Tarkempi tutkimus kadotti Rosette-sumusta yhden ulottuvuuden

Ke, 02/14/2018 - 07:43 By Markus Hotakainen

Ystävänpäivään sopivasti ruusua muistuttavasta Rosette-sumusta on tarjolla uutta tietoa. Yllättäen kaasupilvi onkin muodoltaan kuin lituskainen levy.

Yksisarvisen tähdistön suunnassa hieman yli 5 000 valovuoden etäisyydellä sijaitseva, suurimmaksi osaksi vedystä koostuva kaasupilvi, on läpimitaltaan noin 130 valovuotta. Rosette-sumun keskellä olevan tähtijoukon löysi John Flamsteed vuonna 1690, mutta ensimmäiset vihjeet joukkoa ympäröivästä kaasupilvestä äkkäsi John Herschel vasta noin 150 vuotta myöhemmin.

Myöhempiä tähtitieteilijöitä on askarruttanut sumun keskellä oleva aukko, jossa tähtijoukko majailee. Sen tiedetään syntyneen joukkoon kuuluvista jättiläistähdistä puhaltavan tähtituulen vaikutuksesta, mutta aukko näyttää olevan kooltaan liian pieni.

Tähdet ovat muutaman miljoonan vuoden ikäisiä ja sinä aikana tähtituulen olisi pitänyt kovertaa pilven keskelle paljon suurempi onkalo. Aikaisemmin tälle ajan ja avaruuden väliselle ristiriidalle ei ole löytynyt ratkaisua, mutta nyt tutkijat ovat päässeet jäljille.

Leedsin ja Keele-yliopistojen tähtitieteilijät ovat päätyneet tietokonemallinnusten perusteella siihen, että Rosette-sumu ei ilmeisesti olekaan muodoltaan pallomainen, kuten kuvien perusteella voisi päätellä, tai edes kiekkomainen. Se on ilmeisesti vain ohut kaasuseinämä, kuin jättimäinen jälkiuunileipä.

Keskellä olevan joukon tähtituuli puhaltaa suurimmaksi osaksi kohtisuoraan sumun tasoa vastaan eli suunnilleen meitä kohti ja meistä poispäin. Siksi sumun keskellä oleva reikä on jäänyt paljon pienemmäksi, vain noin kymmenesosaan siitä, mitä sen pitäisi ikänsä puolesta olla.

Tutkimusta johtaneen Christopher Wareingin mukaan simulaatioissa testattiin erilaisia kaasupilven muotoja: palloa, jossa on tihentymiä, kiekkoa, jossa on säikeitä, ja ohutta levyä.

"Ohut levy tuotti sumun havaitut ominaisuudet – aukon koon, muodon ja magneettikentän suunnan – ajassa, joka vastaa keskustähtien ikää ja tähtituulen voimakkuutta", Wareing listaa.

Yllättävä tulos perustui pitkälti Gaia-luotaimen tekemään kartoitukseen. Euroopan avaruusjärjestön hankkeessa määritetään tarkasti miljardin tähden etäisyys ja sijainti taivaalla. Samalla kootaan tietoa tähtien muista ominaisuuksista, kuten koostumuksesta ja liikkeestä.

Gaia-kartoitus on antanut myös Rosette-sumun keskellä olevista tähdistä uutta tietoa, jota on voitu hyödyntää uudessa tutkimuksessa. Mallinnus tehtiin Leedsin laskentakeskuksen supertietokoneella ja se kesti muutaman viikon. Kaikkiaan yhdeksän simulaation ajo tavallisella pöytäkoneella olisi vienyt aikaa melkein 60 vuotta.

Rosette-sumun muodosta kerrottiin Leedsin yliopiston uutissivulla ja tutkimus on julkaistu Monthly Notices of the Royal Astronomical Society -tiedelehdessä.

Kuva: Nick Wright, Keele University/IPHAS Collaboration

Kun tähtituulet törmäävät: taivaalta löytyi voimakas gammasäteilyn lähde

To, 02/18/2016 - 13:27 By Markus Hotakainen
Gamma Velorum


Kun Maxim Pshirkov Sternbergin tähtitieteellisestä instituutista kävi läpi gamma-alueella toimivan Fermi-avaruusteleskoopin havaintoaineistoa, hän törmäsi voimakkaaseen säteilylähteeseen. Kävi ilmi, että se osoitti oikeaksi teorian kaksoistähdistä yhtenä gammasäteilyn lähteistä.


Joissakin kaksoistähtijärjestelmissä on kirkas ja kuuma Wolf-Rayet-tähti ja kymmeniä kertoja Aurinkoa massiivisempi OB-spektriluokan tähti, joilla kummallakin on puhurina puhaltava tähtituuli. Kun hiukkasvirrat törmäävät, voi tuloksena olla hyvin voimakasta gammasäteilyä.

Aiemmin ainoa esimerkki tällaisesta järjestelmästä oli Eta Carinae, jossa tähtien massat ovat 120 ja 30–80 kertaa Auringon massaa suurempia. Kohde näkyi erityisen kirkkaana – itse asiassa taivaan kirkkaimpana tähtenä – 1800-luvun alkupuolella, kun toisessa tähdessä tapahtui vuonna 1834 voimakas purkaus.

Eta Carinaen etäisyys on noin 8 000 valovuotta, mutta jos se olisi vaikkapa 30 valovuoden etäisyydellä, sen loiste olisi samaa luokkaa kuin täysikuun. Seitsemän vuotta sitten onnistuttiin havaitsemaan energistä gammasäteilyä, joka on peräisin tästä kaksoistähtijärjestelmästä.

Yksittäinen havainto ei kuitenkaan riitä varmistukseksi teorialle, mutta muita vastaavia kohteita ei tuntunut löytyvän. Nyt sellainen vihdoin saatiin haaviin.

"Viimeaikaiset laskelmat osoittavat, että Eta Carinaen tyyppiset tähdet ovat äärimmäisen harvinaisia – niitä on luokkaa yksi galaksia kohti", Maxim Pshirkov.

Vuonna 2013 amerikkalais-itävaltalainen tutkijaryhmä nimesi seitsemän Wolf-Rayet-kaksoistähtijärjestelmää, joista voisi tulla gammasäteilyä. Pshirkov otti avuksi havaintoaineiston, jota oli kerätty Fermi-avaruusteleskoopilla seitsemän vuoden ajan… Bingo! Gamma Velorum osoittautui gammasäteilyn lähteeksi. 

Tähden nimi ei liity sen lähettämään säteilyyn vaan kertoo sen kuuluvan Purjeen tähdistön (Vela). Se on kuvion kirkkain tähti, vaikka yleensä kunkin tähdistön tähdet nimetään kirkkausjärjestyksessä kreikkalaisilla kirjaimilla alfasta alkaen. 

Gamma Velorum muodostuu 10 ja 30 kertaa Aurinkoa massiivisemmista tähdistä. Niiden välinen etäisyys on suunnilleen sama kuin Maan etäisyys Auringosta eli kyseessä on hyvin lähekkäinen kaksoistähti. Sen kirkkaus on noin 200 000 kertaa suurempi kuin Auringon ja sillä on etäisyyttä runsaat tuhat valovuotta.

Kummastakin tähdestä puhaltaa voimakas tähtituuli ja kun tuulet törmäävät yli 1 000 kilometrin sekuntinopeudella, hiukkaset saavat energiaa niin paljon, että vapautuva säteily on gamma-alueella. Säteilyn tarkkaa syntymekanismia ei kuitenkaan vielä tunneta. 

"Tällaisten lähteiden etsintä Linnunradan tason suunnassa on selvästi haastavampaa, koska galaksimme on itsekin voimakas gammasäteilyn lähde. Silloin törmäävistä tähtituulista tulevan vähäisen 'ylimääräisen' säteilyn havaitseminen on paljon vaikeampaa", Pshirkov sanoo.

"Gamma Velorum on kuitenkin tason yläpuolella ja melko lähellä meitä. Sitä tuskin olisi löytynyt, jos se olisi kauempana tai lähempänä Linnunradan tasoa."

Tutkimuksesta kerrottiin EurekAlert!-tiedeuutissivustolla ja se on julkaistu Royal Astronomical Societyn Monthly Notices Letters -tiedelehdessä (maksullinen).

Kuva: NASA/C. Reed

Kosminen perhostoukka on kuolemassa

Ke, 01/20/2016 - 07:20 By Markus Hotakainen
Kaasupilvi ja prototähti

Toisin kuin maalliset perhostoukat, jotka koteloituvat ja kuoriutuvat kauniiksi hyönteisiksi, tämä taivaallinen toukka – viralliselta nimeltään IRAS 20324+4057 – voi olla tuhoontuomittu

Päivän kuva

Noin 15 valovuoden etäisyydellä (kuvasta oikealle) sijaitsevien kuumien ja kirkkaiden tähtien voimakas hiukkastuuli ja ultraviolettisäteily ovat raastamassa tähtienvälistä kaasupilveä hajalle.

Se on venähtänyt jo valovuoden mittaiseksi ja kaasua katoaa kaiken aikaa kirjaimellisesti taivaan tuuliin. 4 500 valovuoden etäisyydellä sijaitsevan pilven sisällä oleva prototähti yrittää parhaansa mukaan kerätä itseensä lisää kaasua ympäröivästä ainepilvestä, mutta aika voi loppua kesken. 

Tähdestä voisi lopulta muodostua jopa kymmenen kertaa Aurinkoa massiivisempi, mutta jos sitä ympäröivä kaasupilvi ehtii hajota ennen kuin prototähti pääsee seuraavaan kehitysvaiheeseensa, se jää paljon pienemmäksi – tai ei syty lainkaan loistamaan lajitovereidensa tavoin. 

Päivän kuvassa on yhdistetty Hubble-avaruusteleskoopin havainnot vihreässä ja infrapunavalossa sekä La Palmalla Kanarian saarilla sijaitsevan Isaac Newton -teleskoopin havainnot H-alfassa eli vedyn säteilemässä valossa. 

Kuva: NASA/ESA/Hubble Heritage Team (STScI/AURA)/IPHAS

Herschel ratkaisi meteoriittien arvoituksen

La, 07/12/2014 - 10:04 By Markus Hotakainen

Maahan syöksyvissä meteoriiteissa on todettu olevan monien muiden alkuaineiden ja yhdisteiden ohella berylliumin isotooppia, jota niissä ei pitäisi olla. Tai ei sitä enää olekaan, sillä beryllium-10 hajoaa nopeasti muiksi alkuaineiksi.

Näistä hajoamistuotteista on kuitenkin voitu päätellä, että meteoriittien kiviaineksen tiivistyessä kauan sitten berylliumia on ollut tarjolla. Ongelmana on se, että isotooppia ei synny tähtien sisuksissa myllertävissä fuusioreaktioissa eikä myöskään supernovien tulipätseissä.

Beryllium-10 vaatii syntyäkseen hyvin energisten hiukkasten törmäyksiä esimerkiksi happiatomien kanssa. Voisiko sen muinainen esiintyminen kertoa jotakin Auringon nuoruudesta? Infrapuna-alueella toimineen Herschel-avaruusteleskoopin projektitutkijan Göran Pilbrattin mukaan voi: "Tekemällä Herschelillä havaintoja tähtien syntyalueista olemme saaneet tietoa paitsi kaukaisista kohteista myös viitteitä oman Aurinkokuntamme menneisyydestä."

Auringonkaltaisten tähtien varhaisissa kehitysvaiheissa niistä puhaltava tähtituuli on hyvin voimakas ja voi selittää myös berylliumin esiintymisen. Todisteet ovat epäsuoria, mutta varsin vankkoja. Orionin tähdistön suunnassa sijaitsevalla tähtien syntyalueella OMC2 FIR4 on havaittu hiilen, hapen ja typen runsauksissa outo epäsuhta: siellä on liikaa typpeä.

Tähtienvälisten pilvien yleisin alkuaine on vety, joka ionisoituu helposti kosmisen säteilyn pommituksessa. Vetyionit eli protonit voivat muodostaa muiden atomien kanssa raskaampia alkuaineita, kuten happea, hiiltä ja typpeä. Niiden määrät ovat vähäisiä, mutta silti havaittavia.

Yleensä typpi hajoaa nopeasti, jolloin hiilen ja hapen määrä kasvaa siihen verrattuna. Havaittu typen ylimäärä voisi selittyä sillä, että osa hapesta ja hiilestä "jäätyy" pilven pölyhiukkasten pinnalle, jolloin niitä ei voi havaita. Tässä tapauksessa pilven lämpötila on kuitenkin niin korkea, ainoastaan 200 astetta pakkasen puolella, että jäätymistä ei voi tapahtua.

Tutkimusta johtaneen Cecilia Ceccarellin mukaan selitys on tyystin toinen: "Todennäköisin syy on hyvin energisistä hiukkasista koostuva tähtituuli, joka puhaltaa pilven sisällä syntyvistä tähdistä. Voimakas tähtituuli hajottaa typen lisäksi myös hiiltä ja happea, jolloin niiden runsaudet pysyvät lähempänä toisiaan."

Tutkijoiden mukaan samanlainen voimakas tähtituuli voisi selittää myös beryllium-10-isotoopin esiintymisen Aurinkokunnassa sen syntyvaiheissa. Auringollakin on siis ollut hurja nuoruus.