja osui häntä lanteeseen.

Kun putoamisesta oli laaja kuva-artikkeli Life-lehdessä seuraavassa joulukuussa, tuli Hodgesista hetkeksi kuuluisuus.

Meteoriitti on yleisön nähtävissä edelleen Alabaman luonnonhistoriallisessa museossa Tuscaloosassa.

Populaaripuuroa: "Komea tähdenlento oli meteoriitti"

Populaaripuuroa: "Komea tähdenlento oli meteoriitti"

Blogin otsikossa on lainausmerkit, sillä se on sitaatti. Noilla sanoilla otsikoi Warkauden lehti juttunsa keskiviikkoiltaisesta tulipallosta, joka näkyi koko eteläisen Suomen taivaalla. 

Periaatteessa on totta, että kirkkaan tähdenlennon aiheuttanut avaruuden kivenmurikka voi päätyä maanpinnalle saakka, jolloin se tosiaan on meteoriitti. Tällaisiin nyansseihin jutussa ei kuitenkaan ylletä.

Tekstissä todetaan, että "Tulipallo tarkoittaa hyvin kirkasta tähdenlentoa eli meteoriittia". 

Ei tarkoita. Tai siis tulipallo kyllä tarkoittaa "hyvin kirkasta tähdenlentoa", mutta meteoriittia se ei tarkoita. Ei vaikka asian kääntäisi miten päin tahansa ja asiaa yksinkertaistaisi kuinka paljon hyvänsä. 

Tähdenlento eli taivaalla välähtävä valoilmiö, jonka aiheuttaa avaruudesta tullut kappale, on meteori.

Jos kappale on niin iso tai niin kovaa ainetta, että osa siitä selviää hehkuvankuumasta ilmalennosta maahan saakka, silloin se on meteoriitti. Vasta silloin.

Toki asiaa sotkee se, että vielä avaruudessa ollessaan nämä kappaleet ovat meteoroideja. Ja sääennusteita selostavat tv-tyypit ovat meteorologeja. Kauhian hankalaa. 

Löperöstä käsitteiden käytöstä tulee mieleen muinainen F1-selostus, jossa Matti Kyllönen meuhkasi, kuinka "auton takaosassa sijaitsevista suuttimista tulee savua". Kommentaattorina toiminut Keke Rosberg totesi ykskantaan, että "formulapiireissä niitä on tapana sanoa pakoputkiksi".

Ei tainnut Kyllönen sen jälkeen enää puhua suuttimista. Miksi tieteellisten termien opetteleminen on niin mahdottoman paljon vaikeampaa?

Tähtiyhdistysten edustajille vielä sellainen vinkki, että jos annatte jollekin aviisille haastattelun, pyytäkää teksti nähtäväksenne. Jutussa olevat virheet menevät helposti teidän piikkiinne.

PS. Kuvan METEORIITIT eivät liity tapaukseen.

 

Mistä on pienet meteoriitit tehty?

Tai pikemminkin mistä ne ovat peräisin? Sitä tutkijat yrittävät selvittää, mutta tehtävä on vaikea. Kaksi vuotta sitten liki 20-metrinen järkäle syöksyi Maan ilmakehään ja räjähti parinkymmenen kilometrin korkeudella Tšeljabinskin yläpuolella. Paineaallon seurauksena toistatuhatta ihmistä loukkaantui.

Maanpinnalle saakka selvisi meteoriitteja, joista suurin, yli 650-kiloinen murikka, nostettiin Tšebarkul-järven pohjasta. Niiden koostumuksen perusteella on mahdollista yrittää tunnistaa asteroidi, josta kappale on jossain vaiheessa lohjennut.

Alkuun arveltiin, että "emoasteroidi" voisi olla kahden kilometrin läpimittainen Auringon kiertolainen (86039) 1999 NC43. Maan lähistölle ajoittain tulevan asteroidin rata todettiin suunnilleen samanlaiseksi kuin Tšeljabinskin pamauksen aiheuttaneella kappaleella ja alustavan analyysin perusteella myös koostumus osui yksiin.

Nyt näyttää siltä, että niin ei olekaan. Vishnu Reddyn johtama tutkijaryhmä on tarkastellut uudemman kerran sekä kappaleiden rataelementtejä että spektrihavaintoja, jotka kertovat asteroidin koostumuksesta. Icarus-lehdessä julkaistussa artikkelissa todetaan, että näiden kahden kappaleen välinen yhteys on epätodennäköinen.

Tšeljabinskin meteoriitti on vain vähän rautaa sisältävä LL-kondriitti, jonka ominaisuudet poikkeavat selvästi 1999 NC43 -asteroidin koostumuksesta. Tutkijat toteavatkin, että yksittäisten meteoriittien alkuperän liittäminen tiettyyn asteroidiin on hyvin hankalaa, koska Aurinkokunnan pienkappaleiden radat ovat kaoottisia ja muuttuvat kaiken aikaa.

 

Mitä Etelämantereelta oikein löytyikään?

Kuva: Alex Alishevskikh / Wikimedia Commons

Kerroimme keskiviikkona Etelämantereelta löydetystä oudosta pyöreästä jäljestä. Kaksi kilometriä leveä piirre löytyi saksalaisen Alfred Wegener -instituutin tutkijoiden tehdessä rutiinimittauksia lentokoneesta.

Päivitys 25.1.2015: Uudempi juttumme löydetystä pyöreästä piirteestä kertoo uusista käänteistä mysteerin selvittämisessä.

Poiketen aiemmista tiedoista, rinkula ei ilmeisesti olekaan syntynyt vuonna 2004 havaitussa räjähdyksessä. Tutkijat ovat nimittäin löytäneet sen jo paljon vanhemmistakin satelliittikuvista.

Päätimme Tiedetuubissa paneutua asiaan hieman tarkemmin. Tässä jutussa mietitään, mistä löydössä voi olla kysymys. Siitä on tosin julkaistu tietääksemme vain yksi ainoa kuva, joten tiedot ovat varsin spekulatiivisia.

Löytöpaikka merellä

Löytö tehtiin merellä Prinsessa Ragnhildin rannikon tuntumasta, suoraan Afrikan Hyväntoivonniemeltä etelään. Tarkemmin seutu on nimeltään Roi Baudouin plateau de glace. Suomalaisittain tämä tarkoittaa "Kuningas Baudouinin jäätikköhyllyä".

Jäähylly syntyy, kun paksu mannerjää valuu maalta merelle. Koko yhtenäinen jäämassa liikkuu alituiseen kohti ulappaa. Ulapan reunalla jäähylly on jo osaksi haurastunut ja lohkeileekin jäävuoriksi.

Jään paksuus on hyllyllä hieman pienempi kuin mantereella, mutta siltikin satoja metrejä, ehkä jopa kilometrin. Kyse on siis hyvin paksusta meren päällä kelluvasta jääkannesta. Osa hyllystä voi tosin raapia pohjaa ja olla jopa hetkittäin siinä kiinnikin.

Mitä kaikkea löytö ei ole?

Kyse ei ole ainakaan vastikään jään alla tapahtuneesta tulivuorenpurkauksesta tai kuuman lähteen aiheuttamasta jään sulamisesta. Alapuolelta sulaminen romahduttaisi jään pinnalle kattilamaisen ja halkeamien reunustaman painauman. Nyt löydetty varsin tasainen piirre ei näytä paikalliselta sulamiselta. Kaiken kukkuraksi lähimmät tunnetut tulivuoret sijaitsevat tuhansien kilometrien päässä, merten keskiselänteillä ja Etelämantereen vuoristoisilla niemimailla.

Myöskään jään läpi törröttävä vuorenhuippu ei oikein sovi kuvaan. Koska jää liikkuu, pilkottavan saarekkeen perään jäisi ulappaa kohti osoittava vana. Tällaisesta ei ole raportoitu, eikä sellaista näy julkaistussa kuvassakaan.

Jään alla tapahtuva pyörteily, tai vaikkapa kaasupurkaus merenpohjasta voisi aiheuttaa jotain nähdyn kaltaista. Näin siis siinä tapauksessa, että kyse olisi muutaman metrin paksuisesta merijäästä - sellaiseen voisi helposti syntyä jotain uuveavannon tapaista. Paksun jäähyllyn tapauksessa tämä ei liene mahdollista.

Jäätiköiden pinnalta löytyy toisaalta jäätä monissa värisävyissä. Tämä johtuu pintarakenteesta, jääkiteiden kokoluokista ja -muodoista sekä epäpuhtauksista. Nyt kuvattu rengas voisikin olla vaikkapa iso pakkaantunut nietos, joka on vuosien saatossa sulanut hieman eri tavoin kuin ympäröivä jääkenttä. Tai päinvastoin. Tuo ei kuitenkaan selittäisi kuvassa näkyviä kirkkaita alueita: nyppylöitä, joita on satunnaisesti vain hailakan renkaan sisällä. Kohoumat vaikuttavatkin olevan useiden metrien korkuisia kinoksia. Kyse lienee lumesta, joka on kasautunut tuulen vaikutuksesta suurten jäälohkareiden ympärille.

Otsikkokuva: Tehostettu vääräväriversio lentokoneesta napatusta kuvasta, sekä kuvasta erottuvien piirteiden yksinkertaista tulkintaa. Tarkempi kuva aukeaa klikkaamalla. Alkuperäinen versio kuvasta löytyy aiemmasta jutustamme.

Kuva: Alex Alishevskikh / Wikimedia Commons

Yllä: Tšeljabinskin yllä räjähti helmikuussa 2013 20-metrinen asteroidi, tiputtaen maahan ison kasan meteoriitteja. Etelämantereen yllä on voinut näkyä samanlainen savuvana kun pyöreä rakenne syntyi. Kuva: Alex Alishevskikh

Törmäysjälki?

Yksinkertaisin vaihtoehto piirteille on jonkin tömähtäminen taivaalta jäälakeudelle. Pikaisen nettihaun perusteella sinne ei kuitenkaan ole tippunut lentokoneita eikä viime vuosina satelliittejakaan. Eikä sellaista jättikonetta toisaalta olekaan, jonka jäänteet leviäisivät noin näyttävästi kahden kilometrin levyiselle alueelle.

Käytännössä todennäköisin vaihtoehto onkin tutkijoiden uumoilema avaruudesta tulleen kappaleen törmäys. Aluksi he luulivat tapahtuman sopivan yksiin vuoden 2004 meteorihavainnon kanssa, mutta piirre osoittautuikin pian vanhemmaksi.

Tutkijat sanovat löytäneensä pyöreän jäljen jo vuonna 1996 otetuista satelliittikuvista (kuvaa ei tosin ole vielä julkistettu). Piirre on siis ehtinyt muokkautua jäälakeudella ainakin 18 vuotta, kenties kauemmin. Vaikka jäähyllyn pinnalle ei juuri kerrykään uutta pysyvää jäätä (se kun on jäätikködynamiikassa massahävikin aluetta), vuosittain satava ja sulava lumipeite on yhdessä tuulen kanssa pehmentänyt alkuperäistä piirrettä jo huomattavasti. Jäähylly on lisäksi liikkunut kohti ulappaa tuona aikana ehkä muutamien kymmenien kilometrien matkan.

Todennäköisesti kyse ei ole varsinaisesta törmäyskraatterista, vaikka näin onkin raportoitu mm. Daily Mailin, New Scientistin ja Discovery Newsin toimesta. Kraatteri olisi luultavasti vielä vuosikymmentenkin jälkeen selvä maljamainen heitteleen ympäröimä painauma. Nyt löydetty piirre on tuollaiseen sijaan tasainen, lukuunottamatta keskeltä löytyviä suuria lumikinoksia.

Kaksikilometrisen kraatterin syntyyn olisi vieläpä tarvittu suuri, vähintäänkin satametrinen asteroidi tai komeetta. Tarkka koko riippuu monista asioista: tiheydestä, koostumuksesta, nopeudesta ja tulokulmasta. Räjähdyksen ääni olisi kuultu muilla mantereilla, ja höyrypilvikin olisi varmasti helposti havaittu hyvin kaukana. Tunguskan räjähdys ja Krakatau-tulivuoren purkaus jäisivät tuollaisen rinnalla kuin hiiren aivastuksiksi, vaikka nekin kuuluivat jopa tuhansien kilometrien päässä. Törmäyskraatterin syntyä olisi vaikea olla huomaamatta, edes Etelämantereella.

Sen sijaan pienempi, kymmenien metrien kappale kuitenkin hidastuisi ilmakehässä huomattavasti. Palasten tömähdykset jäähyllylle voisivat hyvinkin aiheuttaa jotain löydetyn rengasmuodostelman kaltaista. Luminyppylöiden ytimessä voisi olla törmäyksissä pinnasta irti lohjenneita jäänpalasia. Tummat läiskät taas voisivat olla suurimpien kappaleiden aiheuttamia kuoppia tai hajonneiden kivien pölyjäänteitä. Ympärillä oleva pyöreä rakenne voi kertoa joko ilmaräjähdyksessä tai maahan tippumisessa lähteneestä paineaallosta.

Toivoa sopii, että tutkijat palaavat pian paikalle ja raportoivat näkemästään. Löytö lienee varsin ainutlaatuinen - oli se mikä tahansa. (Paitsi jos se osoittautuukin alueella käyvien tutkimusmatkalaisten varikoksi, josta innostuneilla tutkijoilla ei vain sattunut olemaan tietoa...)

Päivitys 25.1.2015: Uudempi juttumme löydetystä pyöreästä piirteestä kertoo uusista käänteistä mysteerin selvittämisessä.

Kuva: 20 vuoden aikana Maan ilmakehässä räjähtäneet asteroidit infraääniverkoston havaitsemina. Lähde: NASA/JPL.

Suuri törmäysjälki löytynyt Etelämantereelta

Kraatteri
Kraatteri
Basler jäätiköllä

Saksalainen Alfred Wegener -instituutin tutkijat löysivät joulukuun 20. päivänä suuren, todennäköisesti meteorin törmäyksen jättämän jäljen Prinsessa Ragnhildin rannikon luona Etelämantereen jääpeitteessä.

Instituutin tutkijat tekivät joulun alla Antarktiksen geologisen historian kartoittamiseen liittyviä tutkimuslentoja, kun työssä avustavan Fielax-yhtiön geofyysikko Christian Müller äkkäsi omalaatuisen muodostelman jäässä.

“Se oli noin kaksi kilometriä halkaisijaltaan oleva rengasmainen muodostelma, joka sijaitsi noin 5-6 kilometrin etäisyydellä koneestamme”, kertoi Müller lennon jälkeen. Rinkulan lisäksi muodostelmassa herättivät huomiota pienet jäämöykyt, ikään kuin jäävuoret, joita muutoin tasaisella jäälakeudella ei ole.

Palattuaan tutkimusasemalle, Müller alkoi selvittää oliko viime vuosilta tiedossa esimerkiksi mereteoritörmäyksiä, jotka voisivat selittää jäljet. 

Kävi ilmi, että kanadalaisten ja yhdysvaltalaisten tutkijoiden tekemissä infraäänimittauksissa oli havaittu vuona 2004 ääni, joka johtui todennäköisesti avaruudesta tulleen kappaleen lennettyä ilmassa ja osuttua jäähän Kuningas Baudouinin jäätiköllä Etelämantereen itäosassa.

Samaan aikaan nähtiin Australian Davis-asemalta mahdollisen meteorin jälkeensä jättämä vana, joka jatkui korkealta ilmakehästä aina alas jäätikölle. Jo tuolloin arveltiin, että meteori oli pudonnut alas alueelle, mutta tapausta ei alettu tutkia sen enempää – mahdollisen meteoriitin etsiminen ilman ennakkosuunnitelmaa kaukana asemasta ei ollut järkevää.

Basler jäätiköllä

Näyttää siis todennäköiseltä, että jäätikölle putosi vuonna 2004 kappale, joka olisi ollut kooltaan noin parikymmentä metriä. Tarkempien havaintojen puuttuessa koosta on vaikea esittää parempaa arviota. Se näyttää kuitenkin olleen pienempi kuin Tunguskassa vuonna 1908 ja Tšeljabinskin kaupungin yllä 2013 räjähtäneet kappaleet.

Etelämantereen jäältä löytyy aina silloin tällöin kiinnostavia meteoriitteja, mutta tämä nyt tehty havainto on erityisen kiinnostava siksi, että jään alla saattaa olla tallessa suuriakin kappaleita törmääjästä. Niinpä instituutin tutkijat tekivät joulun jälkeen uuden tutkimuslennon vain tämän törmäysjäljen kuvaamiseksi ja mittaamiseksi. Alue myös skannattiin tutkalla ja laserkorkeusmittarilla, ja tietoja käsitellään parhaillaan Saksassa.

Tämänvuotinen tutkimusryhmä oli varustettu vain ilmasta tehtäviä tutkimuksia varten, joten he eivät päässeet paikalle jäätikön päälle – mutta alueelle varmasti palataan lähitulevaisuudessa.

-

Juttu perustuu Alfred Wegener -instituutin tiedotteeseen, missä on myös paljon lisätietoja ja tutkijoiden haastatteluita.
Kuvat: International Polar Foundation / Jos Van Hemelrijck