Biomassa laukaistiin avaruuteen

Biomass taiteilijan näkemänä
Biomass taiteilijan näkemänä

Euroopan avaruusjärjestön uusin Maata havaitseva tiedesatelliitti Biomass on päässyt avaruuteen. Nimensä mukaisesti satelliitin tehtävänä on kartoittaa ja tutkia maapallon pinnalla olevaa biomassaa, etenkin metsiä sekä niiden osaa planeettamme hiilikierrossa.

Laukaisu tapahtui tänään Ranskan Guyanassa sijaitsevasta Kouroun avaruuskeskuksesta Vega-C-raketilla klo 12.15 Suomen aikaa. Satelliitti irrotettiin onnistuneesti raketin ylimmästä vaiheesta noin tunnin kuluttua laukaisusta ja klo 13.28 Suomen aikaa satelliitista saatiin ensimmäinen signaali – se toimi ja kaikki oli hyvin.

Saksan Darmstadtissa sijaitseva Euroopan avaruusoperaatiokeskus alkaa nyt tarkistaa satelliitin järjestelmiä ja virittää sitä vähitellen havaintotyöhön.

Satelliitin erikoisuus on suuri, 12 metriä halkaisijaltaan oleva antenni, joka on tehty verkosta. Laukaisun aikaan se oli pakattuna, mutta avaruudessa se avataan 7,5 metriä pitkän puomin päässä. Myös puomi oli laukaisun aikaan käännettynä kiinni satelliittiin, jotta se olisi mahtunut Vega-raketin nokkakartion sisään. Puomin avaaminen on myös jännittävä vaihe.

Suuri antenni on osa tutkalaitteistoa, jonka avulla pystytään mittaamaan ja tutkimaan paljon aikaisempia satelliitteja paremmin metsiä ympäri maailman.

Biomass puhjastilassa

 

Metsillä – niin pohjoisilla havumetsillä, tropiikin sademetsillä kuin autiomaiden käkkäräpuisilla ja kitukasvuisilla metsillä – on suuri osa maapallon hiilikierrossa. Ne sitovat ja varastoivat suuria määriä hiilidioksidia, mikä auttaa osaltaan säätelemään Maan lämpötilaa.

Metsät sitovat noin 8 miljardia tonnia hiilidioksidia vuosittain, mutta metsäkato ja metsien muuttuminen harvemmiksi sekä hiiliköyhemmiksi vapauttaa koko ajan metsiin varastoitunutta hiiltä takaisin ilmakehään. Tämä pahentaa osaltaan ilmastonmuutosta.

Haasteena on tähän saakka ollut se, että emme ole voineet määrittää tarkasti kuinka paljon hiiltä metsät varastoivat ja miten nämä varastot muuttuvat esimerkiksi nousevien lämpötilojen, ilmakehän hiilidioksidipitoisuuden kasvun ja ihmisen aiheuttamien maankäytön muutosten vuoksi.  

Biomass auttaa tässä. Sen tutka on ensimmäinen ns. P-kaistalla, eli taajuusalueella noin 300 MHz – 1 GHz, toimiva kaukokartoitustutka. Biomass-satelliitin tutka toimii 435 megahertsin taajuudella, sen lähettämien radioaaltojen aallonpituus on 69 cm.

Tämä aallonpituus on kätevä siksi, että signaali läpäisee tiheitä metsälatvustoja, pilviä ja jopa osittain maaperää. Se siis ei havaitse vain lehtiä ja latvustoja, vaan pystyy näkemään kirjaimellisesti puut metsältä koska kuvissa ovat myös puiden rungot ja oksat.

Näin voidaan kartoittaa tarkasti maapallon biomassan määrä ja jakautuminen, jotka kertovat suoraan metsien hiilivarastoista.

Lisäksi tämän aallonpituuden avulla voidaan "nähdä" metsättömillä alueilla pinnan alle. Biomass saattaa siis paljastaa myös pinnanalaisia geologisia muodostumia tai esimerkiksi ihmisten tekemiä, hiekkaan peittyneitä rakenteita.

Samoin P-kaistan tutkalla voidaan arvioida tulvariskejä eri alueilla sekä kuvata jääpeitteiden sekä jäätiköiden pinnan alapuolisia maisemia.

Vaikka antenni on suuri, niin satelliitti pystyy tekemään havaintojaan maksimissaan vain 50 metrin resoluutiolla. Se ei siis näe yksittäisiä puita, vaan kartoittaa puumassaa laajemmin.

Vega-C laukaisualustalla

Biomass-satelliittia kuljettanut Vega-C laukaisualustalla ennen laukaisua. Kuvat: ESA ja ESA / M. Pédoussaut.

 

Biomass-satelliitin laukaissut Vega-C on uusi, isompi versio alkuperäisestä Vega-raketista, joiden lennot päättyivät viime syyskuussa. Kummallakin raketilla on ollut viime vuosina vastoinkäymisiä, mutta nyt hyvin onnistunut laukaisu saanee Vega-C:n takaisin normaalirutiiniin. 

Tälle vuodelle on suunnitteilla vielä kymmenkunta Vega-C:n laukaisua – seuraava on heinäkuussa. Kaikki virallisessa suunnitelmassa olevat lennot eivät pääse tänä vuonna matkaan, mutta joka tapauksessa lentotahti on nyt nopeutumassa olennaisesti.

Vega-C on 35 metriä korkea ja sen massa laukaisuvalmiina on 210 tonnia. Siinä on kolme kiinteällä polttoaineella toimivaa vaihetta ja neljäs, ylin vaihe, joka käyttää nestemäisiä ajoaineita, jotta sen moottoria voidaan sytyttää ja sammuttaa – kuten tällä lennolla. Näin satelliitit voidaan ohjata tarkasti halutulle kiertoradalle.
 

Kenties et tiedä, mutta tarvitset pian useamman antennin

Antenni ja pulu
Antenni ja pulu

Tuore tutkimus auttaa tekemään parempia, nopeampia ja edullisempia moniantennisysteemeitä. Siitä on paljon iloa meille kaikille, vaikka äkkiseltään ei tule sitä ajatelleeksi.

Käytät tietämättäsi koko ajan hyvin erilaisia antenneja. Matkapuhelimessa on montakin sellaista, ja vaikka taskussasi ei olisi kännykkää, nautit lähes koko ajan palveluita, jotka puolestaan käyttävät paljonkin tiedonsiirtoa – joka puolestaan käyttää antenneja.

Tulevaisuudessa antenneja käytetään vieläkin enemmän, koska jokainen langatonta tiedonvälitystä käyttävä laite vaatii antennin – kenties jopa useamman. 

Mitä enemmän antenneja on ja mitä suurempaa tiedonsiirtonopeutta halutaan käyttää, sitä hankalammaksi tällaisen antennisekamelskan hallitseminen on. Onneksi Tampereen teknillisen yliopiston tutkija, diplomi-insinööri Aki Hakkarainen on pohtinut asiaa väitöstyössään.

Tarkalleen ottaen hän on kehittänyt uusia menetelmiä moniantennilaitteiden tarjoamien tiedonsiirtonopeuksien kasvattamiseen kustannustehokkaasti. 

Digitalisaation ja esineiden internetin myötä tarve antenneille kasvaa räjähdysmäisesti lähitulevaisuudessa. Jotta kasvu olisi mahdollista, antennien määrää on lisättävä esimerkiksi matkapuhelinverkkojen tukiasemissa ja langattoman lähiverkon laitteissa. 

Moniantennijärjestelmät pystyvät tarjoamaan huomattavasti suurempia tiedonsiirtonopeuksia, mutta suurempi määrä antenneja ja niihin liittyvää elektroniikkaa tuovat kuitenkin mukanaan lisävaatimuksia.

"Elektronisten komponenttien halutaan olevan mahdollisimman halpoja", toteaa Aki Hakkarainen ja jatkaa: "Halvalla saa kuitenkaan harvoin hyvää: vastaanotettujen signaalien laatu voi heikkolaatuisten komponenttien vuoksi heiketä merkittävästi. Tämän seurauksena moniantennilaitteista ei saadakaan irti odotettua hyötyä kokonaisuudessaan."

Hakkarainen tutki väitöstyössään, miten elektroniikassa vääjäämättä esiintyvät epätäydellisyydet vääristävät signaaleja moniantennijärjestelmissä. Saavutettujen mallien avulla hän kehitti menetelmiä signaalilaadun parantamiseksi digitaalisella signaalinkäsittelyllä.

"Laitevalmistajien kannalta on erittäin edullista, että tarvittava signaalilaatu ja tiedonsiirtonopeus pystytäänkin takaamaan digitaalisesti. Tällöin pienet epätäydellisyydet käytettävässä elektroniikassa eivät haittaa. Kun uudet menetelmät pystytään vielä sujuvasti sulauttamaan osaksi nykyäänkin laitteissa tehtävää laskentaa, niin tämän ratkaisun hyödyt ovat selvästi haittoja suuremmat."

Tulokset auttavat osaltaan toteuttamaan uusia moniantennijärjestelmiä, jotka mahdollistavat yhä vaativampien sovellusten käyttöönottoa.

"Esimerkiksi automatisoidut tehtaat, itse ajavat autot ja virtuaalitodellisuussovellukset asettavat erittäin suuria vaatimuksia tiedonsiirtonopeuksille ja käyttäjämäärille", sanoo Hakkarainen. 

"On selvää, ettei tällaisia palveluita voida toteuttaa langattomasti ja kustannustehokkaasti ilman luotettavasti toimivia moniantennijärjestelmiä."

Väitöskirjaan voi tutustua osoitteessa http://urn.fi/URN:ISBN:978-952-15-3877-3

Juttu perustuu TTY:n tiedotteeseen. Otsikkokuva: Flickr / Peter Roberts

Puettavan antennin matematiikkaa

Pelastuskäyttöön suunniteltu kangasantenni
Pelastuskäyttöön suunniteltu kangasantenni

Suomessa, etenkin Tampereella, on kehitetty jo pitkään kangasantenneja, jotka voidaan asentaa vaikkapa vaatteisiin. Ne voidaan pestä, niitä voidaan tavutella ja ne toimivat silti kuin oikeat, kiinteät antennit. 

Perinteisesti sovelluskohteina ovat olleet esimerkiksi pelastuspuvut, mutta älykkään tekstiiliantennin käyttökohteita on laajennettu sittemmin kattamaan kaikenlaisia älyvaatteita mm. viihde- ja urheilukäytössä sekä lääketieteessä. Puettavan elektroniikan ottaessa nyt pitkiä loikkia eteenäin voivat myös "tavalliset" ihmiset päästä käyttämään lähitulevaisuudessa tätä teknologiaa. Materiaalien kehittyminen ja elektroniikan halpeneminen kiihdyttää osaltaan tätä kehitystä. 

Nyt kyse on siitä, että sähköä johtavista kankaista ja langoista tehdään antennien sijaan ja lisäksi älyvaatteita, jotka keskustelevat käyttäjänsä kanssa, keräävät tietoa ympäristöstä ja ryhtyvät tarvittaessa toimenpiteisiin.

Microsoftin Tampere HW Antenna & EMC -yksikössä tutkijana työskentelevän diplomi-insinööri Karoliina Kosken ensi perjantaina Tampereen teknlillisessä yliopistossa tarkastettava väitöstyö tarjoaa mallinnustyökaluja puettavien langattomien antennien radiotaajuussuorituskyvyn laskentaan. 

"Keveytensä ja taipuisuutensa ansiosta puettava elektroniikka on varsin huomaamatonta ja soveltuu siten mainiosti ihmisten arkikäyttöön", kertoo Koski. "Tämä voisi johtaa tulevaisuudessa esimerkiksi tehokkaampaan ja räätälöityyn terveydenhuoltoon".

Vaatteisiin integroidut sensorit kykenevät mittaamaan ja tulkitsemaan ihmisen fysiologisia ja biologisia signaaleja, kuten sydänsähkökäyrää. Älyvaate voi olla yhteydessä tietoverkkoon erilaisten puettavien antennien avulla, jotka vastaavat siitä, että tieto biosignaalista välittyy luotettavasti ja tehokkaasti tarkoitettuun kohteeseen. 

Tällaisille löytyisi runsaasti sovelluskohteita esimerkiksi sairaaloista.

Puettavien sähköä johtavien tekstiilien radiotaajuusominaisuuksista on kuitenkin vielä rajallisesti tietoa. Koski tutki väitöstyössään ommeltujen langattomien antennien radiotaajuuskarakterisointiin soveltuvia mallinnusmenetelmiä sekä radiotaajuussuunnittelua. Hänen väitöstyönsä tulokset tarjoavat suunnittelutehtävissä toimiville insinööreille uudenlaisia ja entistä tehokkaampia mallinnustyökaluja puettavien langattomien antennien radiotaajuussuorituskyvyn laskentaan. Väitöstyö tarkastelee mallien vahvuuksia ja heikkouksia simulaatioiden ja mittausten avulla. 

Kosken mukaan luotettavilla mallinnustyökaluilla voidaan ennustaa puettavien antennien suorituskykyä ja toteuttamiskelpoisuutta erilaisissa sovelluksissa. 

"Antennien suunnitteluvaiheessa tulee huomioida puettavien tekstiilien lisäksi myös ihmiskehon vaikutus antennin radiotaajuustoimintaan, jotta voidaan saavuttaa riittävä suorituskyky."

Näin matematiikan avulla voidaan paitsi mallintaa sitä, miten ihmiskeho vaikuttaa radiotaajuuksiin, niin myös hahmottaa sellaista, mitä on varsin hankalaa ja aikaaviepää mitata luonnossa.

-

Diplomi-insinööri Karoliina Koski elektroniikan alaan kuuluva väitöskirja "Characterization and Design Methodologies for Wearable Passive UHF RFID Tag Antennas for Wireless Body-Centric Systems" tarkastetaan TTY:n tieto- ja sähkötekniikan tiedekunnassa perjantaina 23.1.2015.

Otsikkokuvassa on pelastuskäyttöön suunniteltu kangasantenni, joka edustaa jo noin viisi vuotta vanhaa tekniikkaa.

Juttu perustuu TTY:n lähettämään tiedotteeseen Mallinnustyökaluja puettavan antennin suorituskyvyn ennustamiseen.

"Gaia on GO"

Lennonjohdossa hymyillään
Lennonjohdossa hymyillään
Gaiaa kuljettava raketti laukaisuvalmiina

ESAn Gaia-satelliitti laukaistaan tänään klo 11:12:19 Suomen aikaa ja tätä kirjoitettaessa (noin klo 10) kaikki merkkivalot laukaisuun liittyen näyttivät vihreää.

Lennonjohdon näyttötaululla oleva valot ovat siis suotuisia:

- Tuulet, etenkin laukaisupaikan korkean ilmakehän tuulet, sää ja avaruussää ovat hyvin rajojen sisällä
- ESAn Estrack-antenniverkon kaikki maa-asemat ovat valmiina ja toiminnassa
- Etenkin verkon kaikki tärkeimmät asemat Gaian kannalta (Perth ja New Norcia Australiassa, Cebreros ja Masplalomas (Espanjassa) on viritetty Gaiaa varten. Perthin 15-metrinen antenni on jo vastaanottotilassa. Se saa ensimmäisenä yhteyden Gaiaan n. 39 minuuttia laukaisun jälkeen.
- Seurantaverkosta Euroopan avaruusoperaatiokeskuksessa ESOCissa vastaava johtaja Bret Durrett (kuvassa vasemmalla) näyttää tärkää merkkiä: "Kaikki on GO!"

Gaiaa kuljettava raketti laukaisuvalmiina

Sojuz Kouroun laukaisupaikalla (kuvassa on Galileo-satelliittja laukaisut raketti, ei Gaian raketti). Laukaisun aikaan Kouroussa on aikainen aamu.

Sojuz-raketin tankkaus aloitettiin noin neljää tuntia ennen laukaisua klo 6 Suomen aikaan. Sen päätyttyä 53 metriä korkea suojarakennelma kantoraketin ympärillä rullattiin sivuun ja laukaisulähtölaskenta alkoi.

Laukaisun (joka tapahtuu sekunnilleen 11:12:19) jälkeen Sojuz suuntaa taivalle hieman itään ja 118 sekunnin lennon jälkeen Sojuzin neljä apurakettia sammuvat. Ne putoavat pois ja raketin keskimmäinen vaihe jatkaa työntämistä. Nokkakartio irtoaa 220 sekunnin päästä laukaisusta, jolloin raketti sekä Gaia ovat noin sadan kilometrin korkeudessa. Suojuksen ainoa tehtävä on suojata satelliittia ilmakehän alaosissa.

Sen jälkeen kun raketin toinen ja kolmas vaihe ovat tehneet tehtävänsä, vastuun Gaian viemisestä tarkalleen oikealle radalleen kantaa Fregat-raketti, Sojuzin neljäs ja ylin vaihe. Sen rakettimoottori toimii kaksi kertaa, ennen kuin Gaia irtoaa Fregatista 42 minuutin kuluttua laukaisusta. Sen jälkeen Gaia on omillaan.

Nyt seuraa laukaisun kenties jännittävin vaihe: irtoamisen jälkeen kenties heittelehtivä Gaia suuntaa itsensä oikeaan asentoon Maan ja Auringon suhteen, käynnistää laukaiun aikaan sammutettuja laitteitaan, avaa yli kymmenmetrisen aurinkosuojansa, jonka mukana toisella puolella ovat aurinkopaneelit. Tämä vaihe alkaa 88 minuutia laukaisun jälkeen ja päättyy noin 17 minuutin kuluttua, silloin kun laukaisusta on kulunut 101 minuuttia.

Vasta silloin virallisesti Gaian laukaisu julistetaan onnistuneeksi.

Kaikki aiemmat Tiedetuubin Gaia-artikkelit ovat kätevässä osoitteessa tiedetuubi.fi/gaia.

Suora lähetys laukaisusta