Itse ilkimys avaruudessa

Tähdet eivät useinkaan ole sellaisia kiltisti käyttäytyviä kaasupalloja kuin niiden voisi kuvitella olevan, kun katselee yötaivaalla vakaasti loistavia valopisteitä. Auringossakin kiehuu ja kuohuu, ja aika ajoin sen ulkokerroksissa tapahtuu rajuja räjähdyksiä ja valtaisia purkauksia.

Hubble-avaruusteleskoopilla on päästy seuraamaan varsinaista riehujaa. NaSt1-luettelonimellä tunnetulle tähdelle on annettu lempinimeksi Nasty 1 eli "Ykköspahis". Virallinen nimi tulee tutkijoilta, Jason Nassaulta ja Charles Stephensonilta, jotka löysivät kohteen vuonna 1963. Sillä on etäisyyttä noin 3 000 valovuotta.

Tähti on luokiteltu ominaisuuksiensa perusteella kuuluvaksi niin sanottuihin Wolf-Rayet-tähtiin. Ne ovat paljon Aurinkoa suurempia tähtiä, jotka massiivisuutensa ansiosta kehittyvät hyvin nopeasti. Vedystä koostuvat tähden ulko-osat karkaavat avaruuteen ja paljastavat hyvin kuuman ja kirkkaan ytimen, jonka fuusioreaktioissa helium muuttuu raskaammiksi alkuaineiksi.

Kun avaruuden ilkimystä päästiin tutkimaan tarkemmin, se ei näyttänytkään tyypilliseltä Wolf-Rayet-tähdeltä, vaan joltain aivan muulta: vastaavaa ei ole Linnunradassa aiemmin nähty. Tähden kaasun oletettiin virtaavan avaruuteen kahteen vastakkaiseen suuntaan samaan tapaan kuin eteläisellä taivaalla Kölin tähdistössä näkyvässä Eta Carinaessa.

Todellisuudessa Nasty 1 -tähteä ympäröi litteä kaasukiekko, jolla on läpimittaa lähes kaksi biljoonaa eli 2 000 000 000 000 kilometriä, siis yli 13 000 kertaa Maan ja Auringon välinen etäisyys. Kiekon arvellaan syntyneen, kun näkymätön seuralaistähti on kiskonut vetovoimallaan kaasua jättiläistähden ulko-osista (yllä taiteilijan näkemys).

Tähtiä ympäröivällä kaasukiekolla arvioidaan olevan ikää vain joitakin tuhansia vuosia, joten kosmisessa kalenterissa se on hyvin nuori. "Wolf-Rayet-tähden syntymisestä kahden tähden vuorovaikutuksessa on aniharvoja esimerkkejä, koska tällainen kehitysvaihe kestää hyvin lyhyen aikaa, ehkä vain satatuhatta vuotta. Tuloksena oleva kiekko ei ole havaittavissa välttämättä edes 10 000 vuotta", selittää tutkimusta johtanut Jon Mauerhan Kalifornian yliopistosta Berkeleystä.

Tutkijat arvelevat suuremman tähden olevan niin massiivinen, että se on kehittynyt hyvin nopeasti ja vety on loppumassa sen sisuksista. Kun ydinpolttoaineeksi on vaihtunut helium, tähti on laajentunut. Siksi ulko-osien vety ei ole enää niin tiukasti vetovoiman otteessa, ja pienempi sekä tiheämpi seuralaistähti on päässyt siihen käsiksi. Galaktisen kannibalismin seurauksena ainetta virtaa tähdestä toiseen ja jättiläistähti on siirtynyt Wolf-Rayet-vaiheeseen.

Aiemmin "vetyvuodon" syynä pidettiin yksinäisen tähden voimakasta hiukkastuulta. Kaksoistähtimalli on tullut suositummaksi, kun on käynyt ilmi, että suurin osa, jopa 70 prosenttia, massiivisista tähdistä kuuluu kaksoistähtijärjestelmiin. Pelkästään tähtituuleen perustuva massakato ei pysty selittämään Wolf-Rayet-tähtien lukumäärää Linnunradassa.

Massiivisen tähden vuodattama aine ei kuitenkaan aina päädy kasvattamaan seuralaistähden massaa. Osa siitä voi karata kummaltakin ja muodostaa kaksoistähden ympärille valtaisan kiekon – juuri kuten Nasty 1 -järjestelmässä. Siinä tähtikannibalismi on hyvin sottaista syömistä.

 

Kaksoistähden tarkempaa tutkimusta haittaa kiekon kaasu ja pöly. Edes Hubblen avulla ei pystytä erottamaan itse tähtiä, joten niiden massoja, keskinäistä etäisyyttä tai karkaavan aineen määrää ei pystytä määrittämään. 

Nopeudesta on kuitenkin saatu mittaustuloksia: kaasu liikkuu kiekon ulkolaidoilla yli 35 000 kilometrin tuntinopeudella. Se vaikuttaa paljolta, mutta esimerkiksi Eta Carinae -tähden räjähdysmäiset purkaukset sinkoavat ainetta avaruuteen satojentuhansien kilometrin tuntinopeudella.

Nasty 1 -tähden ainepako on siis varsin verkkaista ja lisäksi se vaikuttaa jaksottaiselta. Kiekon eri osissa lämpötila ja tiheys vaihtelevat, mikä viittaa siihen, että ainetta karkaa avaruuteen sykäyksittäin. Se selittäisi myös kiekon ulkolaitojen kokkareisen rakenteen.  

Kaksoistähden tulevaisuus ei ole valoisa – tai oikeastaan päinvastoin, se on hyvinkin valoisa. Kun tiivis seuralainen kasaa itseensä yhä enemmän ainetta, se voi ennen pitkää räjähtää supernovana, joka loistaa hetken aikaa yhtä kirkkaana kuin kokonainen galaksi. Toinen vaihtoehto on, että massiivisen tähden vetyvarantojen loputtua ainekiekko hajaantuu hitaasti ja paljastaa sisällään lymynneen erikoisen kaksoistähden.

Tutkimus julkaistiin 21. toukokuuta Royal Astronomical Societyn Monthly Notices -verkkojulkaisussa.

Kuvat: NASA/ESA/G. Bacon (STScI) (art), NASA/ESA/J. Mauerhan (University of California, Berkeley)

Supernovaräjähdys 1987A oli oudon toispuoleinen

Kuva: NASA/JPL-Caltech/UC Berkeley
Kuva: NASA/JPL-Caltech/UC Berkeley

Supernovaräjähdys 1987A vaikuttaa olleen erittäin toispuoleinen. NASAn NuSTAR-teleskoopin havaintojen mukaan suurin osa tähden räjähtäneistä ulko-osista kiitää meistä poispäin huimaa 720 kilometrin sekuntivauhtia (2,6 milj. km/h). Tästä voidaan päätellä, että tähden entinen ydin (olipa se sitten nykyisin neutroni- tai kvarkkitähti tai musta aukko) on Newtonin lain mukaan matkalla vastakkaiseen suuntaan.

1987A räjähti Suuressa Magellanin pilvessä 168000 valovuoden päässä, ja näkyi Maassa vuonna 1987. Se on toistaiseksi meitä lähin modernina aikana sattunut supernovaräjähdys, ja sitä on seurattu intensiivisesti koko kehityskaaren ajan.

NuSTARin uudet havainnot perustuvat titaanin isotoopin, Ti-44:n, erittäin tarkkaan kartoitukseen. Ainetta syntyy juuri supernovaräjähdyksen keskiössä, joten sen jakautuminen myös näyttää minkä muotoinen tähden hajoittanut räjähdys oli, ja kuinka räjähdys suuntautui. Aineen liikesuunta saadaan selville säteilyn dopplersiirtymästä.

Jutun lähteenä oleva tiedote ei kuitenkaan kerro, onko Ti-44 -pilven huimasta nopeudesta jo poistettu tähden aiempi ominaisliike. Tiedote ei myöskään ota kantaa siihen, että räjähdyksessä jäljelle jäänyttä neutronitähteä (tai mikä se onkin) ei ole ikinä havaittu. Tulkinta lienee kuitenkin ainakin jossain määrin pitävä, sillä tutkimus julkaistiin torstaina 8.5. tiedelehti Sciencessa.

Kuinka tähti voi räjähtää sillä tavoin?

Koska tähdet ovat suuressa mittakaavassa varsin symmetrisiä kappaleita, räjähdyksen suuntautuminen on periaatteessa varsin outoa. Tutkijat uskovat kuitenkin keksineensä selityksen.

Yksinään elelevän suuren tähden kuollessa tapahtuu II-tyypin supernova. Sellaisia räjähdyksiä on jo pitkään arveltu epäsymmetrisiksi, mutta mallit ovat kaivanneet tuekseen myös havaintoja todellisesta maailmasta. Aiemmin tähän suuntaan vihjanneet havainnot ovat olleet varsin monitulkintaisia, ja ne on voitu selittää vaikkapa tähden ympäristön olosuhteilla. NASAn mukaan NuSTARin Ti-44 -havainnot ovat kuitenkin yksiselitteisiä. Koska aineen puoliintumisaika on vain vaivaiset 85 vuotta, kyse ei juuri voi olla muusta kuin räjähdyksessä syntyneestä tavarasta. Sillä ei voi olla mitään muuta lähdettä.

Viime vuonna NuSTAR todisti myös toisen supernovan (Cassiopeia A:n) olleen hieman toispuoleinen, muttei mitään verrattuna 1987A:n luokkaan. Yhdessä nämä tulokset antavat tutkijoiden mukaan ymmärtää, että epäsymmetrisyys voikin olla aivan perustavaa laatua oleva piirre kakkostyypin supernovissa.

Artikkelin pääkirjoittaja Steve Boggs Kalifornian yliopistolta Berkeleystä selventää syitä epäkeskoon posaukseen: "Tähdet ovat toki pallomaisia kappaleita, mutta ilmeisesti niiden ydin muuttuu kuolinprosessissa turbulenttiseksi. Se kuohuu ja loiskuu viimeisten sekuntien aikana voimakkaasti. Juuri ytimen heiluminen johtaa epäsymmetrisiin räjähdyksiin."

Jää nähtäväksi, onko 1987A vain poikkeus, vai lieneekö se oletusten mukainen tyyppiesimerkki erityisen vinksahtaneista räjähdyksistä.

1987A:n kuvaa hallitsee nykyään kolme laajaa kirkasta rengasta. Ne koostuvat tähdestä ennen räjähdystä irronneesta materiasta, joka tuli näkyväksi ionisoiduttuaan räjähdyksestä tulleesta säteilyannoksesta. Vuonna 2001 sisimmän renkaan kirkkaus alkoi lisääntyä entisestään, kun räjähdyspilvi sai sen viimein kiinni.

1987A:n paikalla oli aiemmin sininen superjättiläistähti, jonka massa oli Aurinkoon verrattuna noin 20-kertainen.

Hätääntyneille tiedoksi: Löytö ei missään nimessä tarkoita, että 1987A:n ytimen jäänne syöksyisi juuri tännepäin, kohti Aurinkokuntaa. Tutkimuksessa ei perehdytty lainkaan liikkeen sivuttaiskomponenttiin, jota eittämättä on ainakin hitusen. Ja näin pitkällä etäisyydellä sekin riittää paremmin kuin hyvin.

Lähteenä käytetty NuSTAR-teleskooppia operoivan Jet Propulsion Laboratoryn tiedotetta.