Miksi Mars on punainen? Uusi selitys haastaa vanhan ruosteteorian.

Punaista Marsin pintaa Opportunity-kulkijan kuvaamana
Punaista Marsin pintaa Opportunity-kulkijan kuvaamana

Kaikkihan sen tietävät, että Marsin punainen väri johtuu rautaoksidista eli ruosteesta. Mutta milloin ja. miten Mars ruostui? Tänään julkistettu tutkimus selittää, että Marsin rautapitoinen pöly on ollut paljon kosteampaa kuin aiemmin on oletettu. Mars muuttui punaiseksi kenties jo ammoin, jolloin nestemäistä vettä oli sen pinnalla paljon.

Kun tähtitaivaalla nyt selvästi näkyvää Marsia katsoo, se on selvästi punainen. Punainen väri tulee Marsin pinnalla olevan pölyn rautapitoisuudesta: kun rauta on reagoinut nestemäisen veden tai ilman veden ja hapen kanssa, on tuloksena ollut punaista ruostetta. 

Siis ihan samaan tapaan kuin täällä Maan pinnalla.

Miljardien vuosien aikana rautaoksidipitoinen pinta-aines on jauhautunut pölyksi ja tuuli on levittänyt sitä ympäri planeettaa. Vaikka nykyisin Marsin kaasukehä on varsin ohut eikä siellä näytä olevan vapaana virtaavaa vettä, punaista pölyä syntyy koko ajan lisää ja se leviää.

Tänään julkistettu tutkimus pohtii tarkemmin Marsin ruosteen tarkkaa koostumusta. Tämä avaa uusia näkökulmia siihen, millainen on ollut Marsin ilmasto ja olosuhteet pinnanna. Lopulta kyse on myös siitä, onko Mars ollut joskus elinkelpoinen.

Nythän se ei ole – ensimmäiset Marsin ihmisasukkaat, milloin he ehtivätkään paikalle, joutuvat elämään pinnan alla suojassa säteilyltä ja tiristämään hyvin hapanta vettä syvällä pinnan alla olevasta jäästä.

Mars avaruudesta kuvattuna

 

Avaruusluotainten tekemien havaintojen perusteella on päätelty, että suurin osa rautaoksidista on hematiiittia, joka muodostui pinnan jo ollessa varsin kuiva Marsin varhaisen hyvin kostean kauden jälkeen. Hematiitti olisi muodostunut miljardien vuosien aikana lähinnä kaasukehässä olleen veden ja hapen avustuksella.

Marsin pinta-aineesta rautaa on peräti noin 13 %.

Nyt kuitenkin uudet laboratoriotutkimukset viittaavat siihen, että hematiitin sijaan pääsyyllinen punaisuuteen ovatkin hydratoituneet rautaoksidikiteet eli ferrihydriitti eli Fe3+10O14(OH)2.

Ferrihydriitti muodostuu tyypillisesti viileän veden läsnäollessa, joten sen on täytynyt syntyä silloin, kun Marsissa oli vettä vielä pinnalla.

“Yritimme luoda laboratoriossa Marsin pölyä eri rautaoksidien avulla", sanoo tutkimuksen johtaja Adomas Valantinas, Brownin yliopiston tutkijatohtori Yhdysvalloissa, joka aloitti työnsä Bernin yliopistossa Sveitsissä Euroopan avaruusjärjestön Trace Gas Orbiter (TGO) -luotaimen lähettämiä tietoja tutkien.

"Havaitsimme, että ferrihydriitti sekoitettuna basalttiin vastaa parhaiten avaruusalusten Marsilla näkemiä mineraaleja."

Keinotekoista Marsin punaista pölyä

Keinotekoista Marsin pölyä.

 

Marsin pölyn jäljennöksen tekemisessä haastavaa oli saada aikaan tarpeeksi hienojakoista ainetta. Lopulta tutkijat saivat aikaan pölyä, jonka hiukkaskoko on noin 1/100 ihmisen hiuksen paksuudesta. 

Sen jälkeen he analysoivat näytteitään samoilla tekniikoilla kuin kiertoradalla olevat avaruusalukset, kuten Marsia kiertävä TGO. Se tekee Marsin pinnasta spektrihavaintoja, joiden perusteella saadaan pinta-aineesta sen ainesosien "sormenjäkiä".

Keinotekoisen Mars-pölyn "sormenjäljet" olivat samanlaisia.

Spektrikäyriä

Ferrihydriitin (vas) ja hematiitin (oik) spektrikäyrät Marsin pinnalla ja kiertoradalta tehtyjen havaintojen sekä laboratoriokokeiden perusteella. 

 

Muutkin ovat ehdottaneet jo aikaisemmin, että ferrihydriittiä saattaisi olla Marsin pölyssä, mutta Adomas tutkimusryhmineen on ensimmäinen, joka on pystynyt yhdistämään laboratoriokokeet ja Marsia kiertävän luotaimen tekemät havainnot toisiinsa.

*

Tutkimusartikkeli Nature Communications -julkaisussa: Detection of ferrihydrite in Martian red dust records ancient cold and wet conditions on Mars

Juttu perustuu Euroopan avaruusjärjestön tiedotteeseen.

Asteroidi 2024 YR4 - tänne törmäys voisi osua ja tällainen se voisi olla

Maapallo ja asteroidi Lutetia liitetty samaan kuvaan
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan

Seuraamme asteroidi 2024 YR4:n havaitsemista ja sen mahdollista törmäysuhkaa. Tässä jutussa  on analyysi sen koosta, mahdollisesta törmäyspaikasta ja siitä, miten törmäys saattaisi tapahtua.

Aloitetaan asteroiditapauksen analysointi kokoarviolla.

Kaikkein todennäköisimmin 2024 YR4 on läpimitaltaan noin 55-metrinen. Kuvittele siis eteesi 15-kerroksisen talon korkuinen kivimurikka, joka peittää jalkapallokentän (100x60 m) puolikkaan.

Tuollaisen asteroidin massa on noin 2 miljoonaa tonnia. Se on toisin sanoen 250 kertaa massiivisempi kuin raskain Suomessa operoiva tavarajuna, 18 kertaa massiivisempi kuin Turussa rakennettu Oasis of the Seas -jättiristeilijä, tai kolmanneksen Kheopsin kuulusta pyramidista.

Lisäksi mitat voivat olla jonkin verran suurempia tai pienempiä. Halkaisijasta voidaan sanoa varmasti vain että asteroidi on 40–100 -metrinen. Sen massa taas on 0,3–33 miljoonaa tonnia, tiheydestä riippuen. Materiaali kun voi olla komeettojen tapaan hötyistä jäätä, kivimurskaa, umpikiveä, tai jopa tiivistä rauta-nikkeliseosta. Kaikkea tältä väliltä.

Eduskuntatalo

Kokoja on varsin vaikea hahmottaa, mutta Eduskuntatalo Helsingissä on hyvä vertailukohta: sen leveys pohjois-eteläsuunnassa on 78 m ja länsi-itäsuunnassa 55 m. Ristimitta on noin 95 m. Kuva: Jari Mäkinen
 

Kokoarvio perustuu asteroidin oletettavasti heijastaman valon määrään. 

Aurinkokunnassa tiedetään kuljeskelevan niin kirkkaita kuin tummempiakin pienkappaleita. Jos 2024 YR4:n pinta sattuu heijastamaan paljon valoa, sen läpimitta olisi hieman alle 50-metrinen, kun taas tummempana ja huonosti heijastavana kappaleena halkaisija voisi olla jopa sadan metrin luokkaa. 

Edellisessä jutussamme mainittu ESA:n arvio on maksimissaan 95 metriä, mutta muutamalla metrillä ei ole ison kuvan kannalta merkitystä.

Jahka asteroidin spektri saadaan mitattua tarkemmin, nähdään kuinka se heijastaa eri aallonpituuksia. Tuolloin pintamaterian laatua voidaan arvioida tarkemmin ja sen koostumus ja halkaisija voidaan lyödä lukkoon varsin tarkkaan. Mutta sen massa on yhä tuolloinkin epäselvä, sillä näistä tiedoista ei vielä pystytä sanomaan että onko ehkä kyse soraläjästä, yhtenäisestä kiinteästä kappaleesta, vai jostain näiden ääripäiden väliltä.

Asteroidi Ida

Asteroidi 243 Ida on tyypillinen aurinkokunnan pienkappale, joskin se on kertaluokkaa suurempi kuin 2024 YR4. Halkaisijaltaan Ida on 59,8 × 25,4 × 18,6 kilometriä. Galileo-luotain lensi sen ohi Marsin ja Jupiterin välissä vuonna 1994. Kuva: Nasa.

 

Törmäystapahtuma hetki hetkeltä

Kuvitellaan, että 2024 YR4 todella törmää. Mitä tuolloin tapahtuisi?

Todennäköisin törmäyshetki näyttää tällä hetkellä olevan 22.12.2032 klo 11:37 Suomen aikaa. Epävarmuutta on tosin muutaman tunnin verran, eli se voi sattua joskus välillä klo 08.09–15.05. 

Kunhan törmäysaika lasketaan sekunnilleen, selviää myös lopullinen törmäyspaikka. Nykytiedoilla voidaan sanoa vain, että törmäyspaikka on luultavasti jossain hieman päiväntasaajan pohjoispuolella: Etelä-Amerikassa, Afrikassa, Intiassa, tai niiden välisillä merialueilla.

55-metrinen asteroidi on riittävän suuri näkyäkseen ihan paljaalla silmälläkin ehkä puolisen tuntia ennen törmäystä taivaalla nopeasti liikkuvana valopisteenä. Sen voi kuitenkin erottaa vain yöpuolelta, sieltä mistä katsoen Aurinko sattuu valaisemaan kappaleesta riittävän suurta osaa. 

Päiväpuolella asujat eivät kiveä voi nähdä ennen sen tuloa ilmakehään.

Sekä asteroidin kiertonopeus Auringon ympäri että Maan painovoiman vaikutus siihen on saatu laskettua jo varsin tarkkaan. Törmäyksessä asteroidi tunkeutuu ilmakehään huimalla 17 kilometrin sekuntivauhdilla.

Helsingistä pääsisi Tampereelle tuolla vauhdilla 10 sekunnissa. Asteroidin koko ilmalento hoituu samassa ajassa. Ilmassa ehtii kuitenkin tapahtua hyvin paljon.

Ilma asteroidin edessä puristuu kasaan, ionisoituu ja alkaa hehkua, kuumentaen samalla murikan pintaakin ehkäpä noin millin syvyydeltä. Taivaalla näkyy nopeasti suureneva ja paikoin hehkuva pallo. Sen perässä leviää sankka savuvana.

Ilmakehä jarruttaa asteroidia rankasti, rasittaen sen rakennetta äärimmilleen. Siihen syntyy pieniä rakoja ja halkeamia, jotka repeytyvät lopulta auki. 

Noin 50 kilometrin korkeudella asteroidi alkaa hajota, mikä tosin näkyy maanpinnalle vain välähdyksinä ja savuvanan hetkellisiä laajentumina. Lopulta 5 – 6 kilometrin korkeudella asteroidi hajoaa lähes täydellisesti suuressa räjähdyksessä.

Tseljabinskin asteroidi

Noin 15 metriä halkaisijaltaan ollut meteori törmäsi Maahan Tšeljabinskin luona 15. helmikuuta 2013. Se räjähti noin 30–50 kilometrin korkeudessa. Kuva: via ESA.

 

Räjähdyksen tuloksena pintaan alkaa parin sekunnin päästä ropista meteoriitteja, luultavasti yhä muutaman kilometrin sekuntinopeudella. Mukana on kaikkea tomusta pesukoneen kokoisiin järkäleisiin. 

Kivien jysähtelyä maahan voi verrata vaikkapa rypälepommien keskityksen. Rytäkässä syntyy pieniä kraatterinpoikasia sinne sun tänne. Mutta tämä pommitus rajautuu kuitenkin pääosin asteroidin alkuperäiseen lentosuuntaan. Se ei suinkaan ole pahinta mitä on luvassa.

Tiedetuubin klubi Arizonan meteorikraatterilla

Arizonassa oleva Barringerin kraatteri on noin 1200 metriä leveä ja 170 metriä syvä. Sen synnytti Maahan osunut noin 50-metrinen nikkelirauta-asteroidi 50 000 vuotta sitten. Tiedetuubin Klubi vieraili paikalla vuonna 2017. Kirjoittaja on eturivissä neljäs vasemmalta. Kuva: Jari Mäkinen.

 

Paineaalto

Törmäyksen suurin haitta tulee suoraan ilmassa tapahtuneesta räjähdyksestä. Voimakkuudeltaan posaus on noin kahdeksaa megatonnia TNT:tä, vastaten suurta vetypommia. Siitä lähtevä paineaalto suuntautuu tasaisesti joka suuntaan, kaataen ja murskaten taloja, puita, siltoja – lähes kaikki maanpäälliset rakenteet. Äänen nopeudella etenevä paineaalto saavuttaa minuutissa 20 kilometrin etäisyyden.

Tämä nähtiin selvästi vuonna 2013 tapahtuneessa Tšeljabinskin meteoritörmäyksessä: paineaalto sai aikaan suuria vaurioita, kappaleiden putoaminen maahan ei.

Suoraan räjähdyksen alla olevasta pisteestä täytyy mennä noin viiden kilometrin päähän, jotta selviäminen olisi mahdollista muutoin kuin aivan ihmeen kaupalla. Todennäköistä se alkaa kuitenkin olla vasta 15 kilometrin päässä.

Merellä sattuessaan paineaalto puskee alleen jopa parikilometrisen kraatterin, joka kuitenkin oikenee nopeasti. Samalla syntyy ulospäin leviävä tsunamiaalto. Aivan kraatterin reunalla sen korkeus on useita kymmeniä metrejä, mutta jo 10 kilometrin päässä vain 2–4 metriä. 

Symmetrisyydestä ja veden edestakaisesta loiskahtelusta johtuen tsunamia ei 20 kilometrin etäisyydellä enää ehkä edes huomaa.

Nyt määritellyllä vaaravyöhykkeellä elää vähintään 200 miljoonaa ihmistä. 

Miljoonakaupunkeja alueella on hieman yli 30 kappaletta. Äärimmäisen ikävästi osuessaan asteroidi voisi tuhota hetkessä vaikkapa jonkin jättimäisen metropolin, kuten Bogotan (11 miljoonaa asukasta), Kalkutan (15 milj.), Lagosin (21 milj.), Mumbain (23 milj.) tai Dhakan (24 milj.).

Törmäysriskialue

Rajattu alue osoittaa tämänhetkisen törmäysriskin alueen, pohjalla on vuoden 2020 väestöntiheyskartta. Kuva: Daniel Bamberger / Duncan Smith (LuminoCity3D) / Jarmo Korteniemi.

 

Onneksi törmäys on hyvin epätodennäköinen, ja osuminen kaupunkiin on vielä hirmuisen paljon epätodennäköisempää.

Nämä vaikutukset on laskettu uumoillun kokoiselle 55-metriselle kiviasteroidille. Laskennallisesti moisia törmää Maahan keskimäärin tuhannen vuoden välein.

Hieman pienempi tai harvempaa materiaalia oleva asteroidi räjähtäisi korkeammalla ja pienemmällä voimakkuudella. Sen synnyttämä paineaalto ei yltäisi yhtä vahvana yhtä kauas, eikä tuhovaikutus olisi yhtä mittava. Kaupungin päälle osuessaan kuolonuhreilta ei luultavasti voitaisi kuitenkaan välttyä, jos alla olevia alueita ei evakuoitaisi ajoissa.

Suurempi (tai tiheämpi) murikka räjähtäisi joko alempana ilmassa, tai yltäisi maahan asti ja siirtäisi energiastaan aimo osan kiveen. Tuolloin pahin ongelma ei lähiympäristössä olisi paineaalto, vaan niskaan satava kiviaines.

Kaikeksi onneksi 2024 YR4 on riittävän pieni (ja törmäyshetki on vielä tarpeeksi kaukana) että törmäys voitaisiin nykytekniikalla välttää. Toimeen täytyisi kuitenkin ryhtyä pian sen jälkeen jos ja kun törmäys varmistuu.

Riittää, että sen vauhtia hidastetaan tai nopeutetaan vain hieman, jotta se ei ole Maan kanssa samassa pisteessä aivan tismalleen samaan aikaan. DART-luotain osoitti vuonna 2022, että suurempikin asteroidi liikahtaa riittävästi kun saa vain riittävän nopean töytäisyn raskaalla laitteella.

DARTin törmäys Dimorphosiin kuvattuna Etelä-Afrikassa olevalla Lesedi-teleskoopilla. Kuva: SAAO

 

Mitä aikaisemmin asteroidia päästään tuuppimaan, sitä helpommin sen sijaintiin Maan luona vuonna 2032 voisi vaikuttaa.

Toisaalta, jos törmäyspaikka olisi riittävän syrjäinen, asteroidin kannattaisi ehdottomasti antaa törmätä. Törmäysprosessia ja sen vaikutuksia olisi nimittäin tärkeätä päästä tutkimaan ihan todellisessa maailmassa – tämä kappale kun on tarpeeksi suuri, mutta ei kuitenkaan niin iso, että sillä olisi maailmanlaajuisia vaikutuksia.

Olisi hyvä päästä varmistamaan että simulaatiot antavat edes suurpiirteisesti oikeata tietoa.

Tarkasti ennustettu ja seurattu isohko törmäys olisi täysin ainutlaatuinen tapahtuma koko ihmiskunnan historiassa. Pääsisimme kerrankin näkemään Aurinkokunnan yleisimmän geologisen prosessin toimessa.

Peukut pystyyn!

-

Otsikkokuvassa on liitetty yhteen Apollo-astronauttien kuvaama maapallo ja Lutetia-asteroidi. Alkuperäiset kuvat: Nasa.

Asteroiditörmäyksen mahdollisuus vuonna 2032 kasvanut

Asteroidi Steins ja maapallon horisontti käsiteltynä samaan kuvaan
Asteroidi Steins ja maapallon horisontti käsiteltynä samaan kuvaan

Joulukuussa löydettyä asteroidia 2024 YR4 on havaittu aktiivisesti, koska se tulee lentämään hyvin läheltä maapalloa – kenties jopa törmäämään – vuonna 2032. Tuoreimman arvion mukaan törmäyksen todennäköisyys on noussut, mutta edelleen on vielä todennäköisempää, että kappale menee ohi.

Kuten uutisoimme (ensimmäisenä Suomessa) viime viikolla, on joulukuussa löytyneellä pienellä asteroidilla mahdollisuus törmätä maapalloon vuonna 2032. 

Asteroidi lensi läheltämme joulukuussa, jolloin aurinkokunnan pienkappaleita etsivä Atlas-havaintolaite äkkäsi sen taivaalta. Nyt 2024 YR4 vipeltää poispäin, mutta se ohittaa meidät seuraavan kerran 17. joulukuuta 2028 ja palaa uudelleen vuonna 2032.

Tuolloin, 22. joulukuuta 2032, sen etäisyys maapallosta on epämuvavan pieni. Sen sijaintia tuolloin on toistaiseksi hyvin vaikeaa määrätä tarkasti, koska avaruuden mittakaavassa myös maapallo on varsin pieni kohde. Mitä enemmän havaintoja asteroidista saadaan, sitä paremmin sen rataa voidaan arvioida.

Hyvin todennäköisesti 2024 YR4 ohittaa maapallon todella läheltä, mutta on myös mahdollista, että se osuu meihin. Viime viikolla todennäköisyydeksi laskettiin 1,2 %, mutta tuoreimman Euroopan avaruusjärjestön julkaiseman arvion mukaan todennäköisyys onkin 1,5 %.

Ero ei ole suuri, mutta suuntaa antava.

Samalla kappaleesta on saatu tarkempia tietoja. Asteroidin halkaisijaksi arvioidaan nyt 40 –90 metriä. Jos tällainen kappale törmäisi Maahan, se synnyttäisi pari kilometriä halkaisijaltaan olevan kraatterin ja saisi aikaan suurta paikallista tuhoa.

Mikäli törmäys tapahtuisi merellä, nousisi ilmaan valtava vesihöyrypilvi.

2024 YR4:n aktiivista seurantaa jatketaan monin eri tavoin. Yhdystyneiden kansakuntien avaruusasiain neuvoa-antava toimintaryhmä SMPAG (Space Mission Planning Advisory Group) kokoontuu asian tiimoilta kevään kuluessa ja antaa toimintaehdotuksensa YK:n Ulkoavaruusryhmälle UNOOSAlle (joka on Yhdistyneiden kansakuntien yleiskokouksen organisaatio, jonka vastuulla on toteuttaa kokouksen määrittelemiä ulkoavaruuteen liittyviä toimintaperiaatteita).

Asteroidi on tällä hetkellä maapalloa mahdollisesti joskus uhkaavien asteroidien ja komeettojen listalla ensimmäisenä. Lista muuttu koko ajan, kun kappaleiden radoista saadaan tarkempia tietoja. Euroopan avaruusjärjestön NEOCC-koordinaatiokeskuksen lista on täällä.

Otsikkokuvassa on yhdistettynä maapallon horisontti Kansainväliseltä avaruusasemalta kuvattuna ja Rosetta-luotaimen ottama kuva asteroidi Šteinsistä, joka on nyt havaittua asteroidia olennaisesti suurempi. Kuvat: ESA ja Nasa.

Marsiin ennen vuotta 2030?

Mars väreissä (Kuva ESA)
Mars väreissä (Kuva ESA)

Monet tiedotusvälineet ovat kertoneet Yhdysvaltain presidentti Trumpin ja hänen uuden sydänystävänsä Elon Muskin visioista Marsin suhteen: virkaanastujaispuheessaan Trump hahmotteli ihmisten lähettämistä Marsin pinnalle aivan lähiaikoina. Kuinka todennäköistä tämä on?

Musk, tyypilliseen ylioptimistiseen tapaansa viestitti X:ssä viime syyskuussa, että "ensimmäinen miehitetty lento Marsiin tapahtuu neljän vuoden kuluessa" – siis vuonna 2028.

Trump puolestaan on usuttanut Nasaa toimimaan, ja avaruusjärjestö tutkii tällä haavaa mahdollisuuksia lähettää ihmiset lennolle Marsiin ja takaksin 2030-luvun alussa.

Helsingin sanomat kyseli asiaa myös Esko Valtaojalta, joka muisti mainita tuossa haastattelussa kanssani syksyllä 2016 lyömänsä vedon.

Esko kertoo vedostamme alun perin Kohti ikuisuutta -kirjassaan (sivu 221). Löimme vetoa siitä, pääseekö ihminen Marsiin ennen vuotta 2030; häviäjä antaa voittajalle pullollisen Château Latouria, "eikä sitten mitään halvempaa vuosikertaa", kuten Esko toteaa mielestäni hieman sovittua hieman täsmällisemmin kirjassa.

No, se mikä on painettu, on totta.

Kovasti toivon edelleen voittavani vedon, mutta nyt melkein kymmenen vuotta myöhemmin en usko voittavani. Joka tapauksessa nyt en löisi enää tuota vetoa.

Miksikö?

Lyhyesti: Starship on kovasti myöhässä siitä, mitä tuolloin oletettiin. Musk oletti tuolloin Starshipin tulevan käyttöön jo 2020-luvun alussa ja olisi tehnyt vuoden 2023 loppuun mennessä jo ensimmäisen turistilennon Kuun ympäri.

Starship Kuun luona (visualisointi)

Vaikka suhtauduin tuolloin hieman epäillen noihin aikatauluihin, niin on ollut pieni pettymys, että Starship teki ensilentosa vasta huhtikuussa 2023. Ja sen jälkeen on mennyt jo kaksi vuotta, eikä alus ole vielä päässyt edes kunnolla kiertoradalle.

SpaceX olisi kyllä jo voinut kiihdyttää Starshipin Maata kiertämään pitkän heittoliikkeen sijaan edellisillä koelennoilla, mutta ei tehnyt sitä turvallisuussyistä. Starship on sen verran suuri alus, että sen moottorien toiminta avaruudessa täytyy testata vielä kunnolla, ennen kuin alus uskalletaan viedä kiertoradalle. Elleivät moottorit toimi, alus jäisi avaruuteen jättimäisenä avaruusromuna ja putoaisi aikanaan holtittomasti alas. Se ei olisi kivaa.

On siis hyvä, että cowboy-maineestaan huolimatta SpaceX tekee koelentojaan varsin varovasti.

Mutta se, että Starship saataisiin tästä lentämään Marsiin vain neljässä vuodessa, on erittäin epätodennäköistä. SpaceX pystyy selvästi paljoon, mutta tuskin tähän. Kaiken täytyisi mennä tulevilla koelennoilla täydellisesti, ja paitsi SpaceX:n, niin myös Nasan ja Yhdysvaltojen pitäisi keskittyä marsmatkaan lähes yhtä totaalisesti kuin 1960-luvulla keskityttiin lentämään Kuuhun.

Ja sittenkin tekee tiukkaa, koska Marsiin ei lennetä ihan noin vain.

Edellisellä kaudellaan presidentti Trump sekoitti useammankin kerran Marsin ja Kuun keskenään, ja voi olla, että hänen mielessään Mars on jossain vain hieman Kuuta kauempana. Musk sen sijaan tietänee miten Marsiin mennään, mutta pitää tyypilliseen tapaansa ilmassa toiveikkuutta.

Käyn seuraavassa läpi edessä olevia haasteita.

1. Taivaanmekaniikka

Paras tapa lähettää alus Marsiin on tehdä se niin sanotun opposition aikaan. Eli silloin, kun Maa ja Mars osuvat kiertoradoillaan siten, että olemme lähellä toisiamme. Näin käy kerran noin kahdessa vuodessa, tarkalleen keskimäärin 779,94 vuorokauden eli vajaan 26 kuukauden välein.

Juuri nyt olemme oppositiossa: Mars oli 16. tammikuuta 96,08 miljoonan kilometrin päässä meistä. Viime vuosikymmeninä Marsiin on lähetetty luotaimia jokaisen opposition aikaan, mutta sitten 2020 laukaistun Perseverance-kulkijan on ollut hiljaisempaa.

Nyt tosin on lähdössä kaksi ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) -luotainta. Näiden uudenlaisten pikkuluotainten piti lähteä matkaan jo lokakuussa, mutta nyt laukaisu on suunnitteilla huhtikuulle.

Parasta olisi lähettää luotaimet siten, että ne olisivat juuri opposition aikaan noin puolimatkassa. Siis kolme-neljä kuukautta ennen oppositiota, jolloin ne saapuvat perille nelisen kuukautta opposition jälkeen. ESCAPADE-luotaimet laukaistaan uudella New Glenn -raketilla, ja sen ensilento viivästyi, eikä lopulta luotaimia uskallettu lähettää ensilennolla, joten nyt matkaan päästään vasta keväällä. Luotaimet ovat pieniä ja New Glenn on voimakas, joten puolen vuoden myöhästyminen ei haittaa.

Marsiin voitaisiin kyllä laukaista luotaimia milloin vain, mutta se vaatii vain paljon energiaa ja siitä huolimatta matka-aika saattaa olla hyvin pitkä. Vaikka käytössä olisi todella voimakas raketti, kuten Starship (tai jotain vieläkin äreämpää), niin laukaisut kannattaisi tehdä oppositioiden aikaan.

Marsin ja Maan radat

Seuraava oppositio on helmikuussa 2027 ja sitä seuraavat maaliskuussa 2029 sekä toukokuussa 2031. Ne kaikki ovat "huonoja", koska planeettojemme välinen etäisyys on pienimmilläänkin varsin suuri: 101, 96 ja 82 miljoonaa kilometriä. Tämä tarkoittaa käytännössä sitä, että aluksen massa voi olla varsin pieni verrattuna "hyviin" oppositioihin, jolloin välimatka on vain kuutisenkymmentä miljoonaa kilometriä.

Näin on sitä seuraavina oppositioina kesäkuussa 2033 ja syyskuussa 2035, jolloin välimatkat ovat 63 ja 56 miljoonaa kilometriä.

Käytännössä siis ennen vuotta 2030 on enää kaksi mahdollisuutta lähettää Marsiin alus ja/tai aluksia.

Starship nousee 4. lennolleen.

2. Starship vaati paljon lentoja vielä

Jos Starshipin koelennot olisivat alkaneet aikaisemmin ja koelento-ohjelma olisi mennyt eteenpäin nopeasti, niin periaatteessa ensimmäinen koelento Marsiin olisi voinut olla nyt tänä vuonna. Mutta nyt se voi olla aikaisintaan 2027.

Ja ennen kuin Starship voi lähteä Marsiin, pitää tapahtua todella paljon.

Starship – itse avaruusalus ja sen matkalle laukaiseva Super Heavy -boosteri – on monimutkainen systeemi, joka on suunniteltu tekemään lopulta lentoja hyvin usein. SpaceX:n mukaan boosteri voisi olla valmis uuteen lentoon vain noin kolmen tunnin päästä laskeutumisestaan, joka tapahtuu nykyisten Falcon 9 -rakettien ensimmäisten vaiheiden tapaan, mutta suoraan laukaisutelineen viereen.

Kahdella koelennolla Super Heavy on onnistunut jo palaamaan lähtöpaikalleen. Visio tulevasta näyttää toteutuvan, vaikka laukaisualustaa on täytynyt vielä korjailla paljon kunkin laukaisun jälkeen.

Starship on avaruuteen päästyään aika kuivilla ajoaineista, joten sitä pitää tankata ennen kuin se voi jatkaa kohti Kuuta tai Marsia. Lentoja voi olla viisi tai kuusi, riippuen siitä kuinka suureksi Starship lopulta tehdään. Nyt koelennetty versio 2 on jo suurempi kuin alkuperäinen.

Starship tankkaa avaruudessa

Joka tapauksessa lento Kuuhun tai Marsiin vaatii yhden laukaisun sijaan yhden ja lisäksi monta tankkeriavaruusaluksen laukaisua. Kenties jopa kuusi.

SpaceX on suunnitellut tälle vuodelle 2025 kaikkiaan 25 Starship-lentoa, joista suuri osa liittyy syksyllä aikaisintaan olevaan koelentoon kohti Kuuta.

Nasa on tilannut SpaceX:ltä laskeutujan kuulentojaan varten, ja tuon aluksen koelennot ovat vielä edessä. Samaa, tai hyvin samanlaista alusta voidaan käyttää myös Mars-lentoihin. Ennen lentoa Marsiin pitää alusta testata vielä Kuussa – ja nähtäväksi jää, miten Nasa järjestelee uudelleen tulevia kuulentoja.

Starship Kuussa (visualisointi)

3. Lento Marsiin on PALJON vaikeampi kuin lento Kuuhun

Starshipin ensimmäiselle lennolle Marsiin ei varmasti laiteta ihmisiä mukaan. Musk on puhunut yhden aluksen sijaan useammista, joilla paitsi lentämistä Marsiin testataan, niin viedään sinne myös myöhemmin tarvittavaa rahtia.

Jos lento tai lennot sujuvat hyvin, niin voisivatko ihmiset sitten lähteä kyytiin vuonna 2029? Kyllä – mutta vain jos turvallisuudesta tingitään.

Tällä hetkellä ei ole olemassa kaikkea tekniikkaa, mitä miehitetyn Mars-lennon tekemiseen vaaditaan. Tiedämme kyllä periaatteessa hyvin mitä tarvitaan, mutta perinteiseen tapaan tekniikkan kehittämiseen ja testaamiseen menisi vuosikaupalla aikaa. Orion-kuualusta on tehty jo vuosikymmenen, eikä sillä uskalleta vielä lähteä matkaan.

Starship laskeutuu Marsiin

Vaikka SpaceX laittaisi kehitykseen vauhtia, niin ihmisten Marsiin kuljettamiseen tarvittavan Starshipin tekeminen kestää vielä kauan. Ongelmia kun on paljon tekniikan yleisestä luotettavuudesta aurinkomyrskyjä vastaan suojautumiseen. Ihmisen fyysinen ja psyykkinen kesto näin pitkällä JA kauas planeettainväliseen avaruuteen menevällä lennolla on myös iso kysymysmerkki.

Kymmenen vuoden takaisessa Mars500 -kokeessa kuusi koehenkilöä teki matkan Marsiin ja takaisin maanpäällisessä Mars-aluksen mallikappaleessa, ja tulokset olivat ristiriitaisia. Olin itse tuolloin työssä Euroopan avaruusjärjestössä ja seurasin koetta hyvin läheisesti, ja suhtaudun oikeaan Mars-lentoon tuohon tyyliin varauksin.

Kolme kuudesta Mars500-osanottajasta

Mars500:n aikana tehtiin useita hätätilanneharjoituksia. Kuva on yhdestä sellaisesta. Suuri ero oikeaan Mars-lentoon verrattuna oli se, että Mars500-miehistö olisi voinut kävellä ulos "aluksestaan" koska tahansa. Oikeasta aluksesta ei voi.
Kuva: ESA/Mars500 (muut kuvat SpaceX, paitsi otsikkokuva, joka on myös ESA:n)

 

Ainoa tapa toteuttaa lento on lähteä matkaan vain vähän testatulla aluksella, olettaa että matkan aikana tulevia vikoja voidaan korjata mukana olevilla laitteilla ja luottaa yksinkertaisesti hyvään onneen. Paluumatkaa ei myöskään voida taata.

Lähtijöitä tuollaisellekin matkalle varmasti löytyy. Voi ajatella, että samaan tapaan kuin ihmisten annetaan vapaasti kiivetä Himalajalle tai tehdä muita vaarallisia temppuja, niin miksi vapaaehtoisten ei annettaisi lähteä tällaiselle avaruusmatkalle?

Yli 900 ihmistä on kuollut Himalajalla vuoden 1950 jälkeen, eikä se pahemmin saa aikaan kauhistusta. Kuolema avaruudessa sen sijaan saisi aikaan suurta älämölöä.

Siis: ainoa tapa, millä voisin edelleen voittaa vedon Eskon kanssa on antaa vapaaehtoisille lupa lähteä vaaralliselle matkalle Marsiin ja tehdä Starshipillä niin paljon koelentoja, että se olisi valmis miehitettyyn lentoon vuonna 2029. Muussa tapauksessa aika ei riitä.

Vuosi 2033 sen sijaan voisi olla mahdollinen. Jos voisin lyödä nyt uudelleen vetoa, niin sanoisin 2033.

Kuvitelma Mars-siirtokunnasta

SpaceX:n Mars-visioihin kannattaa suhtautua varsin varauksin.

---

Teksti on julkaistu myös Ursan blogina.

Suomi mukaan Artemis -sopimuksiin

Nasan apulaisjohtaja Jim Freen videotervehdys
Nasan apulaisjohtaja Jim Freen videotervehdys

Suomi on liittynyt tänään mukaan Yhdysvaltain ja Nasan Artemis-sopimuksiin, jotka luovat kansainvälisen, monenkeskisen kehyksen yhteistyölle Kuun, Marsin ja muiden taivaankappaleiden tutkimuksessa. Samalla Suomi liittyi mukaan Euroopan avaruusjärjestön Zero Debris -aloitteeseen ja esitteli myös uuden avaruusstrategian.

Espoon Otaniemessä on meneillään suomalaisen avaruusalan tämän vuoden kohokohta: Aalto-yliopiston organisoima Winter Satellite Workshop

Pienestä opiskelijoiden työpajasta alkanut tapahtuma on paisunut Pohjois-Euroopan suurimmaksi avaruusalan vuosittaiseksi kokoontumiseksi. Mukana on yli tuhat osallistujaa ympäri maailman.

Ensimmäisen kokouspäivän täyttivät institutionaaliset esitykset ja tapahtumat.

Tänä vuonna tulee kuluneeksi 30 vuotta siitä, kun Suomi liittyi mukaan Euroopan avaruusjärjestöön täysjäsenenä. Sitä ennen Suomi oli vähän aikaa liitännäisjäsenenä ja yhteistyö oli alkanut jo hieman aikaisemmin. 

Itse Euroopan avaruusjärjestö juhlii tänä vuonna 50-vuotista olemassaoloaan. Euroopan kantorakettikehitysjärjestö ELDO ja Euroopan avaruustutkimusjärjestö ESRO yhdistettiin Euroopan avaruusjärjestöksi vuonna 1975.

Tilaisuudessa julkistettiin kirjanen, missä muistellaan Suomen taivalta avaruuteen. Sähköisen julkaisun Suomi ESAn jäsen 30 vuotta, kolme vuosikymmentä yhteistyötä ja menestystarinoita lukea ja ladata itselleen täältä.

Suomen avaruustoimintaa koordinoivan Työ- ja elinkeinoministeriön Tero Vihavainen esitteli Otaniemessä myös Suomen uuden avaruusstrategian, joka määrittelee Suomen avaruustoiminnan vision ja päämäärät vuoteen 2030. 

Avaruusstrategian pääpilarit

Uuden strategian pääpilarit Tero Vihavaisen esityksen kalvolla. Strategiassa on paljon kauniita sanoja ja hyvät päämäärät, mutta se kaipaa konkretiaa. Strategia on saatavilla suomeksi, ruotsiksi ja englanniksi.

 

Strategian keskeisiä tavoitteita ovat "avaruuspalveluiden hyödyntäminen yhteiskunnan eri sektoreilla, avaruustoimintaympäristön kehittäminen, toimintakyvyn vahvistaminen ja kansainvälisen yhteistyön lisääminen". 

Se korostaa avaruustalouden merkitystä, turvallisuus- ja puolustuspoliittisia näkökulmia sekä huoltovarmuuden tärkeyttä.

Artemis-sopimukset

Kansainvälisesti kiinnostavin osa tiistain ohjelmaa oli kuitenkin Suomen liittyminen Yhdysvaltain johtamaan Artemis-sopimuksiin. Suomesta tuli 53. sopimuksiin mukaan tullut maa.

Kyseessä on joukko sitoumuksettomia monenvälisiä sopimuksia Yhdysvaltain hallituksen ja muiden maiden hallitusten välillä, jotka perustuvat YK:n vuonna 1967 tehtyyn ns. ulkoavaruussopimukseen, mutta laajentavat ja tarkentavat sitä.

Ne kehystävät yhteistyötä Kuun, Marsin ja muiden avaruudessa olevien taivaankappaleiden siviili- ja rauhanomaisessa tutkimuksessa.

Sopimuksilla on suora poliittinen yhteys Yhdysvaltain ja Nasan Artemis-kuuohjelmaan. Koska myös Kiina ja Venäjä keräävät myös maita tukemaan omia intressejään, tarkoittaa sopimuksiin mukaan meneminen myös selvästi sitä, että Suomi on valinnut puolensa poliittisesti.

Asettuminen Yhdysvaltain rinnalle on luonnollinen jatko viimeaikaiselle kehitykselle. 

Ministeri Ville Rydman ja asianhoitaja Jim Free

Allekirjoittajina olivat Työ- ja elinkeinoministeri Ville Rydman ja Yhdysvaltain asianhoitaja Christopher Krafft. Nasan apulaisjohtaja Jim Free lähetti videotervehdyksen, mistä on jutun otsikkokuva.

 

Yhdysvaltain tuore hallintomuutos voi tuoda sopimuksiin lisäväriä, etenkin jos presidentti Trump tulee muokkaamaan voimakkaasti nykyistä Artemis-kuuohjelmaa. Laajempaan kehykseen tämä ei kuitenkaan vaikuttane, vaikka osuu kipeästi paljon tekniikkaa Artemikseen toimittaneeseen ja hankkeeseen muutenkin panostaneeseen Euroopan avaruusjärjestöön.

Ensimmäiset Artemis-sopimukset allekirjoitettiin 13. lokakuuta 2020, jolloin mukana olivat Australia, Kanada, Italia, Japani, Luxemburg, Yhdistyneet Arabiemiirikunnat, Yhdistynyt kuningaskunta ja Yhdysvallat. 

Artemis-sopimukset allekirjoittaneiden maiden liput

Ei roskaa!

Myös Euroopan avaruusjärjestö etsii kumppaneita, mutta hieman eri kulmalla. ESAn Zero Debris -julkilausuma, jonka mukaan avaruuden käytön tulisi olla täysin roskaamatonta vuoteen 2030 mennessä.

Valtioiden lisäksi ESA kutsuu mukaan yhtiöitä, tutkimuslaitoksia ja muita avaruutta käyttäviä tahoja, jotka sitoutuvat pyrkimään avaruuden roskaamisen vähentämiseen.

Ministeri Rydman allekirjoitti lausuman Suomen puolesta, ja lisäksi kuusi suomalaista avaruusalan toimijaa sitoutui myös toimimaan julkilausuman mukaisesti.

Big Space-suited inflatable astronaut near the front door at Dipole

Suuri, puhallettava astronautti toivottaa Dipolin avaruuskokouksen osallistujia tervetulleeksi torstaihin iltaan saakka. Kokouksesta tulee vielä lisää juttuja sekä video Tiedetuubiin.

Tätä kuvaa Andromedan galaksista otettiin vuosikymmenen ajan

Andromedan galaksi
Andromedan galaksi

Tässä on valokuva, jonka ottamiseen kului yli 10 vuotta: suurimmassa ja tarkimmassa koskaan Andromedan galaksista tehdyssä mosaiikkikuvassa on yli 600 yksittäistä kuvaa. Siinä on 200 miljoonaa tähteä ja 2,5 miljardia pikseliä.

Hubble-avaruusteleskooppi vietiin avaruuteen huhtikuussa 1990, eli se on ollut toiminnassa kohta 35 vuoden ajan. 

Näinä vuosikymmeninä yksi sen kohteista on ollut Andromedan galaksi (M31), jonka voi nähdä sopivan pimeässä paikassa myös paljain silmin heikkona, sumumaisen sikarin muotoisena kohteena taivaalla.

Sata vuotta sitten tähtitieteilijä Edwin Hubble – jonka mukaan teleskooppikin on nimetty – osoitti ensimmäisenä, että Andromedan galaksi oli itse asiassa kaukana meidän oman Linnunradan galaksin ulkopuolella. Se oli mullistus maailmankuvassamme, sillä sitä ennen tähtitieteilijät olivat ajatelleet, että Linnunrata on kaikki mitä on. Se on koko maailmankaikkeus.

Matkaa Andromedan galaksiin on noin 2,5 miljoonaa valovuotta, eli se on noin 25 Linnunradan halkaisijan päässä meistä. Nyt tiedämme, että galakseja on valtavan hurjan paljon enemmän ja paljon, paljon kauempanakin.

Nyt julkaistun mosaiikkikuvan ottaminen alkoi voin vuosikymmen sitten Panchromatic Hubble Andromeda Treasury (PHAT) -hankkeena. Kuvia otettiin hakdella Hubblen kameralla (Advanced Camera for Surveys ja Wide Field Camera) lähiultravioletin, näkyvän ja lähi-infrapunaisen aallonpituuksien alueella. 

Kohteena oli tuolloin Andromedan pohjoinen puolikas.

Sen jälkeen tuli Panchromatic Hubble Andromeda Southern Treasury (PHAST) -hanke, jonka puitteissa samoilla kameroilla kuvattiin lisäksi noin 100 miljoonaa tähteä Andromedan eteläiseltä puolelta. 

Yhdessä nämä kattavat koko Andromedan, joka nähdään hyvin levymäisenä aika hyvin suoraan sivusta; naapurimme on kallistunut 77 asteen kulmassa meihin. 

Kuvissa olevien noin 200 miljoonan tähden iät, massat ja alkuaineiden peruskoostumukset on saatu nyt kartoitettua.

Eteläinen puoli on itse asiassa jännempi kuin pohjoinen puoli, koska se kertoo paljon siitä, miten Andromedan galaksi on syntynyt. Todennäköisesti Andromeda on yhdistynyt yhden tai useamman galaksin kanssa. Hubblen kuvan avulla voidaan haarukoida nyt erilaisia hahmotelmia yhdistymishistoriasta ja galaksin levyn kehityksestä.

Vaikka Linnunrata ja Andromeda syntyivät todennäköisesti suunnilleen samaan aikaan useita miljardeja vuosia sitten, havaintoaineisto osoittaa, että niillä on hyvin erilaiset kehityshistoriat, vaikka olemme naapureita.

Andromedassa näyttää olevan enemmän nuorempia tähtiä. Galaksia on todennäköisesti ryöpytelty lähihistoriassa enemmän kuin meitä, ja syyllinen voi olla pienempi kiertolaisgalaksi Messier 32.

Se on puolestaan nyt kuin spiraaligalaksin riisuttu ydin, joka saattaa olla vuorovaikuttanut Andromedan kanssa menneisyydessä, ja se on menettänyt tähtiään ja kaasuaan tässä kosmisessa kolarissa. 

Vaikka kuvassa on nyt hieman yli 200 miljoonaa tähteä, ne ovat vain noin oman Aurinkomme kirkkautta kirkkaampia tähtiä. Kaikkiaan Andromedan galaksissa arvioidaan olevan jopa biljoona tähteä.

Kuvattavaa siis riittää Hubblen seuraajalle, JWST-teleskoopille.

 

Juttu perustuu ESA/Hubble -tiedotustoimiston tiedotteeseen.

Otsikkokuva: NASA, ESA, B. Williams (University of Washington)

Kyllä, se on Mars!

Mars lähestymässä edellistä, vuoden 2022 oppositiota Härän tähdistössä. Kuva MH
Mars lähestymässä edellistä, vuoden 2022 oppositiota Härän tähdistössä. Kuva MH
Giovanni Schiaparellin laatima kartta Marsin kanavista. Kuva Giovanni Schiaparelli
Perseverance-kulkijan maisemakuva Airey Hilliltä. Kuva NASA/JPL-Caltech/ASU/MSSS

Punainen planeetta on talven mittaan kirkastunut ja näkyy nyt hyvin käytännössä koko pimeän ajan. Kuvassa Mars on lähestymässä edellistä oppositiota joulukuussa 2022.

Talvista iltataivasta koristaa kaksi vielä kirkkaampaa valopistettä. Auringonlaskun aikaan Venus on suoraan etelässä, mistä se kiertyy illan mittaan hitaasti kohti lounasta. Jupiter on puolestaan itäisellä taivaalla keskellä Härän tähtikuviota. Se on selvästi kirkkaampi kuin Aldebaran, tähdistön kirkkain tähti.

Jos malttaa mielensä ja on pukeutunut pakkassäähän riittävän lämpimästi, kannattaa odotella tovi. Jupiterin vanavedessä koillisen horisontin takaa nousee Mars, Punainen planeetta.

Kirkkaudessa se jää jälkeen Jupiterista, mutta päihittää silti Aldebaranin. Syy on selvä: Mars on lähestymässä oppositiota. Silloin planeetta on taivaalla vastapäätä Aurinkoa, nousee auringonlaskun aikoihin ja laskee vasta aamunkoitteessa. Samalla se on myös lähinnä Maata tällä kierroksellaan.

Opposition tarkka ajankohta on 16. tammikuuta. Lähimpänä Maata planeetta on jo 13.1., jolloin sen etäisyys on 96 miljoonaa kilometriä. Edellisen opposition aikaan joulukuun alussa 2022 etäisyys oli hivenen pienempi, noin 82 miljoonaa kilometriä. Siksi Mars näkyy nyt aavistuksen himmeämpänä ja näennäiseltä läpimitaltaan pienempänä (maksimissaan vähän alle 15 kaarisekuntia). Planeetta nousee kuitenkin hyvin korkealle ja loistelee parhaimmillaan etelän suunnalla 55 asteen korkeudella.

Värinsä perusteella Mars löytyy helposti taivaalta. Se on Kaksosten tähdistön Castorin ja Polluxin alapuolella, melko lähellä Kravun tähdistössä kiiluvaa Praesepen tähtijoukkoa (Messier 44). Tällä hetkellä Mars vaeltaa tähtien suhteen länteen päin ja etääntyy tähtisikermästä, mutta kulkusuunta muuttuu helmikuun lopulla, ja toukokuun alussa planeetta kulkee Praesepen editse. 

Taivaallinen siksak-liike johtuu siitä, että opposition aikoihin Maa ohittaa kauempana Auringosta kiertävän Marsin ”sisärataa” pitkin, jolloin ulompi planeetta näyttää liikkuvan jonkin aikaa takaperoiseen suuntaan.  

Nasan aurinkokuntasimulaattori näyttää hyvin tilanteen:

Opposition jälkeen Maan ja Marsin välimatka alkaa taas kasvaa, mutta naapuriplaneettamme näkyy hyvin ja sitä kannattaa myös katsella koko alkuvuoden. Mars katoaa näkyvistä vasta valoisten kesäöiden myötä.

Paljain silmin ja kiikarilla Mars näkyy selvästi punaisena tai pikemminkin oranssina valopisteenä. Kaukoputkella erottuu jo pinnan ”yksityiskohtia”, tummempia alueita vaaleampaa taustaa vasten. Kirkkauserot ovat varsin vähäisiä, joten ensikatsomalta ei välttämättä onnistu näkemään juuri mitään. Vähitellen silmä oppii kuitenkin erottamaan yhä paremmin planeetan pinnan sävyeroja. 

Tällä kertaa Marsin pohjoinen pallonpuolisko on hivenen kallistunut Maata kohti, joten ensimmäisenä huomio saattaa kiinnittyä valkoisena hohtavaan pohjoiseen napalakkiin, jonka vesi- ja hiilidioksidijäät heijastavat hyvin auringonvaloa. 

Erisävyisissä alueissa tapahtuu hitaita muutoksia, kun pölymyrskyjen kuljettama hieno hiekka vuoroin peittää ja vuoroin paljastaa tummia alueita. Pääpiirteissään ne pysyvät kuitenkin melko lailla ennallaan, joten omia havaintoja – planeetasta kannattaa tehdä piirroksia – voi mainiosti verrata Marsista aiemmin laadittuihin karttoihin. 

Giovanni Schiaparellin laatima kartta Marsin kanavista. Kuva Giovanni Schiaparelli

Jos keli sattuu olemaan todella hyvä ja planeetan kuvajainen näkyy kaukoputkessa vailla Maan ilmakehän aiheuttamaa voimakasta väreilyä, voi yrittää bongata myös Marsin kuuluisia kanavia. 

Giovanni Schiaparellin vuonna 1877 tekemät havainnot saivat aikaan todellisen Mars-kuumeen, kun hänen laatimissaan kartoissa (esimerkki yllä) planeetan pinnalla risteili suorien viivojen verkosto. Etenkin Percival Lowell innostui asiasta niin, että uskoi Marsin olevan asuttu, mutta kuivuva maailma, jonka sivilisaatio on rakentanut valtaisan kastelukanavaverkoston napajäätiköiden sulamisvesien johtamiseksi suotuisammille päiväntasaajan seuduille.

Sittemmin on käynyt täysin selväksi, että Marsissa ei ole ”pieniä vihreitä miehiä” eikä muutakaan kehittynyttä elämää – bakteeritason alieneista ei vielä ole varmaa tietoa – mutta näköharhoiksi osoittautuneita kanavia voi silti nähdä. Silmä kun pyrkii yhdistämään näkökyvyn rajamailla häilyviä erillisiä yksityiskohtia yhtenäisiksi viivoiksi. 

Varsinaisia pinnanmuotoja, kuten kraattereita, rotkoja ja tulivuoria, ei erotu suurillakaan kaukoputkilla, mutta niitä pääsee näkemään selailemalla luotainten ottamia kuvia. Marsin maastonmuotoihinkin voi tutustua, sillä punaiselle planeetalle on lähetetty useita kulkijoita, jotka ovat välittäneet Maahan valtaisan määrän maisemakuvia.  

Perseverance-kulkijan maisemakuva Airey Hilliltä. Kuva NASA/JPL-Caltech/ASU/MSSS

Parker-luotain lähes sukelsi Aurinkoon – ja selvisi hengissä

Parker-aurinkoluotain Nasan piirroksessa
Parker-aurinkoluotain Nasan piirroksessa
Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Nasan Aurinkoa tutkiva luotain liippasi joulun aikaan hyvin läheltä tutkimuskohdettaan, ja selvisi tästä lähes kamikaze-tyyppisestä tempusta hengissä (kuten odotettiinkin).

Aurinkoa tutkii parhaillaan kaksi luotainta lähietäisyydeltä: Nasan Parker Solar Probe ja Euroopan avaruusjärjestön Solar Orbiter. 

Kumpikin näistä kiertää Aurinkoa planeettojen tapaan radoilla, jotka tuovat ne aina välillä hyvin lähelle Aurinkoa. Koska luotaintlen tutkimuslaitteet ja lentoradat on suunniteltu toisiaan täydentäviksi, hoitaa Nasan luotain lähemmän tutkimisen ja eurooppalaisluotain katselee kauempaa.

Nyt jouluaattona 2024 Parker-luotain teki toistaiseksi kaikkein läheisimmän Auringon ohilennon. Kello 13.53 Suomen aikaa sen etäisyys Auringon pinnasta oli vain 6,1 miljoonaa kilometriä.

Koska Auringon halkaisija on noin 1,4 miljoonaa kilometriä, tapahtui ohilento hyvin läheltä.

Auringolla ei ole kiinteää pintaa, vaan höttöisä välialue, missä turbulenttisen, kuuman kaasun tiheys muuttuu noin 500 kilomerin paksuisessa kerroksessa läpinäkyväksi. 

Tuon "pinnan" päällä on laaja kaasukehä, jota kutsutaan koronaksi. Silläkään ei ole tarkkaa yläpintaa, vaan se vain hiipuu vähitellen avaruuteen muuttuen aurinkotuuleksi. Karkeasti koronan tiiveimmät osat kurottavat kuitenkin noin kahdeksan miljoonan kilometrin päähän Auringon näkyvästä pinnasta.

Parker siis hujahti nyt koronan lävitse – kuten se teki jo edellisilläkin kerroilla, kun se on tullut radallaan lähelle Aurinkoa. Luotain kiertää Auringon noin 88 vuorokaudessa, ja syyskuusta 2023 alkaen se on ollut perihelissä (ratansa Aurinkoa lähimmässä kohdassa) noin 7,26 miljoonan kilometrin päässä.

Ratansa kaukaisimmassa kohdassa luotain on etääntyy Auringosta Venustakin kauemmaksi. Itse asiassa Venusta käytettiin hyväksi radan muuttamiseen tätä läheisintä ohistusta varten marraskuun 6. päivänä, jolloin se ohitti Venuksen vain 317 kilometrin etäisyydeltä – siis lähes sen pilvipintaa hipoen.

Tämänhetkisen lentosuunnitelman mukaan Parker tekee vielä neljä lähiohitusta (22. maaliskuuta, 19. kesäkuuta, 15. syyskuuta ja 12. joulukuuta) ennen kuin sen ensisijainen tehtävä päättyy.

Jos luotain on näiden jälkeen vielä toimintakuntoinen, sen todennäköisesti annetaan jatkaa vielä tutkimuksiaan. Toimivaa ja ainutlaatuisia havaintoja tekevää luotainta ei kannata sammuttaa.

Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Aurinko lämmittää luotainta erittäin voimakkaasti lähiohituksen aikana. Siihen kohdistunut paahde oli nyt joulu aikaan noin 457 kertaa voimakkaampi kuin on Auringon lämpöteho täällä maapallon luona. 

Siksi Parker-luotaon on suojattu 2,3 metriä halkaisijaltaan olevalla 11,4 cm paksulla lämpösuojalla, joka kestää noin 1370°C:n lämpötilan ja auttaa pitämään luotaimen sisällä olevat laitteet alle 30°C:n lämpötilassa.

Lähiohituksen aikana Aurinko itse häiritsee niin voimakkaasti yhteydenpitoa luotaimeen, että siihen ei voitu olla yhteydessä. Se oli ohjelmoitu tekemään ennalta tutkimuksensa ja ottamaan yhteyttä pahimman kuumennuksen jälkeen 27. joulukuuta.

Ja yhteys onnistuttiin palauttamaan. Tietojen lataaminen tältä jouluiselta ohilennolta alkaa aikaisintaan 1. tammikuuta uuden vuoden puolella.

Matkaan luotain lähetettiin elokuussa 2018.

Yllätys! Starliner palasi Maahan ilman ongelmia

Yllätys! Starliner palasi Maahan ilman ongelmia

Boeing Starliner laskeutui alas onnistuneesti lauantaina 7. syyskuuta aamulla Suomen aikaa, mutta ilman astronautteja.

07.09.2024

Sillä avaruusasemalle nousseet Butch Wilmore ja Sunita Williams jäävät avaruuteen ensi helmikuuhun saakka. Miten ja miksi heidän kahdeksanpäiväiseksi suunniteltu lento venyy kahdeksaan kuukauteen, ja mitä tämä tarkoittaa Starlinerille?

Äänetön yliäänipamaus? Nasan X-59 -koekone tutkii sitä ja minä tutkin konetta tällä videolla

Äänetön yliäänipamaus? Nasan X-59 -koekone tutkii sitä ja minä tutkin konetta tällä videolla

Eräs viime aikojen jännimmistä uusista asioista lentotekniikan saralla on Nasan ja Lockheed-Martinin kuuluisan Skunk Worksin tekemä koekone X-59.

04.02.2024

Koneen avulla tutkitaan sitä, voiko äänivallin rikkoa ilman voimakasta pamausta. Yliäänipamaus on paitsi epämiellyttävä, niin voi jopa rikkoa ikkunoita ja rakennuksia. Se onkin suurin este yliäänilentämiselle laajemmassa skaalassa – mutta toivottavasti pian ei ole enää!

Aiheesta toivottiin juttua kanavan chatissa YouTubessa joku aika sitten. Uusiakin vinkkejä saa esittää!