Ihosyöpä vai ei? Selviää sekunneissa.

Ihosyöpää
Ihosyöpää
Hyperspektrikamera kopterissa
AISA

Satelliiteissa käytetty kaukokartoitustekniikka auttaa nyt paljastamaan ihosyövän silmän räpäyksessä.

Perinteisesti niin sanottu hyperspektrikuvaus on vaatinut suurikokoisia kameroita, joilla maanpinnasta heijastunutta säteilyä on mitattu suurella määrällä hyvin kapeita aallonpituuskaistoja. Viipaloimalla kuvissa olevat eri värisävyt hyvin tarkasti ja tutkimalla niitä erikseen sekä ristikkäin on voitu esimerkiksi tunnistaa avaruudesta pinnalla ja välittömästi pinnan alla olevia mineraaleja, arvioida kasvien biomassaa vaikkapa lannoitussuunnitelmia varten, seurata ympäristön tilaa ja määrittää ilmakehän kaasujen pitoisuuksia.

Mitä useammalla ja kapeammalla aallonpituuskaistalla mittaukset tehdään, sitä pienemmät erot kohteiden välillä havaitaan.

Nyt samaa tekniikkaa voidaan käyttää siis ihon kuvaamiseen ja siinä olevien mahdollisten ihosyövän esiasteiden nopeaan määrittämiseen. VTT:n kehittämä kevyt ja kannettava hyperspektrikamera kuvaa ihoalueen parissa sekunnissa ja pystyy päättelemään automaattisesti onko omituinen läiskä mahdollisesti syöpää vai ei. Silmä ei tähän pysty.

Kun kamera kuvaa kerralla 12 neliösenttimetriä, on laajojen ihoalueiden kuvantaminen kerralla mahdollista. Koska ihosyöpien määrä on räjähdysmäisessä kasvussa niin maailmanlaajuisesti kuin myös Suomessa ihmisten liiallisen auringolle altistumisen seurauksena aiheutuvista UV-haitoista sekä väestön ikääntymisestä johtuen, on tälle tekniikalle suuri tarve.

Kameran avulla kyetään määrittämään hoidon tarpeessa oleva ihoalue siten, että voidaan kerralla hoitaa myös ne alueet, joihin myöhemmässä vaiheessa olisi kehittymässä ihosyövän esiasteita. Hyperspektrikameralla on tutkittu myös hankalasti silmällä erottuvien kasvojen alueen pintamelanoomien (lentigo malignojen) rajojen määrittämistä, jotta vältyttäisiin myöhemmiltä lisäleikkauksilta.

Pilottivaiheen tutkimuksessa yhteistyökumppaneina ovat olleet Jyväskylän yliopisto, Päijät-Hämeen keskussairaala ja HYKSin Iho- ja allergiasairaala. Jyväskylän yliopiston omistuksessa oleva kamera on tutkimuskäytössä Tietotekniikan laitoksella, ja sitä voidaan hyödyntää yleisinstrumenttina myös monessa muussa eri sovelluskohteessa.

Fabry-Perot -interferometriin perustuva hyperspektrikamera ottaa kuvan kymmenillä valon aallonpituuksilla, kun normaali kamera kykenee kolmeen aallonpituuteen. Muodostuva spektrikuva on kolmiulotteinen kuutio, joka koostuu lukuisista päällekkäisistä harmaasävykuvista, joista jokainen on otettu kapealla valon aallonpituusalueella. Kuutiossa olevat kuvat muodostavat spektrin jokaiselle spektrikuvan pisteelle, joista kudokset voidaan tunnistaa ja näin rajata terveet ja pahanlaatuiset ihoalueet toisistaan. Kuvista pystytään laskennallisten menetelmien avulla päättelemään hoidettavan ihokasvaimen sijainti ja laajuus. Pilottivaiheen tutkimuksessa tulokset varmennetaan koepaloilla.

Suomalaista erikoisosaamista

VTT on kehittänyt aktiivisesti tekniikkaa 1990-luvun alusta alkaen, ja työtä on vetänyt tämän uuden kamerankinkin keksinyt johtava tutkija Heikki Saari.

Käytetty tekniikka perustuu ranskalaisten fyysikoiden Charles Fabryn ja Alfred Perot'n keksintöön. He Perot kehittivät 1800-1900-luvun vaihteessa nimeään nyt kantavan interferometripektroskopiamenetelmän, joka perustuu valon interferenssiin kahden yhdensuuntaisen peilin välillä. Kun kaksi peiliä on hyvin lähellä toisiaan (esimerkiksi vihreälle valolle yhden aallonpituuden (~550 nm) päässä toisistaan), peiliparin läpi pääsee vain kapea aallonkaista 550 nm:n ympäriltä.

VTT:n kehittämä mikroelektromekaaninen hiilidioksidianturi oli ensimmäinen teolliseen käyttöön otettu mikroelektroniikan valmistusteknologiaan perustuva tätä tekniikkaa käyttävä anturi ja VTT laajensi ensimmäisenä maailmassa toimivan mikromekaanisen Fabry-Perot-interferometriratkaisun näkyvän aallonpituuden alueelle sekä infrapuna-alueelle. Laitteen valmistuskustannukset saatiin hyvin alhaisiksi, joten niitä voidaan tuottaa jopa miljoonia vuosittain. Nyt spektrometrimoduulin lopullisen hinnan määrää käytännössä pakkauksen materiaali- ja työkustannukset.

Heikki Saari keksi vuonna 2005 uuden, periaatteessa tavallisen digikameroissa käytetyn kolmivärikuvasensorin ja Fabry-Perot-interferometrin periaatteen yhdistävän hyperspektrikameraperiaatteen. Nyt kamera oli jo niin pieni, että se voitiin asentaa pieneen parikiloiseen lennokkiinkin.

Nyt julkistettu ihosyöpää sondaava laite perustuu samaan tekniikkaan. Sitä voidaan käyttää myös aivoleikkausmikroskoopissa rajamaan kasvaimesta leikattavaa aluetta.

Hyperspektrikamera kopterissa
AISA

Maailman pienin hyperspektrikamera on sekin VTT:n kehittämä. Sitä voidaan käyttää pienissä radio-ohjattavissa lennokeissa ja nanosatelliiteissa moniin sovelluksiin, kuten monitoroimaan ympäristön tilaa, lannoitussuunnitelmien tekemiseen ja metsien puulajitunnistukseen.

Yllä olevassa kuvassa on suomalaisella AISA-spektrometrillä otettu väärävärikuva, jossa tyypillistä suomalaista havumetsää ja hakkuuaukioita. Lehtimetsää kasvaa teiden sekä pienten jokien varsilla. Alempi kuva on hyperspektrikuva samasta alueesta.

---

Artikkeli perustuu VTT:n lähettämään tiedotteeseen VTT:n hyperspektrikameralla lupaavia tuloksia ihosyövän esiasteiden havaitsemiseen sekä aiemmin VTT:ltä sekä Heikki Saarelta saatuihin tietoihin. Kuvat: VTT ja Flickr.

Tarkka kuva viruksesta kultananopartikkelien avulla

Enterovirus ja kultananopartikkeli
Enterovirus ja kultananopartikkeli

Jyväskylän yliopiston Nanotiedekeskuksen NSC:n tutkijat ovat kehittäneet uuden menetelmän enterovirusten rakenteen ja toiminnan kuvantamiseen. Menetelmän avulla saadaan uutta tietoa virusten kulkeutumisesta soluissa ja kudoksissa sekä niiden avautumismekanismeista solun sisällä, mistä on iloa esimerkiksi uusien viruslääkkeiden ja rokotteiden kehittämistyössä. Tutkimus julkaistiin eilen USA:n tiedeakatemian Proceedings of the National Academy of Sciences -lehdessä.
 
Enterovirukset ovat ihmisiä infektoivia taudinaiheuttajia, joiden ryhmään kuuluvat poliovirukset, coxsackie-virukset, echovirukset ja rhinovirukset. Suurin osa vuosittaisista nuhakuumeista johtuu enteroviruksista. Enterovirukset aiheuttavat myös vakavia oireita kuten sydänlihastulehduksia ja halvaantumista, ja niiden on todettu olevan osallisina kroonisten sairauksien kuten diabeteksen syntymisessä.

Enterovirusten infektioreiteistä ja infektiomekanismeista tiedetään vielä suhteellisen vähän. Aikaisemmat Jyväskylässä tehdyt tukimukset ovat valottaneet muutamien enterovirusten solunsisäisiä reittejä ja solussa infektiota edistäviä tekijöitä, mutta esimerkiksi siitä, miten virus avautuu solun rakenteissa ja luovuttaa perimänsä uusien virusten valmistamiseksi, on toistaiseksi hämärän peitossa. Ymmärrys solutason mekanistisesta toiminnasta on vielä varsin vajavaista. Kudostasolla infektioprosessi tunnetaan vielä paljon huonommin. Suuri ongelma lisätiedon saamisessa on luotettavien kuvantamistyökalujen puuttuminen.

Nyt julkaistussa tutkimuksessa esitellään uudenaisia menetelmiä kuvantamiseen, ja siksi se auttaa osaltaan selvittämään paremmin solujen toimintaa. Menetelmä kehitettiin Nanotiedekeskuksessa kemistien, fyysikkojen ja biologien välisenä poikkitieteellisenä yhteistyönä, johon osallistuivat Tanja Lahtinen, Kirsi Salorinne, Jaakko Koivisto ja Mika Pettersson kemian laitoksesta, Sami Malola fysiikan laitoksesta sekä Mari Martikainen ja Varpu Marjomäki bio- ja ympäristötieteiden laitoksesta. Tutkimusta koordinoivat dosentti Varpu Marjomäki ja keskuksen tieteellinen johtaja, professori Hannu Häkkinen.

Jyväskylässä on tutkittu jo aiemmin rakenteeltaan tarkasti tunnettuja, yhdestä kolmeen nanometrin kokoisia kultapartikkeleja Hannu Häkkisen, Mika Petterssonin ja Stanfordin yliopiston professorin, kemian nobelisti Roger D Kornbergin ryhmien välisenä yhteistyönä. Tutkimus sai mm. viime elokuussa EU:n PRACE-organisaatiolta 43 miljoonan tietokonetunnin edest laskenta-aikaa, mitä on käytetty ja käytetään kultapartikkelien ja enterovirusten välisten vuorovaikutusten laskennalliseen simuloimiseen. Otsikkona tässä artikkelissa on tämä tutkimuksen tuottama kuva.

Nyt kehitetyssä menetelmässä noin kahden nanometrin kokoisen Au102-kultapartikkelin orgaanista pintaa muokattiin kemiallisesti siten, että partikkeli kiinnittyi ainoastaan enterovirusten pintaproteiinien rikkiä sisältäviin osiin. Yhteen virukseen voi kiinnittyä useita kymmeniä kultapartikkeleja, jotka näkyvät elektronimikroskooppikuvassa tummina “leimoina”. Tämä leimakuvio pysyy viruksessa kiinni koko viruksen eliniän, ja sen avulla voidaan tehdä päätelmiä virusten rakenteen muutoksista virusten eliniän aikana.
 
Tutkimuksessa huomattiin, että kultapartikkeleilla leimatut virukset säilyttävät tarttuvuutensa samalla tavalla kuin leimaamattomat virukset, mikä osoittaa, että leimausmenetelmä ei muuta viruksen biologista toimintaa solun sisällä. Tämä antaa uusia mahdollisuuksia tutkia virusten rakennetta solun sisäisistä näytteistä virusinfektion edetessä, ja näin tullaan saamaan uutta rakennetietoa virusten avautumismekanismeista infektion alkuvaiheessa. Virusten leimaaminen avaa myös aivan uudenlaisen mahdollisuuden seurata luotettavasti viruksen kulkua kudoksiin. Tämä on tärkeää, jotta voidaan ymmärtää paremmin virusten aiheuttamia akuutteja ja kroonisia oireita. Rokotteina käytettävien virusten kaltaisten partikkeleiden leimaaminen auttaa näiden kehittelytyössä tehokkaammiksi rokotteiksi.

Teksti on käytännössä suoraan lainattu Suomen Akatemian 14.1. julkistamasta tiedotteesta.

Atomin ydin on päärynä!

”Peruna on pyöreä, peruna on soikea…” lauletaan vanhassa lastenlaulussa. Atomien ytimet sen sijaan eivät ole likikään aina pyöreitä eivätkä soikeita vaan muistuttavat muodoltaan päärynää. Tai ainakin osa niistä.

Kansainvälinen tutkijaryhmä on tehnyt Euroopan hiukkasfysiikan tutkimuskeskuksessa CERNissä kokeita, joiden perusteella jotkut atomin ytimet voivat olla hyvin epätavallisen muotoisia. Useimmat luonnossa esiintyvät atomin ytimet eivät ole muodoltaan pallomaisia, vaan voivat olla esimerkiksi soikeita kuten amerikkalainen jalkapallo. Parhaat teoreettiset ydinrakennemallit ennustavat tämän ilmiön.

Samat teoreettiset mallit ennustavat tietyille atomin ytimille ja tietyille protonien ja neutronien yhdistelmille hyvin epäsymmetrisen, päärynää muistuttavan muodon. Tällaisessa tapauksessa ytimen massa on jakautunut epätasaisesti siten, että painopiste on lähempänä ytimen ”paksua” päätä.

Ytimien päärynämäisen muodon kokeellinen mittaaminen ei ole tärkeää pelkästään ytimen rakenteen ymmärtämiseksi, vaan sillä on merkitystä fysiikan perusvuorovaikutusten ymmärtämisessä. Hiukkasfysiikan standardimalli ennustaa atomien sähköiselle dipolimomentille (EDM eli ”electric dipole moment”) niin pienen arvon, että sitä ei pystytä nykytekniikalla mittaamaan.

Monet teoreettiset, standardimallia parantamaan pyrkivät mallit ennustavat, että dipolimomentin arvo olisi silti mitattavissa. Tarkin menetelmä perustuu eksoottisten atomien tutkimukseen, joiden ytimet ovat päärynänmuotoisia. Suurin osa ennustetuista päärynänmuotoisista atomien ytimistä on kuitenkin ollut pitkään kokeellisten menetelmien ulottumattomissa.

CERNin ISOLDE-laboratoriossa on onnistuttu tuottamaan hyvin raskaita radioaktiivisia ytimiä törmäyttämällä korkeaenergisiä protoneja uraanikarbidikohtioon. Tuotetut ytimet erotellaan kemiallisesti ja kiihdytetään nopeuteen, joka on kahdeksan prosenttia valon nopeudesta, siis noin 24 000 kilometriä sekunnissa. Sen jälkeen ne törmäytetään ohueen nikkeli-, kadmium- tai tinakohtioon. Törmäysprosessissa syntyvä sähkömagneettinen impulssi virittää ytimen ja tutkimalla tähän virittymiseen liittyviä yksityiskohtia saadaan tietoa ytimen muodosta.

Menetelmää on käytetty radonin ja radiumin lyhytikäisten 220Rn ja 224Ra-isotooppien muodon tutkimiseen. Tulokset osoittavat, että 224Ra on päärynänmuotoinen, kun taas 220Rn värähtelee tämän muodon ympärillä. Tulokset ovat äärimmäisen tärkeitä ytimen rakenteen ymmärtämiseksi, sillä niiden avulla pystytään ratkaisemaan erilaisten mallien toimivuus. Päärynäinen muoto on ristiriidassa joidenkin teorioiden kanssa, mutta on pienin korjauksin yhteensopiva muiden mallien kanssa.

Kun kokeista saatava tieto yhdistetään atomifysiikan mittaustuloksiin, pystytään mahdollisesti asettamaan tarkimmat kokeelliset rajat hiukkasfysiikan standardimallille, joka on pisimmälle testattu teoria maailmankaikkeuden rakenteen ymmärtämiseksi.

ISOLDE-laboratoriossa tehtyihin kokeisiin ja saatujen tulosten tulkintaan ovat osallistuneet Janne Pakarinen, Tuomas Grahn ja Joonas Konki Jyväskylän yliopiston fysiikan laitokselta. Suomen osatutkimus on tehty Suomen Akatemian ja Fysiikan Tutkimuslaitoksen rahoituksella. Tutkimus on julkaistu Nature-tiedelehdessä 9.5.2013.