Punainen tupa on matkalla Kuuhun

MoonHouse pienen kuukulkijan kyydissä
MoonHouse pienen kuukulkijan kyydissä
MoonHouse piirrettynä Kuun pinnalle maapallo taustalla

Kohti Kuuta on parhaillaan menossa kaksi kulkijaa. Toisessa niistä on mukana pieni ruotsalainen punainen talo. Kyseessä on taideprojekti, jota Mikael Genberg on suunnitellut jo 25 vuotta.

Punaisen kuutuvan tarina alkaa vuodesta 1999, kun Euroopan avaruusjärjestön pientä SMART-1 -kuuluotainta valmisteltiin matkaan. Luotain tehtiin Ruotsissa ja luonnollisesti hankkeesta kerrottiin tiedotusvälineissä.

Taiteilija Mikael Genberg sai silloin vision pienestä punaisesta tuvasta Kuun pinnalla. Ruotsissa perinteinen punainen mökki on hyvin samanlainen stereotypia kuin Suomessa: se heijastaa jotain ihanteellista, omaa ja lämmintä ihmiselle.

MoonHouse piirrettynä Kuun pinnalle maapallo taustalla

Genberg on puskenut ideaansa kuutalosta eteenpäin siitä alkaen, ja punainen mökki on kiertänyt maapalloakin – niin täällä Maan pinnalla kuin avaruudessakin. Se on ollut merten syvyyksissä ja Kansainvälisellä avaruusasemalla astronautti Christer Fuglesangin mukana

Nyt mökki pääsee lopulta Kuuhunkin. Siitä on tulossa ensimmäinen talo Kuun pinnalla, joskin hyvin pieni, sillä kuumökki on kooltaan 12 x 8 x 4 cm.

Mökki on japanilaisen ispace-yhtiön tekemän Hakuto-R Mission 2 -laskeutujan mukana olevan pienen kuukulkijan kyydissä. ispacen ensimmäinen kuulento keväällä 2023 päättyi ikävästi, sillä laskeutuja syöksyi Kuun pinnalle ohjelmistovirheen vuoksi.

Uudessa, Resilience-nimisessä laskeutujassa viat on korjattu ja yhtiö on toiveikas onnistuneesta laskeutumisesta tällä kerralla. Laskeutumispaikka on Kuun Maahan näkyvän puolen koilliskulmassa (ylhäällä oikealla) oleva Mare Frigoris, Kylmyyden meri, minne laskeutuminen tapahtuu keväällä.

Laskeutumispäivä päätetään myöhemmin, mutta yhtiö kertoo, että matka-aika on neljästä viiteen kuukautta. Matkaan kulkija lähti Falcon 9 -raketilla 15. tammikuuta yhdessä Firefly Aerospace -yhtiön Blue Ghost -laskeutujan kanssa. Blue Ghost taittaa matkaa nopeammin ja sen laskeutuminen tapahtuu suunnitelman mukaan maaliskuun 2. päivänä.

Kuun pinnalle laskeuduttuaan Resilience vapauttaa matkaan Tenacious-nimisen kulkijan, joka kantaa mukanaan Genbergin punaista mökkiä. 54 cm pitkän, 32 cm leveän ja 26 cm korkean, viisi kiloa massaltaan olevan kulkijan on valmistanut ispacen Luxemburgissa sijaitseva osa. Kulkijan tehtävänä on paitsi mökittää Kuu, niin ennen kaikkea tutkia laskeutumispaikkaa ja kerätä Kuun pinta-ainetta, regoliittia.

Laskeutujan ja kulkijan mallikappaleet näyttelyssä

ispace esitteli lasketujaansa ja kulkijaa (ilman mökkiä) viime lokakuussa avaruusmessuilla Italiassa.

Piirros laskeutujasta Kuun pinnalla

Piirros laskeutujasta Kuun pinnalla.

Kuumökkiä on suunniteltu ja rakennettu kahden vuoden aikana. Se on tehty kestämään laukaisun ja lennon rasitukset sekä avaruuden ja Kuun olosuhteet. 

Kuutalon piirrustus

Genberg on julkaissut myös talonsa teknisen piirrustuksen. Sen voi vaikkapa printata pahville, värittää ja rakentaa omaksi kuutaloksi!

 

Kuutalo on yksi kuudesta laskeutujassa mukana olevasta hyötykuormasta. Vakavampihenkisiä ovat laitteisto, jolla koetetaan tuottaa ruokaa, ja mittari, joka tutkii kosmista säteilyä.

Taiteellishenkisempi on japanilaisen leluyhtiö Bandai Namcon muistolaatta, joka on tyylitelty anime-sarjasta "Mobile Suit Gundam Unicorn". Kyydissä on myös UNESCOn tuottama muistitikku, missä on näytteet 275 kielestä ja kuvia eri puolilla maailmaa olevista kulttuurikohteista.

Sympaattisin on luonnollisesti tuo ruotsalaistalo, joka luonnollisesti on periaatteessa täysin hyödytön. 

"Kenties tämä taideteos, ensimmäinen talo Kuussa, voi olla symboli sille, miten elämä pyskii aina selviytymään ja kehittymään", toteaa Mikael Genberg.

"Se antaa uuden ulottuvuuden olemassaoloomme ja katsoo kohti maapalloa."

Lisätietoa talohankkeesta on sen nettisivuilla osoitteessa themoonhouse.se

Michael ja talo

Gaia tekee viimeiset havaintonsa tänään

Gaia
Gaia
Linnunradan tähdien ominaisliikkeet 400 000 vuoden aikana.
Gaian tulosten esittely infografiikassa
Gaian aurinkopaneelia ja valosuojaa avataan testimielessä.
Timo Prusti ESTECin kahvilassa

Taivasta vuodesta 2014 alkaen kartoittanut Euroopan avaruusjärjestön Gaia-teleskooppi tekee tänään 15. tammikuuta viimeiset havaintonsa ja siirtyy kevään kuluessa eläkkeelle. Se jättää jälkeensä valtavan määrän kiinnostavia havaintoja.

Hieman tummanpuhuvalta, suurelta syntymäpäiväkakulta tai hatulta näyttävä Gaia on jo nyt eräs tähtitieteen merkkipaaluja. Sen tehtävänä on ollut kartoittaa pikkutarkasti tähtitaivasta, ja sitä se onkin tehnyt uutterasti: se on skannannut kamerallaan 10,5 vuotta avaruutta ympärillämme ja sen keräämistä havainnoista on tehty jo neljä suurta tietokantaa.

Gaiassa on kaksi teleskooppia, jotka katsovat 106,5 asteen kulmassa eri suuntiin. Kun satelliitti pyörii akselinsa ympäri, teleskooppien kuvakentät skannaavat taivasta jatkuvasti, ja kun satelliitti kiertää Aurinkoa radallaan, se pystyy kartoittamaan koko taivaan tarkasti vuoden kuluessa.

Jo ensimmäisessä tietojulkistuksessa, Gaia DR1:ssä eli Gaia Data Releasessa syyskuussa 2016 oli 1,1 miljardia tähteä, joiden sijainnin lisäksi tähden kirkkaus oli mitattu, tarkistettu ja taulukoitu. Kahdesta miljoonasta tähdestä oli lisäksi parallaksit ja ominaisliikkeet.

Tietojen joukossa oli 3000 muuttuvaa tähteä ja niiden valokäyrät, sekä yli 2000 kohdetta oman galaksimme ulkopuolelta. Näiden avulla tähtitieteilijät pystyvät määrittämään paremmin missä oikein olemme maailmankaikkeudessa.

Toisessa tietojulkistuksessa, DR2:ssa, huhtikuussa 2018 oli mukana 22 kuukauden aikana tehdyt havainnot. Nyt kohteita oli enemmän, niiden kirkkausalue oli laajempi, ja tiedot olivat vielä tarkempia. Mukana oli myös titoja yli 14 000 kohteesta Aurinkokunnassa.

Linnunradan tähdien ominaisliikkeet 400 000 vuoden aikana.

Gaian tietojen avulla on voitu laskea muun muassa se, miten Linnunradan tähdet liikkuvat seuraavan 400 000 vuoden aikana. Kuva: ESA/Gaia

 

Kolmas datajulkistus vuonna 2022 oli vieläkin tarkempi, ja tulossa on vielä kaksi uutta, entistäkin tarkempaa, laajempaa ja parempaa tietokantaa. DR4 on tulossa vuonna 2026, ja ESA lupaa sen tietojen olevat 1,7 kertaa tarkempia kuin DR2:ssa.

Viimeinen datajulkistus tapahtuu näillä näkymin vuonna 2030, jolloin kaikki Gaian tekemät havainnot ovat mukana. Sen odotetaan olevan 1,4 kertaa tarkemman kuin DR4.

Kaikki havainnot laitetaan julkiseen tietokantaan, jolloin tähtitieteilijät – kuten myös muut astrometriasta kiinnostuneet – voivat käyttää Gaian keräämiä havaintoja.

Gaian tulosten esittely infografiikassa
Gaian aurinkopaneelia ja valosuojaa avataan testimielessä.

Gaian toiminta joudutaan nyt lopettamaan yksikertaisesti siksi, että sen asennonsäätöön käyttämänsä kaasu on loppumassa. 

Alun perin Gaian odotettiin toimivan vain viiden vuoden ajan, mutta lopulta se pinnisteli tupasti tuon.

Tänään 15. tammikuuta 2025 se tekee viimeiset havaintonsa, ja tämän jälkeen Gaialla ja sen mittalaitteilla tehdään testejä, joiden avulla Gaian keräämia tietoja voidaan kalibroida paremmin. Testien avulla myös tulevaisuuden kartoittajasatelliiteista saadaan parempia.

Helmikuussa Gaia ohjataan pois radaltaan L2-pisteen ympärillä Aurinkoa kiertävälle radalle, missä siitä ei ole haittaa maapallolle tai muille satelliiteille. 

Maalis-huhtikuussa sitten satelliitti niin sanotusti passivoidaan, eli se sammutetaan.

Kiitos, Gaia!

Timo Prusti ESTECin kahvilassa

Gaian tieteellinen johtaja Timo Prusti

Gaia-teleskoopin tiedepuoli on ollus suomalaisessa johdossa, sillä hanketta on ollut vetämässä Timo Prusti. 

Timo raportoi vuonna 2013 satelliitin valmisteluista laukaisuun ja laukaisusta tuolloin juuri perustetussa Tiedetuubissa useiden juttujen verran. Kaikki jutut ovat täällä; ne tehtiin yhteistyössä Euroopan avaruusjärjestön kanssa.

Tämän jutun kirjoittaja Jari Mäkinen on tehnyt myös useamman ohjelman Yleisradiolle Gaiasta. Tuorein niistä on tämä Tiedeykkönen vuodelta 2021. Timo kertoo siinä Gaiasta ja sen keräämistä tiedoista.

Katso Gaiaa taivaalla!

Pian alkavien testien aikana Gaian asento muuttuu siten, että se näkyy nykyistä paljon paremmin taivaalla. Täältä voi nähdä missä Gaia on taivaalla: https://gaiainthesky.obspm.fr

Parker-luotain lähes sukelsi Aurinkoon – ja selvisi hengissä

Parker-aurinkoluotain Nasan piirroksessa
Parker-aurinkoluotain Nasan piirroksessa
Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Nasan Aurinkoa tutkiva luotain liippasi joulun aikaan hyvin läheltä tutkimuskohdettaan, ja selvisi tästä lähes kamikaze-tyyppisestä tempusta hengissä (kuten odotettiinkin).

Aurinkoa tutkii parhaillaan kaksi luotainta lähietäisyydeltä: Nasan Parker Solar Probe ja Euroopan avaruusjärjestön Solar Orbiter. 

Kumpikin näistä kiertää Aurinkoa planeettojen tapaan radoilla, jotka tuovat ne aina välillä hyvin lähelle Aurinkoa. Koska luotaintlen tutkimuslaitteet ja lentoradat on suunniteltu toisiaan täydentäviksi, hoitaa Nasan luotain lähemmän tutkimisen ja eurooppalaisluotain katselee kauempaa.

Nyt jouluaattona 2024 Parker-luotain teki toistaiseksi kaikkein läheisimmän Auringon ohilennon. Kello 13.53 Suomen aikaa sen etäisyys Auringon pinnasta oli vain 6,1 miljoonaa kilometriä.

Koska Auringon halkaisija on noin 1,4 miljoonaa kilometriä, tapahtui ohilento hyvin läheltä.

Auringolla ei ole kiinteää pintaa, vaan höttöisä välialue, missä turbulenttisen, kuuman kaasun tiheys muuttuu noin 500 kilomerin paksuisessa kerroksessa läpinäkyväksi. 

Tuon "pinnan" päällä on laaja kaasukehä, jota kutsutaan koronaksi. Silläkään ei ole tarkkaa yläpintaa, vaan se vain hiipuu vähitellen avaruuteen muuttuen aurinkotuuleksi. Karkeasti koronan tiiveimmät osat kurottavat kuitenkin noin kahdeksan miljoonan kilometrin päähän Auringon näkyvästä pinnasta.

Parker siis hujahti nyt koronan lävitse – kuten se teki jo edellisilläkin kerroilla, kun se on tullut radallaan lähelle Aurinkoa. Luotain kiertää Auringon noin 88 vuorokaudessa, ja syyskuusta 2023 alkaen se on ollut perihelissä (ratansa Aurinkoa lähimmässä kohdassa) noin 7,26 miljoonan kilometrin päässä.

Ratansa kaukaisimmassa kohdassa luotain on etääntyy Auringosta Venustakin kauemmaksi. Itse asiassa Venusta käytettiin hyväksi radan muuttamiseen tätä läheisintä ohistusta varten marraskuun 6. päivänä, jolloin se ohitti Venuksen vain 317 kilometrin etäisyydeltä – siis lähes sen pilvipintaa hipoen.

Tämänhetkisen lentosuunnitelman mukaan Parker tekee vielä neljä lähiohitusta (22. maaliskuuta, 19. kesäkuuta, 15. syyskuuta ja 12. joulukuuta) ennen kuin sen ensisijainen tehtävä päättyy.

Jos luotain on näiden jälkeen vielä toimintakuntoinen, sen todennäköisesti annetaan jatkaa vielä tutkimuksiaan. Toimivaa ja ainutlaatuisia havaintoja tekevää luotainta ei kannata sammuttaa.

Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Aurinko lämmittää luotainta erittäin voimakkaasti lähiohituksen aikana. Siihen kohdistunut paahde oli nyt joulu aikaan noin 457 kertaa voimakkaampi kuin on Auringon lämpöteho täällä maapallon luona. 

Siksi Parker-luotaon on suojattu 2,3 metriä halkaisijaltaan olevalla 11,4 cm paksulla lämpösuojalla, joka kestää noin 1370°C:n lämpötilan ja auttaa pitämään luotaimen sisällä olevat laitteet alle 30°C:n lämpötilassa.

Lähiohituksen aikana Aurinko itse häiritsee niin voimakkaasti yhteydenpitoa luotaimeen, että siihen ei voitu olla yhteydessä. Se oli ohjelmoitu tekemään ennalta tutkimuksensa ja ottamaan yhteyttä pahimman kuumennuksen jälkeen 27. joulukuuta.

Ja yhteys onnistuttiin palauttamaan. Tietojen lataaminen tältä jouluiselta ohilennolta alkaa aikaisintaan 1. tammikuuta uuden vuoden puolella.

Matkaan luotain lähetettiin elokuussa 2018.

Jyväskylässä saadaan avaruuselektroniikka sekaisin hiukkascocktaileilla

Jyväskylässä saadaan avaruuselektroniikka sekaisin hiukkascocktaileilla

Jyväskylän yliopiston fysiikan laitoksen kiihdytinlaboratoriossa tehdään tutkimusta sekä valmistetaan cocktaileja – hiukkassekoituksia, joiden tarkoituksena on jäljitellä mahdollisimman tarkasti avaruudessa olevaa säteilyä.

15.11.2017

Avaruuteen lähetettäviä laitteita testataan monin tavoin, jotta voidaan olla varmoja siitä, että ne kestävät avaruuden vaativia olosuhteita ja laukaisun rasitukset. Satelliitteja ja niiden osia ravistetaan, täristetään, altistetaan korkeille ja matalille lämpötiloille, kuritetaan sähkömagneettisilla häiriöillä sekä laitetaan tyhjiökammioihin. Niitä myös ammutaan hiukkasilla.

Jyväskylän kiihdytinlaboratorio on yksi kolmesta Euroopan avaruusjärjestö ESA:n tukemasta säteilytestauspaikasta. Sen lisäksi testausta tehdään Belgiassa ja Sveitsissä, mutta jokaisella testipaikalla on oma erikoisuutensa: suomalaisilla se on suurienergiset hiukkaset sekä elektronit. Näiden vuoksi Jyväskylään tullaan myös kauempaa, sillä testejä Keski-Suomessa käyvät tekemässä myös amerikkalaiset ja japanilaiset.

 

Säteilyasema

Tutkimusaseman johtajana toimii sen myös perustanut Ari Virtanen.

“Kun tämä Jyväskylän yliopiston fysiikan laitoksen kiihdytinlaboratorio otettiin käyttöön vuonna 1995, kaavailimme sille heti alusta alkaen myös soveltavaa tutkimusta ja haimme jopa kaupallisia sovelluksia.”

Avaruuslaitteiden säteilytestaus oli yksi Virtasen ajatuksista. Hän kävi tutkimassa alaa Yhdysvalloissa ja eurooppalaisissa testausta tekevissä keskuksissa, ja alkoi puuhata Jyväskylään omaa säteilytysasemaa.

“Otimme yhteyttä moniin testejä tekeviin yhtiöihin ja tutkimuslaitoksiin, ja lopulta vuonna 1998 Daimler-Benz Aerospace Saksasta saatiin kiinnostumaan meistä. Rakensimme heille räätälöidyn koejärjestelyn, ja he olivat tyytyväisiä.”

“Siitä se sitten alkoi”, hymyilee Virtanen selvästikin yhä tyytyväisenä.

JUY_Radlab_piiri_testattavanaKuva: Elektroniikkapiiri laitetaan testiaseman sisälle telineeseen. Kuvassa testattavaksi tulevan piirin liittimet, joiden kautta piiri kytketään testilaitteistoon ja ohjaamoon.

ESA tulee mukaan

Heti alkuvaiheessa Jyväskylästä oltiin yhteydessä myös Euroopan avaruusjärjestöön, mutta tarjous ei tuolloin herättänyt vastakaikua. Suomi oli 1990-luvulla vielä varsin tuntematon uusi jäsenmaa Euroopan avaruuspiireissä.

“Aloin käydä tuolloin aktiivisesti alan konferensseissa, ja Daimler-Benz Aerospacen referenssin avulla sain kerrottua meistä hieman aiempaa paremmin”, jatkaa Virtanen.

“Lopulta myös ESA kiinnostui, he tulivat testaamaan meidät ja totesivat, että tosiaan tiedämme mitä teemme. Tämän pohjalta teimme vuonna 2003 sopimuksen ESA:n kanssa siitä, että tänne tehdään heidän vaatimuksensa täyttävä koeasema. Se otettiin käyttöön täällä juhlallisesti toukokuussa 2005.”

“Nykyisin täällä käy noin 20 yritystä vuosittain tekemässä testejä ja tästä tulee ihan kohtuullisesti tuloja laboratoriolle. Noin 20 prosenttia ajasta, kun kiihdytin on päällä, käytetään testaamiseen.”

JUY_Radlab_elektronit
Kuva: Elektronitestausasema on samanlainen kuin sairaaloissa, mutta testikappaleet saadaan siihen helpommin ja laitteen toimintaa voidaan muuttaa tarpeen mukaan.

Cocktailkiihdytin

Säteilytestaamisessa olennaista on luoda kiihdyttimellä sen kaltaiset olosuhteet, joihin testattava laite joutuu avaruudessa. Säteily-ympäristö puolestaan riippuu siitä, mihin laite on menossa: onko kyseessä matala kiertorata, keskikorkea vai lähteekö laite tutkimaan kaukaisempaa kohdetta.

“Laitteiden odotetaan tyypillisesti toimivan avaruudessa useita vuosia, ja me laskemme kuinka paljon ja millaista säteilyä se tulee saamaan tuona aikana. Se sitten tuplataan tai triplataan, ja annetaan laitteelle sen verran hiukkasia. Jos se kestää sen, niin todennäköisesti se kestää avaruudessa.”

Tarkalleen ottaen kokeissa ei tehdä täsmälleen samanlaista säteilyä kuin avaruudessa on, vaan säteilyä, joka vaikuttaa testilaitteeseen samalla tavalla. Esimerkiksi hyvin nopeasti kulkevia suurienergisiä hiukkasia jäljitellään raskaammilla, mutta hitaammin tulevilla ioneilla, atomiytimillä, joista on otettu osa elektroneista pois.

Valitsemalla ionit ominaisuuksiensa mukaan oikein, eli tekemällä niistä sopivan cocktailin, voidaan testattavaan laitteeseen kohdistaa juuri haluttu säteilyvaikutus.

“Kun sähköinen laite alkaa kärsiä säteilystä, ilmenee se ensin toimintahäiriöinä. Esimerkiksi muistipiireissä osa biteistä kääntyy toisinpäin ja informaatio korruptoituu, mutta kun muistiin kirjoitetaan uudelleen, pysyvää vikaa ei havaita. Kun näitä virheitä alkaa tulla, niitä alkaa syntyä aika nopeasti lisää, kun säteilyn määrää nostetaan. Sitten jossain vaiheessa tulee taso, missä virheiden määrä ei enää lisäänny.”

Testauksessa haetaan nämä kaksi säteilytyksen tasoa: milloin virheitä alkaa tulla ja milloin niiden määrä saturoituu, eli niiden määrä ei enää lisäänny säteilymäärän kasvaessa. Kun laitetta säteilytetään oikein kunnolla, se saattaa myös hajota pysyvästi. Piiriin voi tulla oikosulkuja, jolloin se ei enää toimi kunnolla, vaikka säteily lakkaisikin.

“Säteilyvirheet ovat kuitenkin leikkiä todennäköisyyksien kanssa”, Virtanen muistuttaa ja jatkaa: “Voi olla, että vaikka laitetta on testattu kuinka paljon, niin siihen osuu heti avaruudessa joku sopiva kosminen hiukkanen, joka saa aikaan vakavan virheen. Testaamalla laitteet kunnolla voidaan järjestelmät kuitenkin tehdä sellaisiksi, että ne kestävät säteilyä mahdollisimman hyvin.”

Saisiko olla myös elektroneja?

Suurin osa avaruudessa olevasta hiukkassäteilystä on protoneita, neutroneita ja hieman raskaampia atomiytimiä. Mutta siellä on muutakin: elektroneja.

Jyväskylän kannalta ne nousivat huomioon ESA:n Juice-luotaimen myötä. Juice tulee lentämään Jupiterin ympärille itse jättiläisplaneettaa, mutta ennen kaikkea sen jäisiä kuita, tutkimaan. Jupiterin ympärillä on hyvin paljon elektronisäteilyä, joten Juicen kaikki laitteet pitää tehdä kestämään sitä – ja siksi myös testata elektroneilla.

Tätä varten Virtanen keksi pyytää yliopiston käyttöön käytöstä poistettavana olleen syöpähoitolaitteen. Alkuperäisessä käytössään laitteella kohdistetaan potilaaseen elektroneja sekä gammasäteilyä, jota synnytetään elektronien avulla.

“Saimme laitteen ilmaiseksi, koska se oli menossa tuhottavaksi. Laboratorioinsinöörimme Heikki Kettunen muokkasi sitä hieman käyttöömme sopivaksi ja rakensimme siihen testiaseman mittausvarustuksen, ja saimme näin elektronimittausaseman hyvin edullisesti!”

Testaus alkoi viime vuonna ja Jyväskylässä on käynyt jo useita sitä käyttäneitä asiakkaita.

“Oli aika yllättävää huomata, että elektronimittaamista ei tehdä maailmalla paljoakaan, eivätkä käytössä olevat laitteet ole tarkoitukseen sopivia. Periaatteessa testausta voisi tehdä missä tahansa syöpähoitoa antavassa suuremmassa sairaalassa, mutta siellä potilaat ovat luonnollisesti etusijalla. Kyse on myös siitä, että me tiedämme, miten testaus suoritetaan. Voimme tehdä sen standardoidulla tavalla ja tarjota samassa paketissa muita testauksia.”

JUY_Radlab_ionilahdeKuva: Hiukkascocktail tuotetaan ionilähteessä, mistä se johdetaan testiasemaan. Matkalla hiukkasia valikoidaan ja kiihdytetään. Kuvassa on asennettavana oleva uusi ionilähde, joka on lähes kaksinkertainen teholtaan verrattuna nykyiseen.

Seuraava askel: kaupallinen testaaja

Nykyisin asiakkaan edustajat saapuvat Jyväskylään laitteet mukanaan testausta varten ja viipyvät siellä testistä riippuen pari päivää. Kiihdytinlaboratorio tarjoaa heille “vain” sopivat hiukkaset ja testiaseman, minkä sisälle laite voidaan laittaa ja mistä saadaan mittaustietoa ulos.

“Toki avustamme heitä koko ajan mittauksissa, mutta suurimmassa osassa tapauksista voisimme hyvin tehdä mittaukset myös itse. Voimme tarjota koko säteilymittauksen palveluja, jolloin asiakas lähettäisi meille laitteen ja ohjeet siitä, millaisia testejä sille halutaan tehdä. He säästäisivät paljon rahaa ja me voisimme tehdä testit joustavammin oman aikataulumme mukaan.”

Virtasen mukaan tämä on kuitenkin jo niin erikoistunutta kaupallista toimintaa, että sitä varten pitäisi perustaa erityinen yritys. Tämä RADLABiksi kutsuttu yritys toimisi luonnollisesti läheisessä yhteistyössä yliopiston kanssa.

“Yritykselle on varattu tilatkin ja tarkoitus on tehdä muutamia pilottitestejä ennen toiminnan varsinaista aloittamista. Samalla koko tämä testausliiketoiminta siirtyisi sitten tämän uuden yrityksen tehtäväksi.”

Testauksen lisäksi yritys voisi olla tuotteistamassa säteilynkestäviä tekniikoita. Laboratorio on ollut mukana EU-hankkeessa, missä on kehitetty säteilykestävää muistipiiriä. Se on herättänyt jo suurta kiinnostusta, ja mikäli rahoitus järjestyy, voisi RADLAB tuoda piirin myyntiin.

JUY_Radlab_Ari_ja_Arto

Sen tiimoilta Ari Virtanen (kuvassa oikealla) katsoo kuitenkin jo nuorempiin: hänen varamiehinään häärivät Heikki Kettunen ja Arto Javanainen (kuvassa vasemmalla) saanevat säteilytestauksen johdettavakseen Virtasen jäädessä pian eläkkeelle.

“Aika pitkälle tämä vuonna 1965 pesulan kellariin perustettu kiihdytinlaboratorio on päässyt!”

Jutun on kirjoittanut Tiedetuubin Jari Mäkinen Tekesin tilauksesta ja se on julkaistu ensin spacefinland.fi -svustolla.

Copernicus tarkkailee Maata

Copernicus tarkkailee Maata

Copernicus on Euroopan komission johtama hanke, joka tarjoaa erilaisia palveluja ympäristönsuojeluun ja -hallintaan sekä arkielämän tarpeisiin. Euroopan avaruusjärjestö kehittää ohjelmassa käytetyt satelliitit ja huolehtii siitä, että niiden välittämä tieto on helposti saatavilla.

Tärkeä osa Copernicus-ohjelmaa ovat Sentinel-satelliitit, joista ensimmäinen laukaistiin avaruuteen huhtikuun alussa. Runsaan kahden tonnin painoinen satelliitti kiertää Maata hieman alle 700 kilometrin korkeudessa ja "kuvaa" maanpintaa 12-metrisellä tutka-antennilla. Ensitöikseen se kuvasi Belgian pääkaupungin Brysselin, missä Euroopan komissio pitää majaansa.

Kuvassa tiheät kaupunkialueet näkyvät valkoisina ja muut urbaanit ympäristöt violetteina. Kasvillisuus erottuu vihreänä ja vesialueet mustina. Asutuista alueista otetut tutkakuvat auttavat yhdyskuntasuunnittelussa, maanviljelyksen kehittämisessä, metsähakkuiden tarkkailussa ja vesivarantojen seurannassa.

Viranomaiset saavat satelliitin ottamat tutkakuvat käyttöönsä vajaan tunnin kuluttua siitä, kun ne on vastaanotettu maa-asemalla. Koska Sentinel-satelliitin tutka "näkee" pilvien ja sateen läpi ja myös pilkkopimeässä, se on erityisen hyödyllinen tulvien tarkkailussa ja pelastusoperaatioiden valmistelussa.

Tutkakuvien avulla on mahdollista seurata myös esimerkiksi jäätiköissä tapahtuvia muutoksia. Etelämantereella osa jäätiköistä on vetäytymässä nopeaan tahtiin, ja niiden seuraaminen on tärkeää, sillä niistä lohkeaa suuria jäämassoja mereen.

Sentinel-1A-satelliitilla tarkkaillaan myös yhä vilkkaammin liikennöityjen pohjoisten merialueiden jäätilannetta. Tutkakuvista on mahdollista erottaa ohuempi jääpeite paksusta ahtojäästä, mikä on ympärivuotisen merenkulun kannalta tärkeää.

Maapallon tarkkailuun keskittyvän ESAn ohjelman johtaja Volker Liebig on tyytyväinen Sentinel-satelliitin ensimmäisiin kuviin. "Ne osoittavat, kuinka paljon informaatiota on mahdollista saada monipuolisella tutkalaitteistolla, ja miten se tekee mahdolliseksi meitä kaikkia hyödyttävät Copernicus-ohjelman palvelut."

 

Gaia aloittaa työt

NGC1818 Gaian kuvaamana
NGC1818 Gaian kuvaamana

Joulun alla avaruuteen laukaistu ja tammikuun alussa havaintopaikalleen Lagrangen pisteeseen 2 päässyt Euroopan avaruusjärjestön tähtikartoittaja Gaia on osoittanut olevansa toimintakunnossa. 

Sen havaintolaitteita on säädetty ja kalibroitu, ja yllä on eräs viimeisimmistä testikuvista: siinä on Suuressa Magellanin pilvessä oleva nuori tähtijoukko NGC1818. Kuvassa pohjoinen on kuvassa ylhäällä ja itä vasemmalla, kuvan leveys on alle asteen kymmenesosa.

Gaia on siis erittäin hyvässä kunnossa ja aloittaa pian rutiininomaiset havaintonsa. Tämä tarkoittaa pitkään valmistellun työrupeaman alkamista myös tähtitieteilijöille, jotka kästtelevät havaintoja lähes reaaliajassa. Eräs näistä käsittelypaikoista on Helsingin yliopiston fysiikan laitoksella, tähtitieteen professori Karri Muinosen työryhmässä. Heidän kiikarissaan ovat asteroidit.

Gaian urakkana on tuottaa viiden vuoden ajan uutta tietoa galaksimme rakenteesta, muodostumisesta ja kehityksestä. Sen avulla määritellään yli miljardin tähden tarkka sijainti ja etäisyys toisistaan. Tämä on noin prosentti Linnunradan tähdistä.

Odotettavissa on tähän asti kattavin ja tarkin kolmiulotteinen kartta Linnunradasta. Kartan julkaisua saa kuitenkin odottaa vuoteen 2022, sillä kuvaamisen jälkeen havaintoaineiston käsittely vie vielä hyvän aikaa.

Gaia katselee aurinkokuntaa 1,5 miljoonan kilometrin päässä Maasta, niin sanotussa L2-pisteessä. Sieltä se pystyy havaitsemaan maanpäällisiä teleskooppeja paremmin mm.  aiemmin havaitsemattomia kohteita, esimerkiksi uusia asteroideja. Niitä odotetaan löytyvän tuhansia. Lisäksi Gaia voi löytää toisia tähtiä kiertäviä planeettoja, jopa kokonaisia planeettakuntia.

Helsinki huolehtii asteroideista

Helsingin yliopiston fysiikan laitos vastaa Gaian löytämien tunnistamattomien asteroidien alustavasta radanmäärityksestä.

"Gaia havainnoi yli 300 000 Aurinkokunnan asteroidia", Muinonen kertoo. "Viiden vuoden aikana kertyneestä havaintoaineistosta voidaan johtaa muoto- ja pyörimismalleja vähintään kymmenille tuhansille asteroideille. Massoja voidaan johtaa vähintään sadoille asteroideille, ja havainnoitujen asteroidien radat voidaan ennustaa tarkasti satakunta vuotta eteenpäin.#

Radanmäärityksen jälkeen lähiasteroideja jamuita erityisen kiinnostavia kohteita voidaan seurata kaukoputkilla maan päällä.

Tiedetuubin Gaia-artikkelit ovat kaikki osoitteessa www.tiedetuubi.fi/gaia ja joulukuussa julkaistu Karri Muinosen haastattelu on täällä.

Tämä artikkeli perustuu Helsingin Yliopiston tiedotteeseen Tulossa on tarkka kolmiulotteinen maisema Linnunradasta.

Alla on ESAn julkaisema video Gaian tiestä taivaalle – kokoonpanosta rakettiin ja sillä avaruuteen, kaikki nopeutettuna:

Gaia on taas kasassa – laukaisu 19. joulukuuta

Gaian transpondereita asennetaan takaisin
Gaian transpondereita asennetaan takaisin
Matkalla lentokoneessa transponderien kanssa
Gaia puhdastilassaan
Gaian avaruuteen vievä Sojuz-kantoraketti kokoonpanohallissaan

Noin kuukausi sitten Euroopan avaruusjärjestön tähtikartoittajasatelliitti Gaian laukaisua päätettiin siirtää myöhemmäksi, koska sen radiolaitteistojen niin sanotut transponderit saattoivat mahdollisesti rikkoontua: vastaavanlaiset laitteet olivat hajonneet avaruudessa, eikä kukaan halunnut lähettää Gaiaa matkaan niiden kanssa, vaikka riski oli pieni.

Syypäitä ovat pienet transistorit Gaian kahdessa transponderissa, eli erikoisessa radiovastaanottimessa, joita ei kutsuta vastaanottimiksi, koska pelkän radiosignaalin vastaan ottamisen lisäksi ne käsittelevät ja muokkaavat signaalia sellaiseksi, että Gaian laitteet pystyvät sitä käyttämään. Avaruusluotaimissa ja satelliiteissa käytettävät transponderit pakkaavat siis samaan pakettiin koko joukon yhteydenpidossa vastaanottamisessa käytettävää tekniikkaa, mitä monissa maanpäällisissä sovelluksissa hoitavat monet eri laatikot.

Lyhyesti: kyseessä ovat hyvin tärkeät laitteet, joten ne ruuvattiin irti Gaiasta ja lennätettiin pikaisesti Eurooppaan korjattavaksi ja tarkistettavaksi. Otsikkokuva näyttää missä Gaian transponderit ovat ja miten niihin pääsee käsiksi.

Osien irrottaminen laukaisuvalmiista avaruusaluksesta ei ole vaikeaa, mutta kukaan ei halua tehdä sitä ilman todella päteviä perusteita. Koko laitteisto on jo testattu moneen kertaan ja sen muuttaminen millään tavalla saisi aikaan uuden testausruljanssin. Mutta koska tässä tapauksessa transponderien rikkoontumisen riski arvioitiin sen verran suureksi, että myös riskaabeliin manöveeriin päätettiin ryhtyä.

Matkalla lentokoneessa transponderien kanssa

Laatikot lensivät liikemiesluokassa

Parin osan irrottaminen, lennättäminen Eurooppaan Guiayanasta, korjaaminen, vieminen takaisin Atlantin toiselle puolelle ja kiinnittäminen uudelleen Gaian sisuksiin ei sinällään ole monimutkainen asia, mutta kun se tehtiin näin lähellä laukaisua ja Gaia on ainoa laatuaan oleva satelliitti, piti kaikki tehdä tarkasti ja huolella. Mikään ei saanut mennä pieleen, sillä virheet voisivat olla kalliita. 

Ongelmatransistorit käytiin huolella läpi ja transponderit tarkastettiin. Tästä vastasi Gaian valmistanut Astrium-yhtiö. Työryhmät niin laukaisupaikalla Kouroussa kuin Euroopassakin ovat viettäneet hyvin vähälomaisen kolmeviikkoisen, ja nyt kun transponderit on saatu jälleen kiinni Gaiaan, on edessä jälleen testaamista.

Onneksi transponderit eivät olleet kookkaita, joten ne voitiin kuljettaa helposti vuorokoneella. Mutta koska kyseessä oli 650 miljoonaa euroa maksanut avaruuslento, ei laitteita laitettu vain laatikkoon ja koneen ruumaan matkalaukkujen kanssa: niille ostettiin oma menopaluulippu liikemiesluokassa. 

Ne matkustivat kuriirina toimineen insinöörin viereisellä penkillä kahdessa mustassa laatikossa. Niille ei tarjoiltu kuitenkaan business-luokan maittavia ruokia tai juomia.

Kukaan ulkopuolinen ei saanut edes koskea laatikoihin, joten ongelmaksi muodostuivat tavallisen matkustaminen turvatarkastukset: rikkoontumisen riskien minimoimiseksi laatikoita ei haluttu avata tai käyttää normaalin läpivalaisun kautta lentoasemilla. 

Kaikki ylimääräinen säteily oli pahaksi ja laitteet täytyi pitää hermeettisesti suojattuina, kuten ne olivat olleet koko Gaian rakentamisen ajan. Laatikot voitiin avata ja sulkea vain erityisessä puhdastilassa.

Siksi Gaia-tiimin piti turvautua lentoyhtiön ja poliisin erikoisjärjestelyihin, joilla laatikot saatiin kuljetettua säädösten mukaisesti turvatarkastusten ja tullimuodollisuuksien ohitse lentoasemilla. Käytännössä siis laatikoilla (ja niiden saattajalla) oli poliisit vartioinaan.

Gaia puhdastilassaan
Gaian avaruuteen vievä Sojuz-kantoraketti kokoonpanohallissaan

Valmis matkaan!

Nyt Gaian transponderit on asennettu paikalleen ja ensimmäisissä testeissä niiden on varmistettu toimivan hyvin. Viisi päivää kestäneiden testien jälkeen Gaian suojakuori ja sitä päällystävä eriste- ja suojakerros asennettiin paikalleen. Myös operaatiota varten irrotetut aurinkopaneelit kiinnitettiin uudelleen. 

Koska Gaia on nyt samassa kunnossa kuin ennen transponderien irrotusta (paitsi että niissä ei varmasti ole nyt vikaa), päätettiin viime viikonloppuna käynnistää normaalit laukaisuvalmistelut siitä mihin ne jäivät 19. lokakuuta. Laukaisu tapahtuu nyt joulukuun 19. päivä (ellei mitään uutta yllättävää tapahdu).

Gaian valmistelun lisäksi laukaisuajankohtaan vaikuttaa Kouroun laukaisukeskuksen muu toiminta, muun muassa Ariane 5 -kantoraketin laukaisuaikataulu.

Normaali laukaisuvalmistelu pääsi jatkumaan nyt maanantaina. Seuraava tärkeä etappi on  Gaian polttoainetankkien täyttäminen, mikä on herkkä toimenpide, jonka aikana satelliitille ei tehdä mitään muuta. 

Koko Kouroun rakennus S5A, missä olevassa puhdastilassa Gaia sijaitsee, täytyy tyhjentää tankkaamisen ajaksi. 

Tämän jälkeen Gaiaa aletaan valmistella siirtoon laukaisualustan luona olevaan raketin kokoonpanohalliin noin 20 kilometrin päähän puhdastilasta, missä Gaia kiinnitetään Sojuz-kantoraketin nokkaan.

Odotuksen aika alkaa olla siis ohitse ja Gaian lähtölaskentakello käy!

Gaia odottaa laukaisuaan

Gaia Kouroussa
Gaia Kouroussa
Gaian teleskooppi
Mitä Gaia näkee?

Tähtikartoittaja Gaia, Euroopan avaruusjärjestön seuraava tiedesatelliitti, on parhaillaan Kouroun avaruuskeskuksessa valmisteltavana laukaisuun. 

Laukaisun piti tapahtua 20. marraskuuta, mutta nyt lokakuun 22. päivänä pidetyssä kokouksessa päätettiin, että laukaisua siirretään alustavan arvion mukaan noin kuukaudella eteenpäin. Satelliitin muutamia osia tullaan vaihtamaan Kouroussa tehtyjen testien perusteella, sillä tutkijat sekä insinöörit haluavat olla varmoja siitä, että Gaia tulee toimimaan moitteetta avaruudessa.

Gaian tiedejohtaja, ESAssa työskentelevä Timo Prusti, ilmoitti asiasta tänään ja lupasi selvittää lykkäykseen johtuneita syitä lähipäivinä, kun laukaisun siirtämisestä aiheutuvat kiire hellittää.

Tällä sivulla seurataan laajemminkin Gaian valmistelua, laukaisua, käyttöönottoa avaruudessa ja ensimmäisiä tuloksia tästä alkaen, Kirjoittajina ovat Prustin lisäksi Gaian tutkijaryhmässä asteroidihavaintoja käsittelevän suomalaisryhmän vetäjä Karri Muinonen sekä ryhmän jäsenet ja Tiedetuubin Jari Mäkinen.

Otsikkokuvassa on jo Gaia testissä Kouroun puhdastilassa, missä Gaian suuri aurinkosuoja avattiin ja suljettiin viimeisen kerran ennen matkaan lähtöä. Tämän testin lisäksi Gaialle tehdään suuri joukko muita testejä, ja joissain näistä on löytynyt jotain. Löytö ei välttämättä ole varsinainen vika, vaan voi olla myös pelkkä epäilys siitä, että kaikki ei ole aivan kuten on suunniteltu.

Huima taivaan kartoittaja

Ensi alkuun kuitenkin tarkempi kuvaus siitä, mikä Gaia on: se on tarkasti tähtien paikkoja taivaalla mittaava avaruuskaukoputki, jonka tekemien havaintojen perusteella tähtitieteilijät tulevat tekemään tarkimman koskaan koostetun kartan taivaasta. Nykytekniikan avulla kartasta tulee kolmiulotteinen malli omasta galaksistamme sekä sen noin tuhannesta miljoonasta tähdestä.

"Monet sanovat, että tähtien kartoittaminen ei ole mitenkään seksikäs aihe, mutta he sanovat niin ennen kuin ovat kuulleetkaan Gaiasta ja siitä, mitä se pystyy tekemään", sanoo Timo Prusti.

"Gaia näkee tähtiä, jotka ovat noin 400 000 kertaa heikompia kuin voimme nähdä paljain silmin. Se pystyy määrittämään niiden sijainnin 24 mikrokaarisekunnin tarkkuudella, eli yhtä tarkasti kuin voisimme nähdä hiuksen noin 1000 kilometrin päästä."

Havaintojen avulla voidaan laskea lähimpien tähtien etäisyydet huimalla 0,001% tarkkuudella. Linnunradan keskustassa noin 30 000 valovuoden päässä olevien tähtien etäisyydet voidaan määrittää noin 20% tarkkuudella, mikä on huima parannus nykyiseen.

"Samalla kun Gaia tarkkailee taivaan tähtiä sekä niiden sijaintia, sijainnin muutosta ja kirkkautta paljon tarkemmin kuin mikään havaintolaite aikaisemmin, se tulee todennäköisesti löytämään satoja tuhansia uusia kohteita, kuten esimerkiksi muita tähtiä kiertäviä planeettoja, niin sanottuja ruskeita kääpiöitä (suutariksi jääneitä tähtiä, joiden massa ei riittänyt sytyttämään niissä energiaa tuottavaa fuusioreaktiota) sekä aurinkokunnassamme olevia pienkappaleita, asteroideja ja komeettoja."

Gaia pystyy myös löytämään tähtiä, jotka ovat itse asiassa olleet aikaisemmin pienemmissä galakseissa, jotka Linnunrata on hotkaissut sisäänsä. Tähtien liikeratojen tarkalla selvittämisellä voidaan myös paikansaa pimeää ainetta, jota ei pysty havaitsemaan suoraan, mutta jota näyttää olevan kaikkialla.

"Vaikka päähuomio onkin omassa Linnunradassamme sekä sen tähdissä, Gaia näkee myös satoja tuhansia muita galakseja", Prusti jatkaa. "Mittaamalla kvasaareita Gaian avulla saadaan myös testattua Einsteinin yleistä suhteellisuusteoriaa paremmin kuin koksaan aiemmin."

Suomalaiset vastaavat Gaian keräämistä asteroidi- ja pienkappaletiedoista. Kun Gaia kartoittaa taivasta automaattisesti, se havaitsee samalla paljon Aurinkokunnassamme olevia kohteita, joiden joukossa tulee olemaan varmasti paljon aiemmin tuntemattomia kohteita. Koska Gaia katselee avaruuteen varsin kaukana avaruudessa, se näkee myös Maan radan sisäpuolelle paikkoihin, mihin maapallolla tai sen ympärillä olevat havaintolaitteet eivät näe.

Näitä kohteita etsitään ja paikannetaan suomalaistekoisella ohjelmistolla. Se on tehty Helsingin yliopiston observatoriossa, missä myös omituiset havainnot käsitellään. Voi siis olla, että tietojen joukosta löytyy myös uusia, mahdollisesti vaarallisiakin pienkappaleita, jotka voisivat törmätä Maahan!

Gaian teleskooppi

ESA on mitannut tähtiä jo aikaisemminkin: Hipparcos -niminen satelliitti kiersi Maata vuosina 1989-1993 ja mittasi noin sadan tuhannen tähden sijainnit. Nyt sen havainnoista tehty kartasto on paras tähtitieteilijöiden käyttämä tähtikartta. Gaia tulee nyt kaksi vuosikymmentä myöhemmin mittaamaan 200 kertaa tarkemmin ja tuottamaan ainakin 10 000 kertaa enemmän tietoa.

Kuukauden matka havaintopaikalle

Gaia laukaistaan matkaan Sojuz-kantoraketilla Ranskan Guyanassa sijaitsevasta Euroopan avaruuslaukaisukeskuksesta marraskuun 20. päivä. Avaruuteen päästyään Gaia ohjataan noin 1,5 miljoonan kilometrin päähän Maasta niin sanottuun Lagrangen pisteeseen numero 2, erääseen Maan luona olevaan alueeseen, missä Maan ja Auringon vetovoimat ovat jotakuinkin saman suuruiset, ja siten siellä oleva alus pysyy jotakuinkin paikallaan.

Tarkalleen ottaen Gaia tulee kiertämään hitaasti tätä gravitaatiotasapainopistettä soikeahkolla radalla, mistä katsottuna sillä on koko ajan erinomainen näkymä ulos aurinkokunnasta ympäröivään avaruuteen ja Aurinko paistaa samalla sen aurinkopaneeleihin. Paneelit on sijoitettu kymmenen metriä halkaisijaltaan olevan suuren aurinkosuojan takapuolelle.

Laukaisun jälkeen kestää noin kuukauden, ennen kuin Gaia on saatu ohjattua havaintopaikalleen 1,5 miljoonan kilometrin päähän. Sen systeemien ja havaintolaitteiden virittäminen aloitetaan kuitenkin jo matkan aikana, joten näin teleskooppi pääsee työhön heti vuoden 2014 alusta - jos kaikki sujuu hyvin.

Mitä Gaia näkee?

Alun perin nimi "GAIA" tuli sen suunniteltua toimintaperiaatetta kuvaavista sanoista Global Astrometric Interferometer for Astrophysics, mutta jo satelliitin kehittämisen alkuvaiheessa päätettiin siitä tehdä hieman erilainen: nyt Gaiassa on kaksi tarkkaa optista kaukoputkea, jotka on suunnattu hieman eri suuntiin.

Kun satelliitti pyörii avaruudessa hitaasti akselinsa ympäri, kuvaavat kaukoputket koko ajan näkymää edessään ja näin vähitellen ne pystyvät kartoittamaan koko taivaanpallon. Sama toistetaan viisivuotiseksi suunnitellun lennon aikana useaan kertaan, jolloin muutokset tähtien sijainneissa kertovat niiden liikkumisesta.

Pelkän taivaalla olevan valopisteen sijainnin kirjaamisen lisäksi Gaia analysoi valoa spektrometreillään: valo pystyy kertomaan muun muassa tähden etääntymisestä tai lähestymisestä. Gaiassa on kaikkiaan kolme erilaista tieteellistä tutkimuslaitetta kummassakin kaukoputkessa.

Gaian ohjaaminen tulee tapahtumaan Euroopan avaruusoperaatiokeskuksesta ESOCista Saksasta, mistä siihen ollaan yhteydessä Cebreroksessa, Espanjassa, ja Australian New Norciassa olevilla suurilla antenneilla. Tiedetoimintoja hallitaan Espanjassa, Madridin luona Villafrancassa olevassa Euroopan Avaruustähtietedekeskuksesta, ESACista.

Havaintoja on käsittelemässä ja analysoimassa suuri joukko tutkijoita (myös Suomesta) ja tämä julkaisee aikanaan yhdessä Gaian tähtikartan kaikkien tähtitieteilijöiden käytettäväksi.