Tampereella tehdään maaefektikonetta – Airship oli ILA 2024:n yllätys

Tampereella tehdään maaefektikonetta – Airship oli ILA 2024:n yllätys

Berliinin ilmailunäyttely 2024 2/3.

22.06.2024

Oletko nähnyt Kaspianmeren paholaisen? Se oli jättikokoinen neuvostoliitossa suunniteltu ns. maaefektilentokone, joka oli ruma, huono ja pettymys. Mutta maaefektikoneet ovat silti kiinnostavia, kunhan ne suunnitellaan oikein ja järkevästi. Aivan kuten tehdään juuri nyt Tampereen yliopistolla osana kansainvälistä Airship-hanketta. Mansesta oli edustus Berliinin ilmailunäyttelyssä esittelemässä projektiaan. Videolla siitä kertoo projektitutkija Akseli Arola.

Kiertokäynti ja selitystä ILA 2024 -ilmailunäyttelyssä (osa 1/3)

Kiertokäynti ja selitystä ILA 2024 -ilmailunäyttelyssä (osa 1/3)

Berliinin ilmailunäyttely 1/3.

17.06.2024

En ole ennättänyt tekemään viime aikoina videoita, mutta nyt editointia odottaneesta materiaalista on tulossa uusia videoita.

Ensimmäisenä uunista tuli ulos 5.-9. kesäkuuta Berliinissä olleen ILA2024 -ilmailu- ja avaruusnäyttelyn esittelyvideo. Käyn tällä videolla läpi lentokoneet ja helikopterit, jotka olivat maanäyttelyssä – mukana on muutamia harvinaisuuksia ja osaan koneista pääsi myös sisälle.
Seuraavassa osassa on jännä poiminta messujen puolelta ja kolmannessa videossa käsitellään Euroopan raketteja, joista messuilla myös puhuttiin.

Sukellusrobotti Europan jäänalaiseen valtamereen

Sukellusrobotti Europan jäänalaiseen valtamereen

Eräs aurinkokuntamme jännittävimmistä paikoista on jättiläisplaneetta Jupiteria kiertävää suuri kuu, Europa. Todennäköisesti sen jäisen pinnan alla on koko suuren kuun kattava valtameri. Tutkijat haluaisivat luonnollisesti lähettää luotaimen sitä tutkimaan – mutta hankkeessa on monia varsin suuria ongelmia. 

17.06.2016

ILATutkijat ja insinöörit eri puolilla maailmaa ovat pohtineet jo jonkin aikaa erilaisia tapoja, joilla Europan pinnanalaista valtamerta voitaisiin tutkia. Ongelmana on paitsi se, että laskeutujan lähettäminen Jupiterin kuun pinnalle on varsin vaikeaa, niin myös se, että laitteen pitäisi pystyä porautumaan useita kilometrejä paksun jään läpi ja sukelluslaitteen tulisi toimia autonomisesti pimeydessä jään alla.

Koska vesi hyydyttää radiosignaalin varsin tehokkaasti, ei sukellusrobotti voisi olla kätevästi yhteydessä laskeutujaan; kilometrejä pitkän kaapelin päässä kulkeva sukelluslaite ei sekään ole kovin käyttökelpoinen.

Tähän saakka ehdotetut systeemit Europan meren tutkimiseen ovat olleet varsin ristiriitaisia. Poralaitteet kykenivät tekemään vain hyvin kapeita reikiä, kun taas kaikki hahmotellut sukellusrobotit ovat olleet melkeinpä suurempia kuin toteuttamiskelpoiset laskeutujat. 

Nyt kuitenkin saksalaisilla on ratkaisu – ja sitä esiteltiin ensimmäistä kertaa julkisesti ILA-messuilla kesäkuun alussa Berliinissä. Tarkalleen ottaen kyseessä on Saksan ilmailu- ja avaruushallinnon (DLR) avustuksella työskennelleen, Bremenissä sijaitsevan Saksan kansallisen tutkimuskeskuksen tekoälytutkimusosaston robotiikkainnovaatiokeskuksen (DFKI) hanke ja mukana sen suunnittelussa on ollut Max Planck -instituutin Göttingenissä oleva aurinkokuntatutkimusryhmä.

Sukellusrobotti ei ole vain pelkkä suunnitelma, vaan jo toimiva laite. Sitä on testattu suuressa vesialtaassa sisätiloissa ja suunnitelmissa on lähteä sen kanssa seuraavaksi ulos. Laitetta ILAssa esitellyt Marius Wirtz toivoi, että seuraavassa vaiheessa (lue: jos saadaan lisärahoitusta) robottia voitaisiin testata vaikkapa talvella jossain Suomen järvessä ja sen jälkeen napa-alueilla. 

Europan tutkimisen lisäksi autonominen, kovia kestämään rakennettu sukellusrobotti voisi täydentää myös tavallisia merentutkimuksessa käytettäviä liitimiä sekä auttaa muun muassa tutkimaan Etelämantereen jääkannen alla olevia, pitkään ulkomaailmasta eristyksissä olleita järviä.

Miten Europa-sukellus tapahtuisi?

Yllä oleva video kertoo pääkohdat sukellusrobotin tehtävästä, mutta tässä tapahtumien kulku hieman tarkemmin:

1. Se kuljetettaisiin Europan pinnalle laskeutujalla, jossa se voisi olla esimerkiksi keskellä pystyssä ajoainetankkien väliin jäävässä tilassa.

2. Kairasysteemi alkaa tunkeutua jään läpi jäätä sulattamalla, ei reikää siihen poraamalla. Yhden pitkän kairan sijaan kyseessä on siis pitkulainen sukkula, jonka sisällä sukellusrobotti on ja joka on yhteydessä laskeutujaan – ja sitä kautta Maahan – pitkällä kaapelilla. 

3. Kun robotin sisältämä sukkula saapuu jään alareunaan, se kiinnittyy siihen ja avaa alapäässään olevan luukun. Sieltä vapautuu veteen pieni parvi autonomisia minirobotteja, jotka levittäytyvät ympäristöön ja kiinnittyvän jään alapintaan.

4. Sukellusrobotti työntyy esiin. Samalla erityinen suunnistusmajakka tulee näkyviin. Koska radiosignaali etenee hyvin huonosti vedessä, on majakka ennen kaikkea visuaalinen: siinä on kirkas valo, mutta myös lentokoneiden mustissa laatikoissa käytettävän radiolähettimen kaltainen laite, joiden avulla sukellusrobotti voi löytää takaisin lähtöpaikalleen. Tässä auttaa myös robotissa oleva tarkka gyroskooppisuunnistuslaitteisto.

5. Robotti on kiinni pidikkeessä, mutta yhteydenpito siihen tapahtuu esim. bluetooth- tai wifi-linkin välityksellä. Kummankin kantama riittää hyvin, kun robotti on kiinni pidikkeessään ja etäisyys lähettimen ja vastaanottimen välillä on vain vajaa kymmenen senttiä. Myös robotin akkujen lataaminen tapahtuu langattomasti; näin robotissa ei täydy olla riskialttiita reikiä ja niin yhteydenpito kuin lataaminenkin onnistuvat, vaikka robotti ei olisikaan täsmälleen paikallaan pidikkeessä.

6. Sukellusrobotti pystyy toimimaan täysin autonomisesti. Paitsi että se ei voisi olla sukelluksissa ollessaan yhteydessä Maahan tai edes laskeutujaan, kestää radioviestiltä 33-53 minuuttia saavuttaa Maa, joten kauko-ohjaaminen ei tulisi kyseeseen missään tapauksessa. Robotti ohjelmoidaan siis tutkimaan kaikkea kiinnostavaa, mutta erityisesti merenalaisia lähteitä, jotka voisivat olla samanlaisia kuin maapallolla merten syvyyksissä olevat "mustat savuttajat" – kuumat lähteet, joiden ympäristössä voisi olla elämää.

7. Sukellustensa välissä robotti tulee takaisin lähtöpaikkaansa siirtämään tietonsa laskeutujan kautta Maahan ja lataamaan akkujaan. Periaatteessa laite voisi toimia niin kauan kuin se saa aina uudelleen sähköä.

Yksityiskohtia sukellusrobotista:

Valonheittimet, kaikuluotaimet ja kamerat rungon alapuolella.

Nenässä oleva voimakas valonheitin ja kamerat.

Peräsin ja sen suojassa oleva työntövoimalaitteisto (potkuri, koska vesisuihkusysteemi on liian vaarallinen veteen, jonka koostumusta ei tunneta).

Kuvia sukellusrobotista altaassa

Kuvat: Jari Mäkinen ja DFKI

Didykuun pinnalle tähtäävä laatikkomaskotti Jari Mäkinen La, 11/06/2016 - 15:26
Mascot 2
Mascot 2


Berliinin ILA- ilmailu- ja avaruusmessuilla on perinteisesti ollut varsin paljon avaruustekniikkaa, eikä tämänvuotinen näyttely ollut poikkeus. Vaikka mitään suurta – Ariane 6:n isokokoisen mallikappaleen lisäksi – ei ollutkaan tarjolla, oli pieniä knoppeja paljon. Kuten esimerkiksi MASCOT 2, joka saattaa olla seuraava eurooppalainen luotainlaskeutuja aurinkokunnan pienkappaleen pinnalle.


ILA ESA pohtii parhaillaan erilaisia vaihtoehtoja 2020-luvun alussa tehtäviksi luotainlennoiksi, ja eräs johtava ehdokas on varsin kunnianhimoinen lento asteroidia tutkimaan.

AIM, eli Asteroid Impact Mission, haluaisi törmätä nimensä mukaisesti astroidiin. Ehdotuksen mukaan AIM lähtisi matkaan lokakuussa 2020 ja lentäisi asteroidi Didymoksen luokse, joka tulee suhteellisen lähelle Maata vuonna 2022. Etäisyyttä silloin on "vain" 16 miljoonaa kilometriä.

Erityisen kiinnostavan Didymos-asteroidista tekee se, että se on itse asiassa kaksi astroidia: noin 800 metriä halkaisijaltaan olevaa asteroidia kiertää noin 170-metrinen kuu, jota kutsutaan tuttavallisesti Didymooniksi, eli Didykuuksi. Halkaisijaltaan kuu on siis jotakuinkin ruotsinlaivan pituuden luokkaa ja itse emoasteroidi kuin Tampereen ydinkeskusta Särkänniemestä Koskikeskukseen.

Juuri Didykuu on lennon pääkohteena. Sitä tutkitaan kameroin ja tutkalaitteistolla, joilla pyritään kartoittamaan sen pinta ja sisukset mahdollisimman tarkasti. Lisäksi sen pinnalle on tarkoitus lähettää pieni, kompakti laskeutuja, MASCOT 2.

Koska Saksan ilmailu- ja avaruustutkimuskeskus DLR vastaa MASCOTin tekemisestä, oli se esillä ILA:ssa heidän osastollaan.

Nimi MASCOT tulee sanoista Mobile Asteroid Surface Scout, eli "liikkuva astroidin pintatiedustelija", mikä kertoo varsin suoraan mistä on kyse: luotain lähettää sen asteroidin pinnalle tutkimaan sitä läheltä. Laitteessa on eri aallonpituuksilla toimivia kameroita ympärille ja alas katsomiseen, magnetometri magneettikentän mittaamiseen ja mikroskooppi, jolla se pystyy tutkailemaan pinta-aineen hitusia hyvin tarkasti.

Radiolähettimiä ja -vastaanottimia voidaan käyttää tietojen välittämisen lisäksi tutkana, jolla voidaan sondata pinnan alla olevia kerrostumia.

MASCOT 1 on parhaillaan matkalla japanilaisen Hayabusa 2 -luotaimen mukana ja sen on tarkoitus päästä toimeen vuonna 2018. Ykkösen käytännössä samanlainen, tosin hieman päivitetty versio on tarjolla AIM-lennolle.

Kooltaan laite on 30 x 30 x 20 cm ja sen massa on noin kymmenen kiloa, mistä kolmisen kiloa on tutkimuslaitteita.

Pinnalle saavuttuaan se voi myös liikkua: pienen moottorin ja iskurin avulla MASCOT voi ponnauttaa itsensä useita kymmeniä metrejä pitkiin, heikossa asteroidin painovoimakentässä hitaisiin hyppäyksiin. Näin se pystyy tekemään mittauksiaan ja tutkimuksiaan useammassakin paikassa.

Siinä missä MASCOT 1:n eliniäksi arvioidaan vain noin 16 tuntia, voi kakkonen olla toiminnassa periaatteessa hyvinkin pitkän aikaa sen pinnalla joka puolella olevien aurinkopaneelien avulla.

Lisäksi pikkusatelliitteja ja törmääjä!

Laskeutujan ja itse AIM-luotaimen lisäksi suunnitelmassa on paljon muutakin.

Suomalaisittain kiinnostavia ovat mukaan laitettavat pienet cubesat-tyyppiset satelliitit, tai pikkuluotaimet, joita voi olla kaksikin kappaletta. Aalto-1 -satelliitin tekijät ovat mukana hahmottelemassa näitä, ja voi hyvinkin olla, että yksi näistä cubesateista tehdään Suomessa; täältä löytyy kaikki tarvittava tietotaito satelliittirungon tekemisestä aina suorituskykyiseen, kevyeen hyperspektrikameraan ja virtapihiin, mutta tarkkaan ja pienikokoiseen tutkalaitteistoon.

AIM-luotaimen suunnitellaan käyttävän myös lasersädettä tiedonvälitykseen Maan kanssa, mikä tekee siitä teknisestikin erittäin kiinnostavan. Luonnollisesti varalla olisi perinteisiä radiolinkkejä.

AIM liittyy myös jo nyt tekeillä olevaan asteroiditörmäyslentoon. NASAn kanssa yhdessä tehtävä (tai siis tässä vaiheessa vielä ehdotettavana oleva) AIDA, eli Asteroid Impact & Deflection Assessment, aikoo törmäyttää 300-kiloisen DART:iksi kutsutun aluksen kuuden kilometrin sekuntinopeudella Didykuun pintaan ja tutkia sitä kaukaa erilaisin kameroin ja mittalaittein. 

Suunnitelman mukaan törmäys tapahtuisi kuutisen kuukautta MASCOT 2:n laskeutumisen jälkeen, joten kohdekuusta saataisiin näin hyvinkin yksityiskohtaista tietoa ennen jysäystä. Lisäksi AIM-luotain voisi myös havaita törmäystä, jonka toivotaan voivan antaa hieman lisätietoa esimerkiksi siitä, voitaisiinko mahdollisesti Maata uhkaavia kappaleita sysätä sivuun radaltaan yksinkertaisesti niihin iskeytymällä.

Miksi lentäjäpioneeri Otto Lilienthal kuoli?

Miksi lentäjäpioneeri Otto Lilienthal kuoli?

Otto Lilienthal oli saksalainen lentäjäpioneeri, joka teki 125 vuotta sitten ensimmäisen lentonsa ja liisi sen jälkeen tuhatkunta kertaa, ennen kuin syöksyi maahan ja kuoli 9. elokuuta vuonna 1896. Nyt Saksan ilmailu- ja avaruustutkimuskeskus DLR kaivelee menneitä ja on ottanut Lilienthalin liitokoneen tarkempaa syyniin.

11.06.2016

ILA Saksalaiset haluavat luonnollisesti nähdä Otto Lilienthalin samanlaisena ilmailun merkkihenkilönä kuin Wright-veljekset Yhdysvalloissa tai Clément Ader Ranskassa. Ja saksalaisilla on hyvät perusteetkin: vaikka Lilienthalilla ei ollut moottoria käytössään, hän teki liitolentokoneen, joka oli huimasti edellä aikaansa, ja lensi sillä paljon: hän teki noin tuhat lentoa, joiden kuluessa hän kiisi 50 kilometrin tuntinopeudella ja liisi jopa noin 250 metriä pitkiä lentoja.

Hän oli edellä aikaansa ja häntä voi pitää aivan objektiivisestikin maailman ensimmäisenä lentäjänä. Hän oli samoin maailman ensimmäinen lentokonetehtailija, sillä hän myi kaikkiaan yhdeksän liitolentokonetta lentämään halunneille asiakkailleen. Hänellä oli myös suunnitelmia koneensa jatkokehittämisestä, sillä tämä ensimmäinen malli oli nimeltään Normalsegelapparat, eli "tavallinen liitokone".

Valitettavasti vain hän ei ennättänyt tekemään muita koneita, sillä hänestä tuli aivan liian pian myös ensimmäinen lento-onnettomuudessa kuollut lentäjä. Aina tuosta vuoden 1896 elokuusta alkaen on pohdittu mistä hänen onnettomuutensa johtui ja monet pitivät pääsyyllisenä hänen liitolentokoneensa alkeellisuutta.

DLR päätti tutkia konetta tarkemmin ja rakensi siitä tarkan kaksoiskappaleen. Konetta testattiin nykymenetelmin niin tietokonesimulaatioilla kuin tuulitunneleissakin, ja tulokset esiteltiin viime viikolla päättyneillä Berliinin ilmailu- ja avaruusmessuilla. Kaksoiskappale oli myös esillä Berliinin Schönefeldin lentokentän näyttelyalueella, mutta sillä ei valitettavasti päässyt lentämään.

Lilienthalin lentokone oli kärkiväliltään 6,7 metriä ja sen massa oli 20 kg. Sen siiven matkivat linnun siipiä, ja lentäjä oli siipien keskellä, missä hän pystyi hallitsemaan lentämistä yksinkertaisesti painopistettä muuttamalla – siis siirtymällä hieman eteen, taakse tai sivuille. 

Yllä oleva video näyttää liitokoneen testaamista, joka paljasti monia yllätyksiä. Etenkin koneen aerodynamiikka oli yllättävän hyvä, mikä johtui todennäköisesti siitä, että Lilienthal oli seurannut lintujen lentämistä hyvin tarkasti ja pystyi paitsi toistamaan linnun siiven muotoa, niin myös lintujen liikkeitä ilmassa varsin hyvin.

Koneen liitosuhde oli 3,6, mitä voi pitää varsin hyvänä. Eli sadan metrin korkeudelta lähdettäessä kone olisi voinut teoriassa liitää 360 metrin päähän. Lento- ja liito-ominaisuuksiltaan Lilienthalin kone oli paljon parempi kuin esimerkiksi Wright-veljesten tekemä kone, joka lensi ensimmäisen kerran moottorivoimalla. Ja sitäkin on pidetty aerodynaamisesti varsin hyvänä.

DLR:n tutkijoiden mukaan liitolentokoneet olivat yhtä hyviä vasta 1930-luvulla.

Toiseksi hän koelensi koneensa erinomaisesti. Lilienthal merkitsi ylös nopeudet ja lentojen pituuden, koneen käsittelyssä olleen erikoisuudet ja uskaltautui koko ajan pitemmälle ja korkeammalle lentojen edistyttyä.

Koneen kopion tutkiminen paljasti tosin myös sen heikkouksia, kuten sen, että kone menetti lentokykynsä varsin helposti, jos sen nokka nousi nopeasti liian suuren kulmaan ylöspäin.

Tämä on todennäköisesti myös syynä kohtalokkaaseen onnettomuuteen. Kun Lilienthal oli lentämässä Berliinin lähellä Gollenbergissä elokuun 9. päivänä vuonna 1896, oli sää kaunis, mutta termiikkejä täynnä. Purjelentäjät pitävät näistä nousevista lämpimistä ilmavirtauksista, jotka tosin saattoivat tulla yllättäen Lilienthalille. On mahdollista, että hän sattui lennollaan voimakkaaseen nousevaan ilmavirtaukseen, joka nosti nokan ylös ja sen johdosta kone sakkasi – ja putosi.

"Lilienthalin kone oli lentokelpoinen ja turvallinen lentää hyvissä olosuhteissa ja etenkin lennettäessä vastatuuleen, mutta ei tarpeeksi hyvä epävakaissa tuuliolosuhteissa tai termiikeissä lennettäväksi", toteaa DLR:n tutkija Andreas Dillmann. "Hänen ei olisi siis kannattanut lentää juuri tuona päivänä."

Kopteri, joka kesytti Bondinkin Jari Mäkinen Pe, 03/06/2016 - 13:04
Bo105:n roottorinapa
Bo105:n roottorinapa

Berliinissä on parhaillaan menossa ILA-ilmailumessut, missä saksalaiset paitsi esittelevät eri näköisiä lentolaitteita omasta näkökulmastaan, niin tällä kerralla myös muistelevat erinomaista saksalaishelikopteria MBB Bo 105. Päivän kuvassa on sen roottorinapa, mikä tekee kopterista varsin erikoisen – ja minkä ansiosta myös tuoreimman James Bond -filmin, Spectren, avaus on niin näyttävä.

Elokuvan alkukohtauksessa kopteri tekee kaikenlaisia temppuja ja huippuna niin sanotun tynnyrin. Normaalisti sellaista ei helikopterilla voi tehdä, mutta Bo 105 on poikkeus, koska sen roottorit on kiinnitetty varsin erityisellä mekanismilla.

Päivän kuva
Normaalisti helikopterien roottorin tyvirakenteessa on lapojen asentoa säätävät lepatus- ja heilahdusnivelet, jotka eivät salli lentämistä ylösalaisin. Bo 105:ssä sen sijaan on hyvin yksinkertainen, ainoastaan lapakulmia säätävä nivel, mikä toimii paitsi missä tahansa asennossa, niin myös tekee roottorista kevyen ja helposti huollettavan sekä antaa sille varsin hyvät aerodynaamiset ominaisuudet.

Nyttemmin tällaisia on tullut markkinoille muitakin, mutta vuonna 1967 ensilentonsa tehnyt Bo 105 on edelleen eräs parhaimmista taitolentohelikoptereista.

Se on kuitenkin käynyt vuosien saatossa muuten vanhanaikaiseksi, ja siksi kopterin ensimmäinen käyttäjä, Saksan (liittotasavallan) maavoimat on luopumassa viimeisistä Bo 105 -koptereistaan vielä tänä vuonna. Mallilla on toki muita käyttäjiä – muun muassa showlentäjät – ja siksi näitä näkynee vastaisuudessakin vielä lennossa jonkin verran.

MBB Bo 105 oli eräs eurooppalaisen helikopterivalmistamisen merkkipaaluja. 

Se on Messerschmitt-Bölkow-Blohm GmbH:n alun perin tekemä helikopteri, missä oli edistyksellisen roottorirakenteen lisäksi runsaasti komposiittimateriaaleja ja siinä käytettiin ensimmäisenä myös siviilikäyttöön tehtynä helikopterina kahta kaasuturbiinimoottoria. Myös Suomessa pelastushelikopterina palvellut Bo 105 oli tuotannossa vuodesta 1967 alkaen aina vuoteen 2001 saakka, joskin vuosien varrella sitä paranneltiin moneen kertaan. Sen seuraajaksi tuli vuonna 1994 ensilentonsa tehnyt Eurocopter EC 135, jossa myös käytetään useita Bo 105:ssä esiteltyjä ratkaisuja.

MBB-yhtiön tarina kertoo myös hyvin miten Euroopan kopterivalmistus on keskittynyt. Yhtiön perusti Messerschmitt-ilmailuyhtiön entinen insinööri Ludwig Bölkow, jonka perustama pieni suunnittelutoimisto yhdistyi ensin Messerschmittin ja hampurilaisen telakkayhtiö Blohm+Vossin ilmailuosaston kanssa MBB:ksi. MBB:n toiminta laajeni kattamaan lentolaitteiden lisäksi puolustustekniikkaa, mutta sen helikopteriliiketoiminta yhdistyi ranskalaisen Aérospatialen helikopteritoimintojen kanssa vuonna 1992, jolloin perustettiin yhteisyhtiö nimeltä Eurocopter.

Eurocopter puolestaan otettiin 2000-luvulla mukaan yleiseurooppalaiseen ilmailu- ja puolustusyhtiö EADS:iin, jonka osana se jatkoi omalla nimellään aina vuoteen 2013 saakka, milloin koko konserni otti nimekseen liikennelentokoneista tunnetun Airbus-nimen. Ja niinpä myös MBB Bo 105:n seuraajakopterit ovat nyt nimeltään Airbus Helicopters.

Mitä tulee vielä kopterilentämiseen, niin Youtubessa on jännittävää videota Spectren kopterikohtauksen kuvauksista (myös alla):

Ja jos helikopterien lentämisen periaate yleisesti ottaen kiinnostaa, niin siitä tässä animaatiossa: