Kiertokäynti uudessa, kummallisessa Haittaohjelmamuseossa - oppaana Mikko Hyppönen

Kiertokäynti uudessa, kummallisessa Haittaohjelmamuseossa - oppaana Mikko Hyppönen

Kun tietoturvayhtiö WithSecure muutti viime vuoden lopussa uuteen rakennukseen Helsingin Jätkäsaaressa, avattiin sen sisääntuloaulaan museo. Kyseessä on varsin omituinen museo, sillä esillä on tietokoneviruksia ja kyberhyökkäysten inspiroimaa taidetta. Yleisölle avointa museota esittelee tällä videolla tietoturvan legenda Mikko Hyppönen.

18.03.2025

Esillä museossa on esimerkkejä tunnetuimmista tietokoneviruksista ja etenkin niistä, jotka WithSecure (ja sen edeltäjät Data Fellows ja F-Secure) ovat löytäneet. Näyttely ei katso vain menneisyyteen, vaan esillä on virusten ja kyberhyökkäysten inspiroimaa uutta taidetta.

Museum of Malware Art sijaitsee WithSecuren ala-aulassa Helsingin Jätkäsaaressa, ja se on avoin myös yleisölle joka perjantai. 

Tällä videolla Mikko Hyppönen - yhtiön alkuperäinen työntekijä, kuudes Data Fellowsiin palkattu nörtti - kertoo paitsi näyttelystä, niin myös viruksista, kyberhyökkäyksistä ja omasta urastaan.

Tampereella tehdään lentopolttoainetta hiilidioksidista

Liquid Sun -yhtiön laboratorio
Liquid Sun -yhtiön laboratorio

Synteettisen lentopolttoaineen valmistaminen ilman hiilidioksidista vaatii kaksi vaihetta: hiilidioksin talteenoton ilmasta ja polttoaineen tekemisen tästä hiilidioksidista. Tampereella käynnistyy demonstraatiolaitos, missä ilmanvaihtojärjestelmistä talteenotettua hiilidioksidia voidaan hyödyntää kestävän lentopolttoaineen tuotannossa.

Hiilidioksidin talteenotto ilmasta luvaava tapa paitsi tuottaa hiilidioksidia monenlaiseen käyttöön, niin myös vähentää ilmassa olevan hiilidioksidin määrää. Hiilidioksidin muuttaminen kemiallisella prosessilla polttoaineeksi on sekin kiinnostava tapa tehdä synteettistä polttoainetta ja vähentää esimerkiksi lentämisen hiilidioksidijalanjälkeä.

Temppu vaatii paljon energiaa, ja laajamittaisesta toiminnasta ollaan vielä hyvin kaukana. Tämän teknologian varaan ei siis kannata vielä laittaa muuta kuin toiveita tulevaisuuden teollisen mittakaavan toiminnasta.

Tampereella on otettu kuitenkin kiinnostava askel kohti hiilidioksidilla tuotetun lentopolttioaineen kaupallista valmistamista.

Kaksi suomalaisyhtiötä, lappeenrantalainen Soletair Power ja tamperelainen Liquid Sun ovat käynnistäneen yhteishankkeen, jolla tutkitaan synteettisen lentopolttoaineen (eSAF) valmistamista rakennusten ilmanvaihtojärjestelmistä talteen otetulla hiilidioksidilla.

Yhteistyö alkoi marraskuussa 2024, kun Soletair Power toimitti ilmasta talteenotettua hiilidioksidia (CO₂) Liquid Sunille tutkimus- ja kehitystyöhön.

Liquid Sun hyödyntää ja testaa toimitettua hiilidioksidia teollisessa eSAF-demonstraatiossaan Tampereella. Yhtiö käyttää ns. matalalämpöelektrolyysiteknologiaa, joka on energiatehokkaampaa kuin perinteiset elektrolyysitekniikat. Suurin ero vanhaan ovat katalyytit, jotka alentavat reaktion aktivoitumisenergiaa ja parantavat tehokkuutta. Tyypillisiä katalyyttejä ovat platina ja muut jalometallit. Niiden haittapuolia ovat korkea hinta ja kestävyys. 

Katalyytti

”Tämä on meille todellinen virstanpylväs", iloitsee Liquid Sunin toimitusjohtaja Pasi Keinänen yhtiön lähettämässä tiedotteessa. 

"Tietääkseni kyseessä on yksi ensimmäisistä kokeiluista Suomessa – ja mahdollisesti koko Pohjoismaissa – jossa ilmakehästä talteenotettua CO₂:ta hyödynnetään eSAF-raaka-aineen kehitystyössä. Kehittämämme teknologia ei ainoastaan vauhdita e-polttoaineiden kaupallisen mittakaavan tuotantoa, vaan luo Suomelle mahdollisuuden nousta maailman johtavien e-polttoainetuottajien joukkoon."

Soletair Power on puolestaan erikoistunut Direct Air Capture (DAC) -teknologiaan, joka mahdollistaa hiilidioksidin talteenoton suoraan ilmasta esimerkiksi rakennusten ilmanvaihtojärjestelmien kautta. 

Soletair Powerin Petri Laakso

”Hiilidioksidin talteenotto on vasta ensimmäinen askel – sen hyödyntäminen on aivan yhtä tärkeää. Liquid Sunin kanssa tehtävä yhteistyö osoittaa iloksemme toteen sen, miten Soletair Powerin DAC-teknologia voi edistää kestävän lentopolttoaineen tuotantoa”, kertoo Soletair Powerin toimitusjohtaja Petri Laakso samaisessa tiedotteessa.

Vaikka matkaa kestävien polttoaineiden laajamittaiseen tuotantoon on vielä paljon,  osoittaa Soletair Powerin ja Liquid Sunin hanke sen, että ilmasta talteenotetun hiilidioksihin hyödyntäminen tässä on mahdollista. 

Ja että suomalaisyhtiöt ovat vahvasti mukana teknologian kehittämisessä.

*

Artikkeli perustuu suurelta osin tiedotteeseen ja kuvat ovat osa sen mukana tullutta materiaalia.

Fossiilit kävivät avaruudessa Jari Mäkinen Ti, 11/02/2025 - 00:04
Avaruudessa käynyt fossiili ja todistus lennosta
Avaruudessa käynyt fossiili ja todistus lennosta

Kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja ammoisen etanan kuori kävivät 105 kilometrin korkeudessa viime elokuussa tehdyllä New Shepard -aluksen avaruushyppäislennolla NS-26. 

Blue Originin New Shepard -raketti ja avaruusalus tekivät edellisen hyppäyslentonsa juuri ja juuri avaruuden puolelle 4. helmikuuta 2025. Kyseessä oli miehittämätön lento, jonka kyydissä oli tutkimuslaitteita.

Kolme lentoa aikaisemmin, elokuun 29. päivänä 2024, oli kyydissä kuitenkin jotain hyvin erikoislaatuista: fossiileita. 

Lennon miehistöön kuului paitsi 21-vuotias Pohjois-Carolinan yliopiston opiskelija Karsen Kitchen, nuorin virallisesti avaruuden puolella käynyt nainen, niin myös Floridan yliopiston proferssori Rob Ferl.

Ferl on geenitutkija, joka on selvitellyt pitkään kiihtyvyyden ja mikropainovoiman vaikutuksia kasveihin.

Hän on ollut Floridan yliopiston professori vuodesta 1980 ja toimii tällä hetkellä UF Astraeus Space Instituten johtajana. Vaikka hän on innokas lentäjä, Ferlillä on kova korkean paikan kammo. Kuten monille korkeanpaikankammoisille lentäjille, ei koneessa oleminen ja lentäminen ole lainkaan haastavaa, mutta varsin absurdit lentämiseen liittyvät asiat saattavat olla: Fern kertoo Floridan yliopiston tiedotteessa, että hänen avaruusmatkansa vaikein osa oli lyhyt kävely laukaisualustalta rakettiin parikymmentä metriä korkealla olevan rampin päällä.

"Olin huolissani siitä, että kävely ramppia pitkin kapseliin saisi minut hermostumaan, ja se oli aika lähellä", Ferl kertoo.

Miehistä laukaisualustalla

NS-26 -lennon osanottajat laukaisualustalla. Ramppi tästä avaruusalukseen oli samanlaista ritilää kuin tässä. Ferl on kuvassa takana keskellä. Kuva: Blue Origin.

 

Ferlillä oli avaruuslennolla näytteenottoputkia, jotka sisälsivät pieniä kasveja ja jotka oli kiinnitetty hänen pukunsa jalkoihinsa tarranauhalla. 

Laukaisun, huippukohdan ja laskeutumisen aikana hän painoi kunkin putken kiinnitettyjä mäntiä, jotka vapauttivat kiinnitysaineen, joka kemiallisesti jäädytti jokaisen kasvin solutasolla. Myöhemmin, kun hän oli palannut Maahan, hän analysoi erot kolmen ryhmän välillä. 

Ferl oli liittynyt mukaan lennolle virallisesti tätä tehtävää tekemään – ensimmäisenä Nasan tukemana tutkijana – mutta luonnollisesti hän oli itsekin innoissan kokemuksesta.

"Kuvittele olevasi merentutkija, joka ei ole koskaan ollut veneessä, tai joku, joka tutkii metsiä mutta ei ole koskaan koskenutkaan puuhun, tai paleontologi, joka ei ole koskaan löytänyt fossiilia. Olen ollut avaruusbiologi 25 vuotta. Nyt olen vihdoin ollut avaruudessa."

Omien näytteidensä lisäksi Ferl halusi jakaa matkansa muiden yliopiston tutkijoiden kanssa.

Siten mukaan pääsi myös kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja pleistoseenikauden jääkausia edeltäneellä ajalla eläneen petoetanan kuorta.

Fossiilit olivat peräisin Floridan luonnonhistoriallisesta museosta. Jon Bloch, selkärankaisten paleontologian kuraattori, ja Roger Portell, selkärangattomien paleontologian kokoelman johtaja valitsivan avaruuskeikalle päässeet fossiilit.

 

Fossiilien piti olla pieniä, mutta Bloch halusi myös jotain merkittävää, ainutlaatuista. Siksi hän rajasi valintansa  selkärankaisten paleontologian kokoelmassa olevien yli 1,5 miljoonan näytteen joukosta lyhyeen, mutta merkittävään vaiheeseen Maan historiassa. 

Paleoseenia seurannut eoseenin ensimmäinen vaihe noin 48 – 56 miljoonaa vuotta sitten oli noin 200 000 vuotta kestänyt globaalin lämpenemisen jakso, joka tunnetaan epätavallisen pienistä eläimistä.

"Se oli intensiivinen aika, joka vastaa sitä, mitä ennustamme nykyiselle ilmastonmuutokselle, paitsi että nyt lämpeneminen tapahtuu paljon nopeammin", hän sanoi.

Maailmanlaajuiset lämpötilat nousivat 5–8 celsiusastetta tämän pari sataa tuhatta vuotta kestäneen termisen häiriön aikana. Jopa 50 % meren mikro-organismeista kuoli sukupuuttoon, kun maailman valtameret happamoituivat. 

Maalla nisäkkäät selvisivät sukupuuttoaallosta vähemmillä menetyksillä, koska evoluutio muokkasi niistä pienempiä. Kun esine kutistuu, sen tilavuus pienenee enemmän kuin sen pinta-ala. Tämä helpottaa pienempien eläinten lämmön haihduttamista verrattuna suurempiin.

Jotkut lajit kutistuivat jopa 30 % alkuperäisestä koostaan eoseenin alkurykäyksen lämpömaksimin aikana. 

Maailman ensimmäinen kädellinen oli Teilhardina, joka olisi mahtunut nykyihmisen kädelle seisomaan. Palanen sellaista piipahti avaruudessa. Kuva: Florida Museum / Jeff Gage.

 

Bloch valitsi mukaan myös varhaisimman tunnetun hevosen Sifrhippus sandraen fossiilipalasen. Hevonen painoi todennäköisesti vain 8,5 kiloa, eli ponikin on siihen verrattuna jättiläinen. Kuva: Florida Museum / Jeff Gage.

 

Portell, joka on paleontologiksi päätynyt ravintolapäällikkö ja pankkiiri, otti hieman erilaisen lähestymistavan fossiilin valinnassa.

"Yritin ajatella jotain avaruuteen liittyvää, kuten tähtikuoria ja kuuetanoita", hän sanoi.

Portell päätyi 2,9 miljoonaa vuotta vanhaan kuuetanaan osittain tämän ryhmän oudon ja kiehtovan luonnonhistorian vuoksi.

 

Fossiileita on ollut aikaisemminkin avaruudessa: pieniä fossiileja lepakoista, useista dinosauruksista, crinoidista, hominidista ja trilobiitista on kiikutettu avaruuteen ja takaisin.

Kyseessä oli kuitenkin ensimmäinen kerta, kun fossiileita oli mukana tällaisella suborbitaalisella hyppäyslennolla juur avaruuden puolelle. Tieteellistä iloa tällaisesta ei ole, mutta muuta iloa sen edestäkin!

Juttu perustuu Museum of Floridan tiedotteeseen ja kuviin.

Asteroidi 2024 YR4 - tänne törmäys voisi osua ja tällainen se voisi olla Jarmo Korteniemi Ke, 05/02/2025 - 15:31
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan

Seuraamme asteroidi 2024 YR4:n havaitsemista ja sen mahdollista törmäysuhkaa. Tässä jutussa  on analyysi sen koosta, mahdollisesta törmäyspaikasta ja siitä, miten törmäys saattaisi tapahtua.

Aloitetaan asteroiditapauksen analysointi kokoarviolla.

Kaikkein todennäköisimmin 2024 YR4 on läpimitaltaan noin 55-metrinen. Kuvittele siis eteesi 15-kerroksisen talon korkuinen kivimurikka, joka peittää jalkapallokentän (100x60 m) puolikkaan.

Tuollaisen asteroidin massa on noin 2 miljoonaa tonnia. Se on toisin sanoen 250 kertaa massiivisempi kuin raskain Suomessa operoiva tavarajuna, 18 kertaa massiivisempi kuin Turussa rakennettu Oasis of the Seas -jättiristeilijä, tai kolmanneksen Kheopsin kuulusta pyramidista.

Lisäksi mitat voivat olla jonkin verran suurempia tai pienempiä. Halkaisijasta voidaan sanoa varmasti vain että asteroidi on 40–100 -metrinen. Sen massa taas on 0,3–33 miljoonaa tonnia, tiheydestä riippuen. Materiaali kun voi olla komeettojen tapaan hötyistä jäätä, kivimurskaa, umpikiveä, tai jopa tiivistä rauta-nikkeliseosta. Kaikkea tältä väliltä.

Eduskuntatalo

Kokoja on varsin vaikea hahmottaa, mutta Eduskuntatalo Helsingissä on hyvä vertailukohta: sen leveys pohjois-eteläsuunnassa on 78 m ja länsi-itäsuunnassa 55 m. Ristimitta on noin 95 m. Kuva: Jari Mäkinen
 

Kokoarvio perustuu asteroidin oletettavasti heijastaman valon määrään. 

Aurinkokunnassa tiedetään kuljeskelevan niin kirkkaita kuin tummempiakin pienkappaleita. Jos 2024 YR4:n pinta sattuu heijastamaan paljon valoa, sen läpimitta olisi hieman alle 50-metrinen, kun taas tummempana ja huonosti heijastavana kappaleena halkaisija voisi olla jopa sadan metrin luokkaa. 

Edellisessä jutussamme mainittu ESA:n arvio on maksimissaan 95 metriä, mutta muutamalla metrillä ei ole ison kuvan kannalta merkitystä.

Jahka asteroidin spektri saadaan mitattua tarkemmin, nähdään kuinka se heijastaa eri aallonpituuksia. Tuolloin pintamaterian laatua voidaan arvioida tarkemmin ja sen koostumus ja halkaisija voidaan lyödä lukkoon varsin tarkkaan. Mutta sen massa on yhä tuolloinkin epäselvä, sillä näistä tiedoista ei vielä pystytä sanomaan että onko ehkä kyse soraläjästä, yhtenäisestä kiinteästä kappaleesta, vai jostain näiden ääripäiden väliltä.

Asteroidi Ida

Asteroidi 243 Ida on tyypillinen aurinkokunnan pienkappale, joskin se on kertaluokkaa suurempi kuin 2024 YR4. Halkaisijaltaan Ida on 59,8 × 25,4 × 18,6 kilometriä. Galileo-luotain lensi sen ohi Marsin ja Jupiterin välissä vuonna 1994. Kuva: Nasa.

 

Törmäystapahtuma hetki hetkeltä

Kuvitellaan, että 2024 YR4 todella törmää. Mitä tuolloin tapahtuisi?

Todennäköisin törmäyshetki näyttää tällä hetkellä olevan 22.12.2032 klo 11:37 Suomen aikaa. Epävarmuutta on tosin muutaman tunnin verran, eli se voi sattua joskus välillä klo 08.09–15.05. 

Kunhan törmäysaika lasketaan sekunnilleen, selviää myös lopullinen törmäyspaikka. Nykytiedoilla voidaan sanoa vain, että törmäyspaikka on luultavasti jossain hieman päiväntasaajan pohjoispuolella: Etelä-Amerikassa, Afrikassa, Intiassa, tai niiden välisillä merialueilla.

55-metrinen asteroidi on riittävän suuri näkyäkseen ihan paljaalla silmälläkin ehkä puolisen tuntia ennen törmäystä taivaalla nopeasti liikkuvana valopisteenä. Sen voi kuitenkin erottaa vain yöpuolelta, sieltä mistä katsoen Aurinko sattuu valaisemaan kappaleesta riittävän suurta osaa. 

Päiväpuolella asujat eivät kiveä voi nähdä ennen sen tuloa ilmakehään.

Sekä asteroidin kiertonopeus Auringon ympäri että Maan painovoiman vaikutus siihen on saatu laskettua jo varsin tarkkaan. Törmäyksessä asteroidi tunkeutuu ilmakehään huimalla 17 kilometrin sekuntivauhdilla.

Helsingistä pääsisi Tampereelle tuolla vauhdilla 10 sekunnissa. Asteroidin koko ilmalento hoituu samassa ajassa. Ilmassa ehtii kuitenkin tapahtua hyvin paljon.

Ilma asteroidin edessä puristuu kasaan, ionisoituu ja alkaa hehkua, kuumentaen samalla murikan pintaakin ehkäpä noin millin syvyydeltä. Taivaalla näkyy nopeasti suureneva ja paikoin hehkuva pallo. Sen perässä leviää sankka savuvana.

Ilmakehä jarruttaa asteroidia rankasti, rasittaen sen rakennetta äärimmilleen. Siihen syntyy pieniä rakoja ja halkeamia, jotka repeytyvät lopulta auki. 

Noin 50 kilometrin korkeudella asteroidi alkaa hajota, mikä tosin näkyy maanpinnalle vain välähdyksinä ja savuvanan hetkellisiä laajentumina. Lopulta 5 – 6 kilometrin korkeudella asteroidi hajoaa lähes täydellisesti suuressa räjähdyksessä.

Tseljabinskin asteroidi

Noin 15 metriä halkaisijaltaan ollut meteori törmäsi Maahan Tšeljabinskin luona 15. helmikuuta 2013. Se räjähti noin 30–50 kilometrin korkeudessa. Kuva: via ESA.

 

Räjähdyksen tuloksena pintaan alkaa parin sekunnin päästä ropista meteoriitteja, luultavasti yhä muutaman kilometrin sekuntinopeudella. Mukana on kaikkea tomusta pesukoneen kokoisiin järkäleisiin. 

Kivien jysähtelyä maahan voi verrata vaikkapa rypälepommien keskityksen. Rytäkässä syntyy pieniä kraatterinpoikasia sinne sun tänne. Mutta tämä pommitus rajautuu kuitenkin pääosin asteroidin alkuperäiseen lentosuuntaan. Se ei suinkaan ole pahinta mitä on luvassa.

Tiedetuubin klubi Arizonan meteorikraatterilla

Arizonassa oleva Barringerin kraatteri on noin 1200 metriä leveä ja 170 metriä syvä. Sen synnytti Maahan osunut noin 50-metrinen nikkelirauta-asteroidi 50 000 vuotta sitten. Tiedetuubin Klubi vieraili paikalla vuonna 2017. Kirjoittaja on eturivissä neljäs vasemmalta. Kuva: Jari Mäkinen.

 

Paineaalto

Törmäyksen suurin haitta tulee suoraan ilmassa tapahtuneesta räjähdyksestä. Voimakkuudeltaan posaus on noin kahdeksaa megatonnia TNT:tä, vastaten suurta vetypommia. Siitä lähtevä paineaalto suuntautuu tasaisesti joka suuntaan, kaataen ja murskaten taloja, puita, siltoja – lähes kaikki maanpäälliset rakenteet. Äänen nopeudella etenevä paineaalto saavuttaa minuutissa 20 kilometrin etäisyyden.

Tämä nähtiin selvästi vuonna 2013 tapahtuneessa Tšeljabinskin meteoritörmäyksessä: paineaalto sai aikaan suuria vaurioita, kappaleiden putoaminen maahan ei.

Suoraan räjähdyksen alla olevasta pisteestä täytyy mennä noin viiden kilometrin päähän, jotta selviäminen olisi mahdollista muutoin kuin aivan ihmeen kaupalla. Todennäköistä se alkaa kuitenkin olla vasta 15 kilometrin päässä.

Merellä sattuessaan paineaalto puskee alleen jopa parikilometrisen kraatterin, joka kuitenkin oikenee nopeasti. Samalla syntyy ulospäin leviävä tsunamiaalto. Aivan kraatterin reunalla sen korkeus on useita kymmeniä metrejä, mutta jo 10 kilometrin päässä vain 2–4 metriä. 

Symmetrisyydestä ja veden edestakaisesta loiskahtelusta johtuen tsunamia ei 20 kilometrin etäisyydellä enää ehkä edes huomaa.

Nyt määritellyllä vaaravyöhykkeellä elää vähintään 200 miljoonaa ihmistä. 

Miljoonakaupunkeja alueella on hieman yli 30 kappaletta. Äärimmäisen ikävästi osuessaan asteroidi voisi tuhota hetkessä vaikkapa jonkin jättimäisen metropolin, kuten Bogotan (11 miljoonaa asukasta), Kalkutan (15 milj.), Lagosin (21 milj.), Mumbain (23 milj.) tai Dhakan (24 milj.).

Törmäysriskialue

Rajattu alue osoittaa tämänhetkisen törmäysriskin alueen, pohjalla on vuoden 2020 väestöntiheyskartta. Kuva: Daniel Bamberger / Duncan Smith (LuminoCity3D) / Jarmo Korteniemi.

 

Onneksi törmäys on hyvin epätodennäköinen, ja osuminen kaupunkiin on vielä hirmuisen paljon epätodennäköisempää.

Nämä vaikutukset on laskettu uumoillun kokoiselle 55-metriselle kiviasteroidille. Laskennallisesti moisia törmää Maahan keskimäärin tuhannen vuoden välein.

Hieman pienempi tai harvempaa materiaalia oleva asteroidi räjähtäisi korkeammalla ja pienemmällä voimakkuudella. Sen synnyttämä paineaalto ei yltäisi yhtä vahvana yhtä kauas, eikä tuhovaikutus olisi yhtä mittava. Kaupungin päälle osuessaan kuolonuhreilta ei luultavasti voitaisi kuitenkaan välttyä, jos alla olevia alueita ei evakuoitaisi ajoissa.

Suurempi (tai tiheämpi) murikka räjähtäisi joko alempana ilmassa, tai yltäisi maahan asti ja siirtäisi energiastaan aimo osan kiveen. Tuolloin pahin ongelma ei lähiympäristössä olisi paineaalto, vaan niskaan satava kiviaines.

Kaikeksi onneksi 2024 YR4 on riittävän pieni (ja törmäyshetki on vielä tarpeeksi kaukana) että törmäys voitaisiin nykytekniikalla välttää. Toimeen täytyisi kuitenkin ryhtyä pian sen jälkeen jos ja kun törmäys varmistuu.

Riittää, että sen vauhtia hidastetaan tai nopeutetaan vain hieman, jotta se ei ole Maan kanssa samassa pisteessä aivan tismalleen samaan aikaan. DART-luotain osoitti vuonna 2022, että suurempikin asteroidi liikahtaa riittävästi kun saa vain riittävän nopean töytäisyn raskaalla laitteella.

DARTin törmäys Dimorphosiin kuvattuna Etelä-Afrikassa olevalla Lesedi-teleskoopilla. Kuva: SAAO

 

Mitä aikaisemmin asteroidia päästään tuuppimaan, sitä helpommin sen sijaintiin Maan luona vuonna 2032 voisi vaikuttaa.

Toisaalta, jos törmäyspaikka olisi riittävän syrjäinen, asteroidin kannattaisi ehdottomasti antaa törmätä. Törmäysprosessia ja sen vaikutuksia olisi nimittäin tärkeätä päästä tutkimaan ihan todellisessa maailmassa – tämä kappale kun on tarpeeksi suuri, mutta ei kuitenkaan niin iso, että sillä olisi maailmanlaajuisia vaikutuksia.

Olisi hyvä päästä varmistamaan että simulaatiot antavat edes suurpiirteisesti oikeata tietoa.

Tarkasti ennustettu ja seurattu isohko törmäys olisi täysin ainutlaatuinen tapahtuma koko ihmiskunnan historiassa. Pääsisimme kerrankin näkemään Aurinkokunnan yleisimmän geologisen prosessin toimessa.

Peukut pystyyn!

-

Otsikkokuvassa on liitetty yhteen Apollo-astronauttien kuvaama maapallo ja Lutetia-asteroidi. Alkuperäiset kuvat: Nasa.

Boom Supersonic XB-1 lensi yliäänen nopeudella – milloin supernopea lentomatkustaminen on taas mahdollista?

Boom Supersonic XB-1 lensi yliäänen nopeudella – milloin supernopea lentomatkustaminen on taas mahdollista?

28.1.2025 tehtiin Kaliforniassa historiaa: Boom XB-1 rikkoi äänivallin ensimmäisenä siviililentokoneena sitten Concorden yli kaksi vuosikymmentä sitten. Miten lento sujui ja mitä merkitystä sillä on? Milloin Boom Supersonic saa varsinaisen yliäänimatkustajakoneensa lentoon?

01.02.2025

Yliäänimatkustajakone Concorde lensi viimeisen kerran vuonn 2003, eikä sen jälkeen ääntä nopeammin lentäminen ollut mahdollista kuin hävittäjälentäjille.

Unelma yliäänimatkustamisesta ei ole kuitenkaan kadonnut tässä parin vuosikymmenen aikana. Yhdysvaltalainen Boom Supersonic -yhtiö haluaa tehdä Concorden seuraajaan, jolla lentäminen olisi kuitenkin taloudellisesti järkevää ja joka ei saisi aikaan  niin suurta yliäänipamausta kuin Concorde. Concordehan sai lentää ääntä nopeammin vain merten päällä.

Boomin kone on nimeltään Overture, joka pystyy kuljettamaan 80 matkustajaa ja lentämään 1,7 kertaisella äänen nopeudella. Toimintasäde olisi hieman päälle 7800 kilometriä. Koneeseen siis mahtuu hieman vähemmän matkustajia kuin Concordeen ja se lentää hieman hitaammin, mutta paljon pitemmälle. Concorde pääsi juuri ja juuri Atlantin yli, mutta Overture voi lentää Tyynen valtamerenkin yli ilman tankkausta välillä.

Suuri eri Concordeen verrattuna on koneen rakennusmateriaalit, sillä Overturessa käytetään paljon kevyitä komposiittimateriaaleja. Neljä moottoria ovat myös uudenlaisia ja käyttävät paljon vähemmän polttoainetta sekä ovat hiljaisemmat kuin Concorden Olympus-moottorit. Kone voi tietysti lentää myös sataprosenttisella biopolttoaineella.

Boom on saanut koneelle jo yli 130 tilausvarausta, ja yhtiö aikoo saada koneen käyttöön vuonna 2030-luvun alkuvuosina.

Nyt lentänyt kone ei ollut Overture, vaan kooltaan noin kolmasosan siitä oleva koelentokone XB-1. Sen avulla Boom testaa monia Overturessa tarvittavia tekniikoita, ennen kaikkea moottorien ilmanottosysteemeitä, sillä ilmaottoaukkojen täytyy sopeutua lentonopeuteen, jotta ilman virtaus moottoriin pysyy mahdollisimman samanlaisena niin hitaasti kuin yliäänen nopeudellakin lennettäessä.

Ja tietysti, tärkeää on myös saada yksinkertaisesti kokemusta yliäänilentämisestä. Se on ollut Concorden jälkeen sotilaiden yksinoikeus.

Yksipaikkainen XB-1 teki ensilentonsa maaliskuussa 2024 ja on lentänyt sen jälkeen 11 kertaa ennen tätä yliäänilentoa. Kuten koelennoilla yleensä, jokaisella lennolla on menty kovempaa ja korkeammalla.

Nyt tiistaina aamulla Kalifornian aikaa XB-1 lähti Mojaven lentokentältä, noin 150 kilometrin päässä Los Angelesista pohjoiseen, ja nousi saman tien testilentokorkeuteen noin kymmenessä kilometrissä.

Kone kaartoi sopivaan suuntaan autiomaan päällä ja kiihdytti. Äänivalli meni rikki 10 600 metrin korkeudessa noin 16 ja puoli minuuttia lentoonlähdön jälkeen.

Ohjaimissa ollut Boomin pääkoelentäjä Tristan Brandenburg hidasti sen jälkeen, ja rikkoi äänivallin vielä kaksi kertaa tuon jälkeen ja lensi nopeimmillaan Mach 1,122:n nopeudella. Kiinnostavaahan ei ollut vain lentää nopeasti, vaan katsoa miten kone solahtaa äänivallin läpi ja tulee takaisin alisooniselle nopeudelle. Miten ohjausjärjestelmät toimivat ja kuinka iskuaallot ja lämpökuormat menevät koneen ja siipien pinnalla.

Lento kesti vain 33 minuuttia ja 46 sekuntia, ja sujui hyvin.

Juuri nyt viime yönä tätä Euroopan aikaa Boomin toimitusjohtaja Blake Sholl viestitti sosiaalisessa mediassa yksityiskohdista lennon aikana. Ongelmia ei ollut, mutta yksi pieni, odottamaton yksityiskohta oli: koneen rungon takaosa oli odotettua kuumempi moottorien jälkipolttimien vuoksi. Ei liikaa, mutta kuumempi kuin odotettiin.

Toinen yllätys oli se, että yliäänipamaus oli hyvin hiljainen. Se, tuleeko pamausta ja kuinka voimakas se on, riippuu koneen muodon lisäksi muun muassa sääoloista ja lentokorkeudesta, ja tosiaan, nyt mitään kunnon pamausta ei tullut. Boom on tietysti koittanut tehdä koneen sellaiseksi, että pamaus olisi vaimea, mutta se ei selitä asiaa täysin.

Lento tapahtui muuten Mojavessa, hyvin lähellä kuuluisaa Edwardsin koelentokeskusta niin sanotussa Black Mountain Supersonic Corridorissa, Mustien vuorten yliäänikäytävässä, eli alueella, missä on sen verran vähän asutusta, että siellä voi pamautella ilman suurempaa haittaa. Tätä ennen pamauttelijat ovat tosiaan olleen sotakoneita.

Seuraava lennolla XB-1:llä on tarkoitus lentää nopeammin, 1,3 kertaisella äänen nopeudella, ja jossain vaiheessa myöhemmin kaksinkertaisella äänen nopeudella.

Tekeillä on toinenkin kiinnostava yliäänikone Nasan ja Lockheed-Martinin X-59, josta tein viime vuonna videon. Koneen muoto on tehty sellaiseksi, että yliäänipamauksen sijaan kone saisi aikaan vain pienen tussahduksen. Tuo projekti on kuitenkin myöhässä vielä siitä että se on myöhässä, ja nyt ensilentoa lupaillaan vasta joskus nyt vuonna 2025.

X-59 ja XB-1 eivät ole ihan samanlaista, sillä X-59:n päätarkoitus on yliäänilentämisen tutkimus yleisesti, ja XB-1 on koekone Overturea varten, mutta silti: kaupallinen yhtiö menee selvästi eteenpäin nopeammin ja edullisemmin kuin kankea Nasa ja perinteinen ilmailuyhtiö.

Ai niin, pari asiaa vielä tuosta XB-1:n lennosta. Ensiksikin sillä on vähän sama ongelma kuin X-59:llä, eli ohjaamosta on vaikea nähdä eteenpäin. Siksi kummassakin on kameroita ja kuvaruudut sisällä ohjaamossa, ja XB-1 sekä myöhemmin Overture tarvitsevat niitä etenkin noustessa ja laskeutuessa, jolloin kone lentää nokka kovasti kohti taivasta. Concordessa oli taipuva nokka ja liukuva visiiri, mutta uusissa käytetään kameroita ja kuvaruutuja.

Toiseksi XB-1:n lentoa seurasi kaksi hävittäjäkonetta: nettilähetykseen ja muutenkin kuvaa lennosta lähetti T-38 -harjoitushävittäjä, ja varsinaisena apulentokoneena, mistä tarkkailtiin koko ajan XB-1:n lentoa ja olisi voitu hälyttää jos joku olisi näyttänyt olevan pielessä, niin tuo kone oli Dassault Mirage F1, siis ranskalainen hävittäjä, joka on nyt Yhdysvaltain siviilirekisterissä. Tällä amerikkalaislennollakin oli siis eurooppalaisväriä!

 

Marsiin ennen vuotta 2030? Jari Mäkinen Ti, 28/01/2025 - 23:19
Mars väreissä (Kuva ESA)
Mars väreissä (Kuva ESA)

Monet tiedotusvälineet ovat kertoneet Yhdysvaltain presidentti Trumpin ja hänen uuden sydänystävänsä Elon Muskin visioista Marsin suhteen: virkaanastujaispuheessaan Trump hahmotteli ihmisten lähettämistä Marsin pinnalle aivan lähiaikoina. Kuinka todennäköistä tämä on?

Musk, tyypilliseen ylioptimistiseen tapaansa viestitti X:ssä viime syyskuussa, että "ensimmäinen miehitetty lento Marsiin tapahtuu neljän vuoden kuluessa" – siis vuonna 2028.

Trump puolestaan on usuttanut Nasaa toimimaan, ja avaruusjärjestö tutkii tällä haavaa mahdollisuuksia lähettää ihmiset lennolle Marsiin ja takaksin 2030-luvun alussa.

Helsingin sanomat kyseli asiaa myös Esko Valtaojalta, joka muisti mainita tuossa haastattelussa kanssani syksyllä 2016 lyömänsä vedon.

Esko kertoo vedostamme alun perin Kohti ikuisuutta -kirjassaan (sivu 221). Löimme vetoa siitä, pääseekö ihminen Marsiin ennen vuotta 2030; häviäjä antaa voittajalle pullollisen Château Latouria, "eikä sitten mitään halvempaa vuosikertaa", kuten Esko toteaa mielestäni hieman sovittua hieman täsmällisemmin kirjassa.

No, se mikä on painettu, on totta.

Kovasti toivon edelleen voittavani vedon, mutta nyt melkein kymmenen vuotta myöhemmin en usko voittavani. Joka tapauksessa nyt en löisi enää tuota vetoa.

Miksikö?

Lyhyesti: Starship on kovasti myöhässä siitä, mitä tuolloin oletettiin. Musk oletti tuolloin Starshipin tulevan käyttöön jo 2020-luvun alussa ja olisi tehnyt vuoden 2023 loppuun mennessä jo ensimmäisen turistilennon Kuun ympäri.

Starship Kuun luona (visualisointi)

Vaikka suhtauduin tuolloin hieman epäillen noihin aikatauluihin, niin on ollut pieni pettymys, että Starship teki ensilentosa vasta huhtikuussa 2023. Ja sen jälkeen on mennyt jo kaksi vuotta, eikä alus ole vielä päässyt edes kunnolla kiertoradalle.

SpaceX olisi kyllä jo voinut kiihdyttää Starshipin Maata kiertämään pitkän heittoliikkeen sijaan edellisillä koelennoilla, mutta ei tehnyt sitä turvallisuussyistä. Starship on sen verran suuri alus, että sen moottorien toiminta avaruudessa täytyy testata vielä kunnolla, ennen kuin alus uskalletaan viedä kiertoradalle. Elleivät moottorit toimi, alus jäisi avaruuteen jättimäisenä avaruusromuna ja putoaisi aikanaan holtittomasti alas. Se ei olisi kivaa.

On siis hyvä, että cowboy-maineestaan huolimatta SpaceX tekee koelentojaan varsin varovasti.

Mutta se, että Starship saataisiin tästä lentämään Marsiin vain neljässä vuodessa, on erittäin epätodennäköistä. SpaceX pystyy selvästi paljoon, mutta tuskin tähän. Kaiken täytyisi mennä tulevilla koelennoilla täydellisesti, ja paitsi SpaceX:n, niin myös Nasan ja Yhdysvaltojen pitäisi keskittyä marsmatkaan lähes yhtä totaalisesti kuin 1960-luvulla keskityttiin lentämään Kuuhun.

Ja sittenkin tekee tiukkaa, koska Marsiin ei lennetä ihan noin vain.

Edellisellä kaudellaan presidentti Trump sekoitti useammankin kerran Marsin ja Kuun keskenään, ja voi olla, että hänen mielessään Mars on jossain vain hieman Kuuta kauempana. Musk sen sijaan tietänee miten Marsiin mennään, mutta pitää tyypilliseen tapaansa ilmassa toiveikkuutta.

Käyn seuraavassa läpi edessä olevia haasteita.

1. Taivaanmekaniikka

Paras tapa lähettää alus Marsiin on tehdä se niin sanotun opposition aikaan. Eli silloin, kun Maa ja Mars osuvat kiertoradoillaan siten, että olemme lähellä toisiamme. Näin käy kerran noin kahdessa vuodessa, tarkalleen keskimäärin 779,94 vuorokauden eli vajaan 26 kuukauden välein.

Juuri nyt olemme oppositiossa: Mars oli 16. tammikuuta 96,08 miljoonan kilometrin päässä meistä. Viime vuosikymmeninä Marsiin on lähetetty luotaimia jokaisen opposition aikaan, mutta sitten 2020 laukaistun Perseverance-kulkijan on ollut hiljaisempaa.

Nyt tosin on lähdössä kaksi ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) -luotainta. Näiden uudenlaisten pikkuluotainten piti lähteä matkaan jo lokakuussa, mutta nyt laukaisu on suunnitteilla huhtikuulle.

Parasta olisi lähettää luotaimet siten, että ne olisivat juuri opposition aikaan noin puolimatkassa. Siis kolme-neljä kuukautta ennen oppositiota, jolloin ne saapuvat perille nelisen kuukautta opposition jälkeen. ESCAPADE-luotaimet laukaistaan uudella New Glenn -raketilla, ja sen ensilento viivästyi, eikä lopulta luotaimia uskallettu lähettää ensilennolla, joten nyt matkaan päästään vasta keväällä. Luotaimet ovat pieniä ja New Glenn on voimakas, joten puolen vuoden myöhästyminen ei haittaa.

Marsiin voitaisiin kyllä laukaista luotaimia milloin vain, mutta se vaatii vain paljon energiaa ja siitä huolimatta matka-aika saattaa olla hyvin pitkä. Vaikka käytössä olisi todella voimakas raketti, kuten Starship (tai jotain vieläkin äreämpää), niin laukaisut kannattaisi tehdä oppositioiden aikaan.

Marsin ja Maan radat

Seuraava oppositio on helmikuussa 2027 ja sitä seuraavat maaliskuussa 2029 sekä toukokuussa 2031. Ne kaikki ovat "huonoja", koska planeettojemme välinen etäisyys on pienimmilläänkin varsin suuri: 101, 96 ja 82 miljoonaa kilometriä. Tämä tarkoittaa käytännössä sitä, että aluksen massa voi olla varsin pieni verrattuna "hyviin" oppositioihin, jolloin välimatka on vain kuutisenkymmentä miljoonaa kilometriä.

Näin on sitä seuraavina oppositioina kesäkuussa 2033 ja syyskuussa 2035, jolloin välimatkat ovat 63 ja 56 miljoonaa kilometriä.

Käytännössä siis ennen vuotta 2030 on enää kaksi mahdollisuutta lähettää Marsiin alus ja/tai aluksia.

Starship nousee 4. lennolleen.

2. Starship vaati paljon lentoja vielä

Jos Starshipin koelennot olisivat alkaneet aikaisemmin ja koelento-ohjelma olisi mennyt eteenpäin nopeasti, niin periaatteessa ensimmäinen koelento Marsiin olisi voinut olla nyt tänä vuonna. Mutta nyt se voi olla aikaisintaan 2027.

Ja ennen kuin Starship voi lähteä Marsiin, pitää tapahtua todella paljon.

Starship – itse avaruusalus ja sen matkalle laukaiseva Super Heavy -boosteri – on monimutkainen systeemi, joka on suunniteltu tekemään lopulta lentoja hyvin usein. SpaceX:n mukaan boosteri voisi olla valmis uuteen lentoon vain noin kolmen tunnin päästä laskeutumisestaan, joka tapahtuu nykyisten Falcon 9 -rakettien ensimmäisten vaiheiden tapaan, mutta suoraan laukaisutelineen viereen.

Kahdella koelennolla Super Heavy on onnistunut jo palaamaan lähtöpaikalleen. Visio tulevasta näyttää toteutuvan, vaikka laukaisualustaa on täytynyt vielä korjailla paljon kunkin laukaisun jälkeen.

Starship on avaruuteen päästyään aika kuivilla ajoaineista, joten sitä pitää tankata ennen kuin se voi jatkaa kohti Kuuta tai Marsia. Lentoja voi olla viisi tai kuusi, riippuen siitä kuinka suureksi Starship lopulta tehdään. Nyt koelennetty versio 2 on jo suurempi kuin alkuperäinen.

Starship tankkaa avaruudessa

Joka tapauksessa lento Kuuhun tai Marsiin vaatii yhden laukaisun sijaan yhden ja lisäksi monta tankkeriavaruusaluksen laukaisua. Kenties jopa kuusi.

SpaceX on suunnitellut tälle vuodelle 2025 kaikkiaan 25 Starship-lentoa, joista suuri osa liittyy syksyllä aikaisintaan olevaan koelentoon kohti Kuuta.

Nasa on tilannut SpaceX:ltä laskeutujan kuulentojaan varten, ja tuon aluksen koelennot ovat vielä edessä. Samaa, tai hyvin samanlaista alusta voidaan käyttää myös Mars-lentoihin. Ennen lentoa Marsiin pitää alusta testata vielä Kuussa – ja nähtäväksi jää, miten Nasa järjestelee uudelleen tulevia kuulentoja.

Starship Kuussa (visualisointi)

3. Lento Marsiin on PALJON vaikeampi kuin lento Kuuhun

Starshipin ensimmäiselle lennolle Marsiin ei varmasti laiteta ihmisiä mukaan. Musk on puhunut yhden aluksen sijaan useammista, joilla paitsi lentämistä Marsiin testataan, niin viedään sinne myös myöhemmin tarvittavaa rahtia.

Jos lento tai lennot sujuvat hyvin, niin voisivatko ihmiset sitten lähteä kyytiin vuonna 2029? Kyllä – mutta vain jos turvallisuudesta tingitään.

Tällä hetkellä ei ole olemassa kaikkea tekniikkaa, mitä miehitetyn Mars-lennon tekemiseen vaaditaan. Tiedämme kyllä periaatteessa hyvin mitä tarvitaan, mutta perinteiseen tapaan tekniikkan kehittämiseen ja testaamiseen menisi vuosikaupalla aikaa. Orion-kuualusta on tehty jo vuosikymmenen, eikä sillä uskalleta vielä lähteä matkaan.

Starship laskeutuu Marsiin

Vaikka SpaceX laittaisi kehitykseen vauhtia, niin ihmisten Marsiin kuljettamiseen tarvittavan Starshipin tekeminen kestää vielä kauan. Ongelmia kun on paljon tekniikan yleisestä luotettavuudesta aurinkomyrskyjä vastaan suojautumiseen. Ihmisen fyysinen ja psyykkinen kesto näin pitkällä JA kauas planeettainväliseen avaruuteen menevällä lennolla on myös iso kysymysmerkki.

Kymmenen vuoden takaisessa Mars500 -kokeessa kuusi koehenkilöä teki matkan Marsiin ja takaisin maanpäällisessä Mars-aluksen mallikappaleessa, ja tulokset olivat ristiriitaisia. Olin itse tuolloin työssä Euroopan avaruusjärjestössä ja seurasin koetta hyvin läheisesti, ja suhtaudun oikeaan Mars-lentoon tuohon tyyliin varauksin.

Kolme kuudesta Mars500-osanottajasta

Mars500:n aikana tehtiin useita hätätilanneharjoituksia. Kuva on yhdestä sellaisesta. Suuri ero oikeaan Mars-lentoon verrattuna oli se, että Mars500-miehistö olisi voinut kävellä ulos "aluksestaan" koska tahansa. Oikeasta aluksesta ei voi.
Kuva: ESA/Mars500 (muut kuvat SpaceX, paitsi otsikkokuva, joka on myös ESA:n)

 

Ainoa tapa toteuttaa lento on lähteä matkaan vain vähän testatulla aluksella, olettaa että matkan aikana tulevia vikoja voidaan korjata mukana olevilla laitteilla ja luottaa yksinkertaisesti hyvään onneen. Paluumatkaa ei myöskään voida taata.

Lähtijöitä tuollaisellekin matkalle varmasti löytyy. Voi ajatella, että samaan tapaan kuin ihmisten annetaan vapaasti kiivetä Himalajalle tai tehdä muita vaarallisia temppuja, niin miksi vapaaehtoisten ei annettaisi lähteä tällaiselle avaruusmatkalle?

Yli 900 ihmistä on kuollut Himalajalla vuoden 1950 jälkeen, eikä se pahemmin saa aikaan kauhistusta. Kuolema avaruudessa sen sijaan saisi aikaan suurta älämölöä.

Siis: ainoa tapa, millä voisin edelleen voittaa vedon Eskon kanssa on antaa vapaaehtoisille lupa lähteä vaaralliselle matkalle Marsiin ja tehdä Starshipillä niin paljon koelentoja, että se olisi valmis miehitettyyn lentoon vuonna 2029. Muussa tapauksessa aika ei riitä.

Vuosi 2033 sen sijaan voisi olla mahdollinen. Jos voisin lyödä nyt uudelleen vetoa, niin sanoisin 2033.

Kuvitelma Mars-siirtokunnasta

SpaceX:n Mars-visioihin kannattaa suhtautua varsin varauksin.

---

Teksti on julkaistu myös Ursan blogina.

Tapahtui tänään: historiallinen yliäänipamaus Kaliforniassa Jari Mäkinen Ti, 28/01/2025 - 15:37
XB-1 lennossa
XB-1 lennossa
XB-1 ilmassa

Yliäänilentämisessä ei sinällään ole nykyisin mitään ihmeellistä, paitsi kun yliäänilennon tekee uuden ajan yliäänimatkustajakoneen koekone. Boom Supersonicin XB-1:n rikkoi äänivallin Mojaven taivaalla nyt tiistaina 28.1. illalla Suomen aikaa, aamulla paikallista aikaa.

Boom Supersonic on yhdysvaltalainen yhtiö, joka on tekemässä 64-paikkaista Overture-yliäänimatkustajakonetta. Siitä tulee ensimmäinen yliäänimatkustajakone brittiläis-ranskalaisen Concorden jälkeen. Concordet eivät ole lentäneet sitten vuoden 2003, kun ne poistettiin käytöstä paitsi turvallisuussyistä, niin ennen kaikkea siksi, että koneiden ylläpito oli käynyt erittäin kalliiksi.

XB-1 on koekone, jokka Boom tutkii Overturen vaatimaa tekniikkaa.

Se teki ensilentonsa maaliskuussa 2024 ja on lentänyt sen jälkeen 11 kertaa. kuten koelennoilla yleensä, jokaisella lennolla on menty kovempaa ja korkeammalla. 

 

XB-1 ilmassa

Edellisellä lennollaan 10. tammikuuta XB-1 lensi jo lähes äänen nopeudella, kun sen nopeus oli parhaimmillaan 0,95 Machia. Äänivallin rikkominen on pieni, mutta samalla suuri askel eteenpäin.

Boom välitti lennon suorana nettiin lentoa seuraavasta Northrop T-38 -harjoitushävittäjästä. Lento alkoi klo 8 paikallista aikaa Kaliforniassa eli klo 18 Suomen aikaa, ja XB-1 solahti äänivallin läpi noin 25 minuuttia myöhemmin.

Lähetys netissä alkoi klo 17.45 Suomen aikaa ja se on nähtävissä Boomin nettisivuilla sekä alla.

Boom Supersonic XB-1 eli "Baby Boom" on kooltaan noin kolmasosa tulevasta Overture -yliäänimatkustajakoneesta.

Sen pituus on 21 metriä ja siipien kärkiväli 5,2 metriä. Suurin lentoonlähtömassa koneella on 6100 kg.

Baby Boomissa on kolme General Electric CJ61 -suihkumoottoria ja se pystyy teoriassa lentämään pitkänkin aikaa 2,2-kertaisella äänen nopeudella. Koekone on ollut tätä ennen 11 lennollaan ilmassa yhteensö 450 minuuttia ja se on lentänyt kaikkiaan 5594 kilometriä.

OIennaisin testattava tekniikka koneessa liittyy moottorien edessä ja jälkeen oleviin ilmatiehyeisiin. Ne ovat muuttuvageometrisia, eli niiden muoto muuttuu nopeuden mukaan. Hyvin nopeasti lennettäessä ilma pakkautuu tehokkaammin ilmaottoaukkoihin, joten niitä pitää supistaa silloin. Laskeutuessa ja muulloin hitaasti lennettäessä aukkoja laajennetaan, jolloin ilmaa tulee paremmin moottoreihin.

Tristan Brandenburg

Ohjaimissa tällä historiallisella 12. koelennolla on Boomin pääkoelentäjä Tristan “Geppetto” Brandenburg. Hän lensi myös koneen toisen ja kolmannen koelennon, sekä on harjoitellut satoja tunteja XB-1:n simulaattorissa. 

Boom Overture

Boom Overture on nelimoottorinen yliäänimatkustajakone, joka on 52 metriä pitkä ja 18 metriä leveä. Se on suunniteltu lentämään noin 7400 kilometrin päähän maksimissaan Mach 1,7 -nopeudella.

Matkustajapaikkoja koneessa on 64-88. Ensilentoa kaavaillaan vuoteen 2029. 

Alustavia tilauksia koneelle on jo yli 130. Mukana tilaajissa on myös suuria lentoyhtiöitä, kuten American Airlines, United ja Japan Airlines.

Symphony

Moottorina Overturessa on uusi, suurelta osin itse suunniteltu Symphony. Päinvastoin kuin Concorden Olympus-moottorit, ovat nämä (suhteellisen) hiljaisia ja vähäpäästöisiä, ja polttoaineeksi kelpaa vaikkapa sataprosenttinen biopolttoaine.

Renaultin sähkörekka pääsi Lappiin ja takaisin

Renault Trucksin Diamond Echo Lapin maantiellä
Renault Trucksin Diamond Echo Lapin maantiellä

Renault Trucksin E-Tech T Diamond Echo -sähkökuorma-auton 23 000 kilometriä ympäri Euroopan tehty koeajokiertue huipentui joulukuussa sähköautojen legendaariseen koettelemukseen: ajoon kärryn kanssa Lappiin ja takaisin.

(Renaultin tiedote) Renault Trucksin E-Tech Diamond Echo kiersi vuonna 2024 yli 23 000 kilometriä Euroopassa halki Ranskan, Alankomaiden, Iso-Britannian, Espanjan, Sveitsin, Belgian ja Saksan aina Suomeen saakka.

Ranskan Lyonista huhtikuussa alkanut roadshow päättyi Lapiin nyt joulukuussa.

E-Tech Diamond Echo ajoi 1 600 kilometriä Helsingistä Rovaniemelle Lappiin ja takaisin siten, että yhtenä päivänä autolla ajettiin 250 km etappi yhdellä latauksella ja eräänä ajopäivänä tehtiin 700 km matka kahdella välilatauksella. 

Lämpötilat laskivat jopa -19°C:een, osoittivat myös auton ransalaisajajille miten sähkökuorma-auto voi toimia myös "äärimmäisissä talviolosuhteissa" – kuten Rentaultin tiedotteessa todetaan.

Keski-Euroopassa kesällä matkalla Sveitsistä Saksaan autolla päästiin parhaimmillaan 360 km:n matkaan yhdellä latauksella. Rekalle tämä on paljon. Päivittäisiä etappeja ajettiin tyypillisesti 700 km optimoidun välilataustekniikan avulla.

"Suomessa tehdyt testit ovat vahvistaneet, että sähkökuorma-autot pysyvät täysin toimintakykyisinä, jopa vaikeissa talviolosuhteissa," selitti Régis Pierrelle, Renault Trucksin sähköliikkuvuusoperaatioiden johtaja. 

"Vastoin yleistä uskomusta, emme kohdanneet ongelmia liittyen toimintamatkaan, latauksen saatavuuteen tai latausajoihin. Ohjaamon lämmitys ei vaikuttanut merkittävästi toimintamatkaan, pitkälti Renault Trucksin tarjoaman ohjelmoitavan esilämmitysjärjestelmän ansiosta, joka optimoi energiankulutuksen."

Pakkanen aiheutti hieman lisääntynyttä kulutusta (10-15% välillä). Syynä olivat tyypilliset sähköautojen talvihankaluudet sekä kaikkia autoja voimalinjasta riippumatta kurittava talvi-ilman suurempi ilmanvastus ja talvirenkaiden lisäkitka.

 

"Yksi asiakkaistamme Suomessa kertoi meille, että viime talvena -30°C päivänä  ainoa hänen kalustostaan käynnistynyt kuorma-auto oli Renault Trucksin sähkömalli. Dieselkuorma-autot olivat jumissa AdBluen kiteytymisen vuoksi," totesi Régis Pierrelle. 

Harva tulee ajatelleeksi tätä dieseliä ja sähköä verratessaan.

Keinonenä kertoo: pian suunnistetaan hajun avulla Toimitus Ti, 02/01/2018 - 14:40
Smell Sensing 2.0 -tuoksusensori

Ei enää toimistosokkeloiden ja ostoskeskusten karttakuvien tavaamista! Tamperelaistutkijoiden mukaan voit nimittäin pian haistella tiesi oikeaan paikkaan. Hajupaikannus perustuu paikoille ominaisiin ainutlaatuisiin tuoksuihin. 

Miten lohi löytää kotijokeensa kutemaan vietettyään vuosia kaukana merellä? Kuinka kirjekyyhky suunnistaa kotilakkaansa jopa tuhansien kilometrien päästä?

"Eläinten sisäisen kompassin toiminta perustuu muun muassa hajuaistiin. Ryhmä tutkijoita osoitti jo vuonna 1978, että lohet tunnistavat kotijokensa tuoksun."

Näin toteaa Tampereen teknillisen yliopiston tutkijatohtori Philipp Müller, joka innostui tuoksuista professori Robert Pichén kanssa. He tutkivat miten tuoksut voivat auttaa meitä suunnistamaan julkisilla paikoilla, kuten ostoskeskuksissa ja toimistorakennuksissa.

"Jotta tuoksujen avulla olisi mahdollista suunnistaa, eri tiloissa tyypillisesti havaittavat tuoksut täytyy pystyä mittaamaan ja kartoittamaan tarkasti", Müller sanoo.

Müller käyttää tarkoitukseen keinonenää eli kädessä kannettavaa elektronista laitetta, joka haistelee ilmaa ja raportoi havaitut tuoksut käyttäjälleen. 

Idea on yksinkertainen ja muistuttaa WLAN-signaaleihin ja magneettikenttiin perustuvaa sisätilapaikannusta. Keinonenä haistelee ilmaa tuntemattomassa sijainnissa ja vertailee aiemmin kerättyjä tuoksuhavaintoja tunnistaakseen paikan.   

"Hajupaikannus perustuu ajatukseen, että kaikilla tiloilla olisi niille ominainen, ainutlaatuinen tuoksu. Halusimme nähdä, olisiko mahdollista määrittää paikalle ominaishaju, samoin kuin ihmiselle yksilöllinen sormenjälki. Ensimmäisten testien tulokset ovat lupaavia, mutta joitakin ongelmakohtia on vielä ratkaistavana."

Smell Sensing 2.0 -tuoksusensori
Itävaltalaistutkijat ovat kehittäneet jo hyvin pienikokoisen keinonenän, "Smell Sensing 2.0" -hajusensorin.

Haistaa ihmistä tarkemmin

Useimmat meistä tunnistavat työpaikan kahvihuoneen, henkilöstöravintolan tai tutun kuntosalin ominaistuoksun.

On helppoa paikantaa itsensä tällaisissa paikoissa ilman teknisiä apuvälineitä, mutta monissa paikoissa ominaistuoksu on heikompi ja vähemmän yksilöllinen.

"Keinonenä havaitsee hajuja, joita ihmiset eivät kykene aistimaan. Se kehitettiin alun perin nuuskimaan kemiallisia aseita, joita ihmisen hajuaisti ei erota. Siksi arvelimme, että sitä voisi käyttää paikannukseen sellaisissa tiloissa, joita ihminen ei voi tunnistaa tuoksun perusteella. Haluamme myös lisätä hajutietoja karttoihin, jotta ihmiset voisivat helpommin suunnistaa heille entuudestaan tuntemattomissa paikoissa."

Nuuhkimmeko pian tiemme kokoushuoneeseen tai tiettyyn kauppaan ostoskeskuksessa?

"Tulevaisuuden älypuhelimissa voisi olla keinonenäsovellus", ehdottaa Müller. 

"Itse asiassa markkinoilla on jo hajuantureita, jotka voisi helposti integroida mobiililaitteisiin. Kunhan hajuantureita löytyy massatuotteista, olemme toivon mukaan valmiina hyödyntämään niitä olemassa olevissa paikannus- ja navigaatiojärjestelmissä. Hajun avulla voidaan merkittävästi parantaa niiden tarkkuutta. Olemme kuitenkin vasta aloittaneet tutkimustyön ja monta avointa kysymystä on vielä ratkaistava, ennen kuin paikannus onnistuu luotettavasti hajusormenjälkien avulla."

Juttu perustuu Tampereen teknillisen yliopiston tiedotteeseen. Otsikkokuva: Flickr / Maggie A-Day.

Nyt laitetaan tuoksuja digitaaliseen muotoon Toimitus Ma, 25/01/2016 - 14:55
Koiran kuono
Koiran kuono


Tampereella käynnistetään hanke, missä kehitetään menetelmää tuoksujen digitointiin.


Tampereen yliopiston ja Tampereen teknillinen yliopiston yhteisessä Digital Scents (DIGITS) -tutkimushankkeessa kehitetään järjestelmäprototyyppi, jossa keinotekoinen hajuaisti mittaa ja muuntaa tuoksuja numeeriseen muotoon, minkä jälkeen tuoksut voidaan tuottaa uudelleen tarkoin hallittavalla itseoppivalla tuoksusyntetisaattorilla.

Näin tuoksuja voidaan tulevaisuudessa syntetisoida aistittaviksi digitaalisen kommunikaatioverkon avulla ihmisille ja jopa toisille koneille ympäri maailman. Työ luo pohjaa järjestelmille, jotka voivat reaaliajassa välittää tuoksuaistimuksia ja -kokemuksia kaikkialle maailmaan.

Sähköisiä neniä käytetään toistaiseksi tutkimuksen lisäksi mm. teollisuudessa ja laaduntarkkailussa, mutta elektronisilla tuoksutekniikoilla on varsin suuria mahdollisuuksia myös viihteessä, käyttöliittymissä ja ihmisen sekä tekniikan vuorovaikutuksessa tulevaisuudessa. 

Nyt käynnistettävässä tutkimuksessa yhdistetään monitieteisesti korkean tason osaamista kemiallisesta aistimisesta, mikrofluidistiikasta, koneoppimisesta, psykologiasta, vuorovaikutteisesta teknologiasta ja alan suomalaisista yrityksistä. Työ kattaa tutkimuksen, kehitystyön, anturi- ja toimilaiteteknologioiden yhdistämisen ja järjestelmän testauksen ihmisillä. 

Suomen Akatemia on myöntänyt Digital Scents -tutkimushankkeelle rahoituksen, joka kytkeytyy Suomen Akatemian ICT 2023 -tutkimusohjelman neljänteen teemaan Kehittyneet mikrosysteemit: älykkäistä komponenteista kyberfysikaalisiin systeemeihin

Hankkeen vastuullinen johtaja on professori Veikko Surakka Tampereen yliopiston informaatiotieteiden yksiköstä, ja hän tutkimusryhmineen vastaa myös tuotettavien tuoksujen aistimiseen liittyvästä kokeellisesta tutkimuksesta.

Professori Jukka Lekkala Tampereen teknillisen yliopiston Systeemitekniikan laitokselta vastaa tutkimusryhmineen tuoksuja analysoivien teknologioiden kehityksestä.

Professori Pasi Kallio Tampereen teknillisen yliopiston Systeemitekniikan laitokselta vastaa tutkimusryhmineen itseoppivien tuoksusyntetisaattoriteknologioiden kehityksestä.

Tutkimuksen kansainvälinen yhtesityökumppani on professori Kalle Levon (New York University, School of Engineering) tutkimusryhmineen. Suomalaisina yritysyhteistyökumppaneina ovat Environics Oy ja Kenzen Oy.

Hankkeen kokonaisbudjetti on noin 1,3 miljoonaa euroa, josta Suomen Akatemian rahoitusosuus on noin 900 000 euroa. Vuoden 2016 alussa alkanut tutkimus kestää kaksi vuotta.

Kuva: Brian Barnett / flickr

Uutinen perustuu Tampereen yliopiston tiedotteeseen.