Vuonna 2011 kansainvälisen OPERA-kokeen tutkijat ilmoittivat havainneensa merkkejä siitä, että neutriinot voisivat kulkea valoakin nopeammin. Ilmoitus sai aikaan tietysti suuren haloon, koska periaatteessa mikään ei voisi kulkea nopeammin kuin valo. Havainto paljastui sittemmin vääräksi, mutta opettavaiseksi: piuhat kannattaa kiinnittää kunnolla.
-
Jos Italiassa haluaa ajaa Roomasta nopeasti Adrianmeren rannalle, kannatta käyttää Gran Sassossa vuorten läpi vievää moottoritietunnelia.
Jotakuinkin tunnelin puolivälissä, syvällä vuoren uumenissa, on tiessä yllättäen risteys ja sen kohdalla tienviitta. Viitassa lukee "Laboratori Nazionali del Gran Sasso".
Gran Sasson kansallinen laboratorio on maanalainen tutkimuslaitos, missä tehdään pääasiassa neutriinoihin liittyvää tutkimusta. Hyvin huonosti aineen kanssa vuorovaikuttavat neutriinot kulkevat kätevästi suurtenkin kivimassojen läpi, jopa planeettamme läpi, ja paras paikka tutkia niitä on mennä syvälle Maan alle.
Eräs tällainen tutkimushanke oli OPERA, eli Oscillation Project with Emulsion-tRacking Apparatus. Suuri neutrinoita havaitseva koeasema valmistui vuonna 2008 Gran Sasson laboratorion C-halliin, ja se oli toiminnassa vuoteen 2012 saakka.
Se havaitsi Genevessä sijaitsevasta Euroopan hiukkastutkimuskeskus CERNistä lähetettyjä neutriinoita, ja tarkoitus oli havaita oskilloituneita taun neutriinoita.
Yksinkertaistettuna koe oli sellainen, että CERNissä tuotettiin 10,5 mikrosekunnin neutriinopulsseja, jotka havaittiin Gran Sassossa 730 kilometrin päässä olevassa ydinemulsiofilmejä käyttävässä koeasemassa.
Neutriinoiden matka-aika mitattiin tarkasti moninkertaisesti varmennetulla ja tarkistetulla laitteistolla, missä oli kummassakin päässä atomikellot ja GPS-vastaanottimet. Paikannussatelliiteista saadaan erittäin tarkka aikasignaali, ja tätä itse asiassa käytetään arkisemmissakin sovelluksissa (kuten parkkimittareissa ja pankkitoiminnassa).
Ja sitten kävi niin, että maaliskuussa 2011 huomattiin neutriinojen vipeltävän matkan noin 60 nanosekuntia nopeammin kuin valolta kuluisi samaan matkaan. Neutriinot siis näyttivät kulkevan tunnetun fysiikan vastaisesti valoa nopeammin.
Tarkistusten jälkeen tutkijat uskalsivat julkistaa asian syyskuussa 2011. Tätä neutriinojen nopeuteen liittyvää "anomaliaa" ei pystytty selittämään laitteistoon liittyvillä asioilla, vaan tutkijat – tietoisena löytönsä merkityksestä – kehottivat tutkimusyhteisöä kiinnittämään asiaan huomiota ja tarkistamaan olisiko muualla saatu samankaltaisia tuloksia.
Jos havainto olisi pitänyt paikkansa, kyseessä olisi tosiaankin ollut mullistus. Suhteellisuusteoria olisi mennyt uusiksi, ja samoin paljon muutakin fysiikassa.
Tutkijat kävivät kiinni haasteeseen. Ensiksi työhön otettiin Gran Sassossa myös olleet neutriinokoeasemat ICARUS, BOREXINO ja LVD, eikä niissä havaittu merkkejä ylinopeudella kiitävistä neutriinoista. Muuallakaan ei löydetty merkkejä kummallisuuksista.
Myös OPERA:n laitteistoja syynättiin tarkasti, ja kävikin ilmi, että GPS-vastaanottimen signaalia tietokoneeseen syöttävä valokuitu oli ollut vähän löysällä. Kun kaapeli kiinnitettiin kunnolla, niin tulokset muuttuivat normaaleiksi: neutriinojen matka-aika piteni sen verran, että ne eivät enää kulkeneetkaan ylivalonnopeutta.
Heinäkuussa 2012 OPERA-tutkimisryhmä julkisti kokeensa tulokset vuosilta 2009–2011, ja näissä virheelliset tulokset oli kalibroitu ja yhdistetty tiukasti kiinni olleella valokuidulla tehtyihin kokeisiin. Nyt neutriinojen nopeus oli hyvin tarkasti odotetun kaltainen.
-
Otsikkokuvassa on OPERA:n tietokoneita ja kaapeleita. Kuva: S. Schiavon/LNGS-INFN.
Tiedetöppäysjoulukalenteri
Tiedetuubin joulukalenteri vuonna 2019 esittelee tieteellisiä töppäyksiä sekä erehdyksiä: tietoisia huijauksia, puhtaita vahinkoja ja myös varsin onnekkaiksi osoittautuneita epäonnistumisia. Ne auttavat myös ymmärtämään miten tiede toimii – ja että tutkijatkin ovat ihmisiä.
Suomeen suunnitteilla ollut suuri kansainvälinen neutriinotutkimuskeskus Laguna on peruuntumassa kaavaillussa muodossaan. Nyt vastaavanlaista koeasemaa ollaan suunnittelemassa Yhdysvaltoihin. Aivan neuvottomiksi eivät hanketta ajaneet suomalaistutkijat ole jääneet: Pyhäsalmen kaivokseen kaavaillaan pienemmän mittakaavan tutkimustoimintaa.
Ylen tämänaamuisen uutisen mukaan Laguna-hanke on käytännössä kuopattu ja laitteiston rakentamista Yhdysvaltoihin ollaan suunnittelemassa.
Alkuperäisen ajatuksen mukaan Laguna-hankkeessa olisi Pyhäjärvellä sijaitsevaan Pyhäsalmen kaivokseen rakennettu suuri neutriinoilmaisin, kenties jopa useita, joilla olisi havaittu Genevestä, Euroopan hiukkastutkimuskeskus CERNistä maapallon kuoren läpi ammuttuja hiukkasia. Meidän lävitsemme virtaa koko ajan miljoonia ja miljoonia neutriinoita, mutta näiden erittäin heikosti muun aineen kanssa vuorovaikuttavien hiukkasten tutkimiseksi olisi kaivattu juuri oikeanlaisia hiukkasia, joita CERNissä olisi synnytetty kontrolloiduissa olosuhteissa.
Pyhäsalmen etäisyys olisi ollut juuri sopiva CERNistä, mikä lisäksi olemassa jo oleva kaivos olisi tarjonnut tutkimuslaitteelle lähes ideaalisen sijoituspaikan. Sen kun tulisi olla syvällä maan uumenissa suojassa ylimääräiseltä säteilyltä, mutta samalla paikassa, minne olisi ollut helppo päästä laitteistoa rakentamaan ja käyttämään.
Laguna olisi ollut eräs maailman suurimmista tieteellisistä koelaitteista
Kyseessä olisi ollut neutriinotutkimuksen eräs tärkeimmistä keskuksista, joka olisi tuonut Suomeen runsaasti kansainvälistä tutkimusrahaa ja tutkijoita. Hanketta suunniteltiinkin vuosikymmenen ajan laajan tutkijajoukon voimin, ja viime vaiheessa Pyhäsalmi oli käytännössä voittanut kilpailun laitoksen sijoituspaikaksi.
Kuten aina vastaavissa, suurissa kansainvälisissä tutkimushankkeissa, maat kisaavat siitä kuka saisi laitoksen ja sen tuoman rahavirran sekä kunnian itselleen.
Olikin varsin suuri yllätys, kun virallinen Suomi suhtautui erittäin penseästi Lagunaan ja ilmoitti vuonna 2012, ettei ole kiinnostunut Lagunan saamisesta maahan. Suomi olisi joutunut toki maksamaan myös laitoksesta ja isäntämaana osuus olisi ollut muita suurempi, mutta tehtyjen laskelmien mukaan Laguna olisi tuottanut olennaisesti kustannuksia enemmän.
Hinta ei siis ollut varmasti lopullinen syy negatiiviselle päätökselle, vaan lähinnä tekosyy. Samoihin aikoihin telakkateollisuutta tuettiin suuremmillakin summilla ilman varmuutta tuloksista.
Nähtävästi jo tuolloin poliittisessa ilmapiirissä ollut penseys tutkimusmaailmaa kohtaan vaikuttikin asiaan.
Suomen passiivisuus ja nihkeys sai aikaan sen, että Laguna ei lähtenyt kunnolla liikkeelle, vaan tutkijat alkoivat paitsi pohtia keinoja, joilla laitos saataisiin Pyhäsalmelle Suomen virallisesta kannasta huolimatta, niin myös kartoittaa vaihtoehtoja.
Suunta Atlantin toiselle puolelle
Hankkeessa mukana ollut teoreettisen hiukkasfysiikan professori Kari Rummukainen Helsingin yliopistosta toteaakin, että hanke tunnetaan nyt nimellä DUNE (Deep Underground Neutrino Experiment) ja se on vahvasti menossa Yhdysvaltoihin.
Suunnitelmissa on Lagunan kaltainen järjestely, missä neutriinot synnytettäisiin Chicagon luona olevassa Fermilabissa, Yhdysvaltain johtavassa hiukkastutkimuskeskuksessa, ja sieltä ne ammuttaisiin noin 1400 kilometrin päässä Etelä-Dakotassa Homestakessa olevaan Sanfordin maanalaislaboratorioon. Kyseessä on noin 1500 metriä syvä entinen kultakaivos.
"Suurin syy uudelle järjestelylle on kansainvälinen tutkimusstrategia", kertoo Rummukainen.
"Yhdysvallat päätti, että heidän hiukkasfysiikan kokeellinen tutkimuksensa keskittyy ns. 'suureen intensiteettiin', mikä tarkoittaa käytännössä neutriinofysiikkaa. Fermilabissa ollut Tevatron-hiukkastörmäytin pysäytettiin muutama vuosi sitten, sillä CERNin LHC:n vakiinnuttua se oli käynyt tarpeettomaksi. Neutriinofysiikka määriteltiin Fermilabin tulevaisuuden alaksi."
Vaikka CERN onkin eurooppalainen tutkimuskeskus, on myös Yhdysvallat vahvasti mukana sen toiminnassa. Yksi tapa vaihtaa palveluksia toisiin ja turvata yhteistyön jatkuminen oli ehdottaa CERNin voimakkaasti ajaman neutriinotutkimuksen siirtämistä Amerikan mantereen puolelle. Molemmat osapuolet osallistuvat tutkimukseen ja rahoitukseenkin molemmissa hankkeissa, niin LHC:llä Genevessä tehtävään työhön kuin myös uuden neutriinotutkimuslaitteiston rakentamiseen Yhdysvaltoihin.
"Siispä Vaikka Suomi olisikin ollut täysin rinnoin mukana, lopputulos olisi tuskin muuttunut, mutta varmastihan sitä ei voi sanoa", toteaa Rummukainen.
Toisen näkemyksen mukaan Suomen nihkeä kanta antoi hyvän pohjan muuttaa kansainvälistä tutkimusstrategiaa juuri tähän suuntaan.
Päätöksiä ei ole vielä tehty, mutta Rummukaisen mukaan "kyllä tämä lopulliselta nyt näyttää".
"Monet Lagunan tutkijat ovat nyt mukana DUNEssa ja esimerkiksi Laguna-hankkeen johtaja Andre Rubbia on yksi DUNEn johtajista."
Calliolab ponnistaa Lagunasta
DUNEn lisäksi Japaniin ollaan suunnittelemassa hyvin suurta neutriinodetektoria, joten tässä isossa pelissä Suomen nappulat on nyt pelattu.
Sen sijaan huomio Pyhäsalmella onkin käännetty pienempien tutkimuskalojen metsästämiseen.
Kaivoksessa sijaitsee jo nyt EMMA-niminen kosmisten säteiden ilmaisin, ja sen toimintaa paitsi jatketaan, niin myös laajennetaan. Tilaa tunneleissa olisi myös uusille vastaavantyyppisille havaintolaitteille.
Syvissä kaivoksissa tehdään hiukkasfysiikan lisäksi paljon muutakin omituisia olosuhteita vaativia tutkimuksia. Tällaisia aloja ovat esimerkiksi geologia ja biologia. Esimerkiksi Homestaken kaivos (kaavakuva yllä), mihin DUNEn ilmaisimet sijoitetaan, on jo nyt tällainen monialatutkimuskeskus.
Koska kaivoksen infrastruktuuri on erinomaisessa kunnossa ja sopii hyvin tutkimustoiminnalle, onkin Pyhäsalmen kaivoksen tutkimuskäyttöä edistämään ja markkinoimaan perustettu Calliolab. Kyseessä on maanalainen tutkimus- ja tuotekehityskeskus, josta on tarkoitus tehdä eräs maailman johtavista maanalaisista yleislaboratorioista. Jo nyt kaivoksen pohjatasolla on tuliterä laboratorio, jonka käytöstä on käynnistetty kutsukilpailu.
Tämän vuoden fysiikan Nobel annettiin kahdelle neutriinotutkijalle, joiden työkalut ovat valtavia, syvällä kallioperässä olevia tutkimuslaitteita, joiden kohteina ovat pienenpienet alkeishiukkaset, neutriinot.
Neutriinot ovat pitkään massattomaksi oletettuja hiukkasia, joita syntyy ällistyttävän paljon koko ajan joka puolella erilaisten ydinreaktioiden oheistuotteina. Miljardeja sellaisia lentää itse asiassa lävitsemme joka sekunti, eikä niistä ole meille mitään haittaa – itse asiassa ne vuorovaikuttavat kaiken aineen kanssa niin vähän, että niiden havaitseminen on hyvin hankalaa.
Siihen tarvitaankin suuria, varsin omalaatuisia havaintolaitteita, ja jotta kaikki häiriötekijät voitaisiin karsia pois havainnoista, täytyy havaintolaitteet sijoittaa syvälle maaperään, kallion keskelle.
Juuri tällaista ollaan kaavailemassa myös Suomeen, Pyhäsalmen kaivokseen, missä voitaisiin tutkia tarkemmin ja paremmin myös tämänvuotisten nobelistien havaitsemaa omituista neutriino-oskillaatiota.
Kyse on siitä, että neutriinot muuttavat luonnettaan samalla kun ne lentävät valon nopeudella avaruuden halki. Tämä antaa viitteen siitä, että neutriinoilla olisi hyvin, hyvin pieni massa, mikä vaikuttaa kuvaamme koko maailmankaikkeudesta.
Ja ravistaa koko fysiikkaa.
Valontuikahduksia
Yllä oleva kuva on japanilaisen Super-Kamiokande -neutriino-observatorion sisältä Tokion luoteispuolelta.
Kyseessä on kilometrin syvyydessä sijaitseva noin 41 metriä korkea ja 40 metriä leveä sylinteri, jonka sisällä on 50 000 tonnia äärimmäisen puhdasta vettä. Kun neutriinot kulkevat veden läpi, pienenpieni osa niistä törmää vesiatomiin ja synnyttää heikon välähdyksen valoa. Näitä tuikahduksia havaitaan 11 000 säiliön seinillä olevilla ilmaisimilla.
Kuvassa huoltohenkilöt liikkuvat tyhjennetyn ilmaisimen sisällä kumiveneellä, koska näin he eivät vaurioita herkkiä lasista tehtyjä ilmaisimia.
Tämä on ollut japanilaisen Takaaki Kajitan työväline ja hänen kanssaan palkinnon jakava kanadalainen Arthur B. McDonald on tehnyt tutkimustaan toisella vastaavalla, Sudburyn lopetetussa nikkelikaivoksessa olevalla neutriinohavaintolaitteella.
Kajita julkaisi vuonna 1998 tutkimuksen, jonka mukaan Maan ilmakehässä kosmisten säteiden ja ilman molekyylien välisten törmäysten vuoksi syntyvät neutriinot muuttuvat ominaisuuksiltaan ennen osumistaan maan uumenissa olevaan Super-Kamiokanden ilmaisimeen.
Samaan aikaan Sudburyssä, Kanadan Ontariossa, McDonald työryhmineen havaitsi samanlaista tapahtuvan neutriinoissa, jotka ovat peräisin Auringosta. He julkaisivat havaintonsa vuona 2001.
Kummassakin tapauksessa kyse oli niin sanotusta neutriino-oskillaatiosta, missä neutriinot muuttuvat toisenlaisiksi.
Tämän ymmärtämiseksi täytyy kuitenkin katsoa hieman historiaan.
Hiukkanen, jota ei voi havaita?
Maailmankaikkeudessa on vain valoa sekä muuta sähkömagneettista säteilyä kuljettavia fotoneita enemmän kuin neutriinoita. Niitä syntyi valtavasti jo maailmankaikkeuden alussa, big bangissä, mutta niitä sikiää lisää koko ajan joka puolelta mitä erilaisimmista ydinreaktioista.
Jopa meistä ihmisistä sinkoaa ulos koko ajan uusia neutriinoja, sillä muun muassa kaliumin hajoaminen synnyttää niitä noin 5000 kappaletta sekunnissa.
Lisäksi niitä syntyy huimasti ydinreaktoreissa sekä Auringossa, josta pelkästään tulee Maahan noin 70 miljardia hiukkasta neliösentille.
Vaikka neutriinoja on näin paljon, on niiden erittäin huonon vuorovaikutuksen vuoksi niitä hankala havaita, ja niiden olemassaolosta saatiin vinkkiä vasta vuonna 1930. Silloin itävaltalainen fyysikko Wolfgang Pauli päätteli niiden olemassaolon epäsuorasti, sillä useat havaitut reaktiot voitiin selittää vain siten, että niistä vapautuisi tuntematon, neutraali ja hyvin kevyt tai massaton hiukkanen.
Pauli kertoi ajatuksistaan ensimmäistä kertaa joulukuussa 1930 kollegoilleen lähettämässään kirjeessä, jonka hän aloitti sykähdyttävästi sanoilla “Hyvät radioaktiiviset rouvat ja herrat”.
Kirjeensä lopussa hän totesi, että “olen tehnyt kauhean teon. Olen päätellyt olemassa olevaksi hiukkasen, jota ei voi havaita.”
Pauli sai tästä kauheasta teostaan Nobelin vuonna 1945.
Pian tämän jälkeen italialainen Enrico Fermi kehitti teorian, missä Paulin hiukkanen oli mukana ja hän nimesi hiukkasen neutriinoksi.
Neutriino saatiin nalkkiin
Vasta 1950-luvulla saatiin ensimmäiset havainnot, jotka voitiin tulkita neutriinojen aiheuttamiksi. Kun ydinvoimaloita alettiin rakentaa ja ydintekniikan kanssa tehtiin kokeita paremmin ja tarkemmin kuin koskaan, tuli neutriino väistämättä esiin.
Olennaisin oli kesäkuussa 1956 tehty havainto, missä fyysikot Frederick Reines ja Clyde Cowan löysivät selvästi neutriinon aikaan saamia jälkiä kokeissaan. He lähettivät löydöstä sähkeen heti Paulille, joka luonnollisesi oli harmissaan siitä, että hänen salahiukkasensa oli saatu havaittua. Tai kenties ei ollut.
neutriinojen tarkempi olemus on kuitenkin ollut hämärän peitossa viime vuosikymmeniin saakka. Niihin liittyi myös monia perustavaa laatua olleita (ja olevia) kysymyksiä, kuten se, että vaikka Auringosta tulee valtavasti neutriinoja, on niitä havaittu vain noin kolmannes teoreettisesti lasketusta.
Yksi ratkaisu tähän voisi olla se, että neutriinot muuttuvat toisenlaisiksi. Teorian mukaan on kolmenlaisia neutriinoja: elektronineutriinoja, muonineutriinoja ja tau-neutriinoja, joilla kullakin on hiukkaskartalla omat varaukselliset versionsa, eli elektroni, muoni ja tau.
Aurinko synnyttää teorian mukaan vain elektronineutriinoja, mutta jos osa niistä muuttuisi Auringosta lähtönsä jälkeen muunlaisiksi, selittyisi kahden kolmanneksen vajaus tällä.
Kun maanalaiset neutriino-observatoriot alkoivat olla tarpeeksi suuria ja tarkkoja 1990-luvun lopussa, tuli neutriinojen ongelmaan myös lisävaloa.
Ne hyvin harvat neutriinot, jotka törmäävät havaintolaitteissa olevassa nesteessä oleviin atomeihin tai elektroneihin, syntyy nopea, sähköisesti varattu hiukkanen, joka puolestaan synnyttää niin sanottua Cherenkovin säteilyä. Se on aavemaista, heikkoa sinertävää valoa, joka syntyy kun hiukkanen kulkee valoa nopeammin.
Kyllä: valoa nopeammin. Tämä tapahtuu silti Einsteinin suhteellisuusteorian mukaan, vaikka se sanoo, ettei mikään koskaan voisi kulkea valoa nopeammin. Olennaista onkin se, että valon nopeus vedessä on vain 75% siitä mitä se on tyhjiössä, ja siten pikavauhtia kulkeva hiukkanen voikin kulkea vedessä nopeammin kuin valo – mutta silti hitaammin kuin valo tyhjiössä.
Kun tätä Cherenkovin valoa analysoidaan tarkasti, voidaan päätellä millainen neutriino sen sai aikaan ja mistä se on peräisin.
Neutriinohavaintoja liukuhihnalta!
Super-Kamiokande oli huima askel eteenpäin neutriinojen tuntemuksessa, koska kahden ensimmäisen toimintavuotensa aikana se onnistui saamaan viitisentuhatta havaintoa. Laite havaitsee neutriinoja, jotka tulevat sen yläpuolelta ilmakehästä kosmisten säteiden törmätessä ilman kaasumolekyyleihin. Samoin se havaitsee neutriinoja suoraan altaan, maapallon toiselta puolelta – maapallon kiviaines ei neutriinoja paljoa hetkauta.
Nopeasti ajatellen havaintoja pitäisi tulla yhtä paljon ja samanlaisia ylä- ja alapuolelta, mutta näin ei ollut: maapallon toiselta puolelta havaittiin olennaisesti enemmän muonineutriinoja.
Elektronineutriinojen määrä oli se mitä teoriat ennustivat ja tau-neutriinojen määrästä ei voitu sanoa mitään varmaa, koska niitä ei voitu havaita. Jos siis alun perin muonineutriinoja on saman verran ala- ja yläpuolella, niin oli todennäköistä, että alapuolelta tulevat voisivat muuttua tau-neutriinoiksi, koska matkaa on riittävästi.
Tosin myös Sudburyn havainnoissa tosin tiedetään varsin hyvin millaisia neutriinoita lähtöpaikassa on, sillä Aurinko tuottaa vain elektronineutriinoita. Sudburyssä käytetään myös puhtaan veden sijaan ns. raskasta vettä, jolloin se pystyy havaitsemaan kaikkia neutriinotyyppejä. Raskaassa vedessä on hapen lisäksi tavallisen vetyatomin sijaan deuterium, eli vedyn raskaampi isotooppi. Se tekee havainnoista tarkempia (ja samalla vaikeampia tulkita).
Siten siellä tehdyistä havainnoista voitiin nähdä selvästi, että Auringon neutriinoista elektronityyppisiä oli olennaisesti arveltua vähemmän. Havaintomäärän kasvaessa kävi yhä ilmeisemmäksi, että osan neutriinoista on täytynyt muuttua matkallaan Auringosta Maahan toisenlaisiksi. Itse asiassa kaksi kolmasosaa neutriinoista muuttuisi 150 miljoonaa kilometriä pitkällä matkallaan toiseksi lajiksi.
Kun Sudburyn havainnot osuivat aika tarkalleen yksiin neutriino-oskillaation ennustamien määrien kanssa, oli asia aika saletti.
Hiukkasen kvanttifysiikkaa
Tällä tosin oli se mullistava seuraus, että teoreetikoiden mukaan muuttuminen toiseksi on mahdollinen vain jos neutriinolla on massa.
Tämä tulee siitä, että kvanttimaailmassa hiukkanen voidaan käsittää joko aaltona tai pienenpienenä kappaleena, hiukkasena. Tietyn määrän energiaa sisältävä hiukkanen vastaa tiettyä aallonpituutta. Niinpä elektroni-, muoni- ja tau-neutriinot voidaan käsittää omanlaatuisina aaltoinaan.
Kun aallot etenevät tasatahtiin, ei neutriinon eri persoonallisuuksia voi erottaa toisistaan, mutta mitä pitempään aallot matkaavat, sitä enemmän ne menevät epätahtiin. Vaihe-eron mukaisesti aallot voivat vaikuttaa toisiinsa, oskilloida keskenään, ja lopulta aallot ovat erilaisia ja siten neutriinot ovat eri tyyppisiä.
Tässä massa tulee kuvaan, sillä sen mukaisesti neutriinojen aallot muuttuvat – hyvin, hyvin, hyvin vähän, mutta silti, ja etenkin pitemmillä matkoilla käy juuri näin. Kun neutriinon massa, jos ja kun se on olemassa, on äärimmäisen pieni, ja erot massoissa ovat erittäin pieniä, ovat eroavaisuudetkin hyvin pieniä. Mutta kuten on huomattu, havaittavia.
Teorian mukaan pari tuhatta kilometriä on matka, jonka kuluessa muuttuminen saattaisi tapahtua. Siksi Laguna-ilmaisimen Pyhäsalmi olisi erinomainen paikka ilmaisimelle, koska siellä on tarkoitus havaita Euroopan hiukkastutkimuskeskuksessa CERNissä noin 2300 kilometrin päässä synnytettyjä neutriinoja: kun tiedetään tarkasti millaisia neutriinoja lähtöpisteessä on ja kuinka paljon, niin tätä neutriino-oskillaatiota on helpompi tutkia.
Fyysikoille hommia
Se, että neutriinoilla on pieni massa, saa aikaan monennäköistä harmia. Ensinnäkin kosmologeille tämä tarkoittaa sitä, että maailmankaikkeuden massa-arvio on pielessä. Vaikka neutriinon massa olisi lähes nolla, se ei ole nolla, ja koska neutriinoita on niin paljon, tulee niistä yhdessä arvioiden mukaan yhtä paljon “lisää” massaa maailmankaikkeuteen kuin kaikista näkyvistä tähdistä.
Tämä saattaa selittää osan havaituista kummallisuuksista maailmankaikkeuden laajenemistahdissa, mutta siihen vaikuttaa moni muukin asia.
Fyysikkojen parinkymmenen vuoden ajan rakentama ns. Standardimalli myös vaatii viilausta. Malli koettaa selittää paitsi hiukkaset, niin myös niiden väliset voimat ja vaikutukset, ja nyt massattomaksi oletettu neutriino ei olekaan massaton.
Mistä sen massa tulee? Mitkä on eri neutriinotyyppien massat? Miksi ne ovat niin äärimmäisen kevyitä? Onko niillä omat antihiukkasensa, kuten muilla? Ja miksi neutriinot vaikuttavat muutenkin niin erilaisilta kuin muut hiukkaset?
Vastauksista näihin perustavaa laatua oleviin kysymyksiin tullaan varmasti jakamaan monta Nobelia tulevaisuudessa.
Alla on Tiedetuubin video Suomeen suunniteltavasta Laguna-ilmaisimesta ja siinä selitetään varsin paljon myös neutriinojen omituisuuksia:
Neutriinojen tutkimukseen tarkoitetun uuden sukupolven ilmaisinlaitteiston LAGUNA‐LBNO (Large Apparatus studying Grand Unification and Neutrino Astrophysics - Long Baseline Neutrino Oscillations) suunnitelmat ovat valmistuneet. Kuusi vuotta kestänyt ja yli 130 henkilötyövuotta vaatinut suunnittelutyö on toteutettu Euroopan Komission tuella.
Selvitystyön kokonaiskustannukset ovat 17 miljoonaa euroa, josta EU:n suora tuki on 7 miljoonaa euroa ja loput 10 miljoonaa euroa on saatu hankkeeseen osallistuneiden 14 maan yliopistoilta ja muilta organisaatioilta. Suunnittelua ovat tukeneet myös Euroopan hiukkasfysiikan tutkimuskeskus CERN ja astrohiukkasfysiikan eurooppalainen koordinaatiojärjestö ApPEC. Suomesta hankkeeseen ovat osallistuneet Helsingin, Jyväskylän ja Oulun yliopistot sekä teollisuuspartnerina Kalliosuunnittelu Oy Rockplan.
Neutriinoilmaisin on monipuolinen tutkimuslaite, jolla voidaan tarkastella luonnon pienimpien rakenneosasten ominaisuuksia ja käyttäytymistä. Laitteella voidaan esimerkiksi saada uudenlaista tietoa hiukkasten massojen synnystä neutriinojen oskillaatiota tutkimalla. Niin sanotussa pitkän lentomatkan oskillaatiokokeessa tutkitaan hiukkaskiihdyttimellä tuotettuja neutriinoja satojen, jopa tuhansien kilometrien päässä sijaitsevilla ilmaisimilla.
Tarkoituksena on myös yrittää selvittää, miksi maailmankaikkeudessa on ainetta mutta ei antiainetta, mitata Auringosta ja muulta avaruudesta tulevaa neutriinosäteilyä aikaisempaa herkemmällä ja tarkemmalla tekniikalla, ja tutkia ilmiöitä, joissa energia on paljon suurempi kuin maailman suurimmalla hiukkaskiihdyttimellä (CERNin LHC) voidaan saavuttaa.
Neutriinofysiikan tutkimus on laajentunut voimakkaasti viime vuosina, ja uusia mittauslaitteita on rakennettu ja on rakenteilla monia. LAGUNA‐LBNO on kaikista laitteistoista tieteelliseltä suorituskyvyltään edistynein.
Valmistuneen selvityksen perusteella uuden neutriinoilmaisimen paras sijoituspaikka Euroopassa on Pyhäsalmen kaivos. Tarkastelussa oli mukana kaikkiaan seitsemän vaihtoehtoista sijoituspaikkaa eri puolilla Eurooppaa. Neutriinoilmaisin on rakennettava mahdollisimman syvälle maan alle, jotta vältytään luonnon harvinaisimpien ja vaikeimmin havaittavien ilmiöiden mittauksia haittaavalta häiriösäteilyltä.
Pyhäsalmen kaivos on 1400 metriä syvä ja yksi syvimmistä paikoista Euroopassa. Sen etuja ovat oskillaatiomittausten kannalta ihanteellinen etäisyys CERNistä, kaivoksen hyvä infrastruktuuri, hyvät liikenneyhteydet, kenttätutkimuksilla varmistettu kallion rakennettavuus ja monet toiminnalliset edut.
Myös tuonnempana rakennettavaksi suunnitellulle ”neutriinotehtaalle” Pyhäsalmen kaivoksen on todettu olevan sijainniltaan ja olosuhteiltaan potentiaalinen ilmaisinlaitteiston sijoituspaikka. Tieteelliset hankkeet tuovat kaivokselle ja sen erinomaisessa kunnossa olevalle infrastruktuurille toivottua uusiokäyttöä. Suunnitellut kokeet toimivat usean vuosikymmenen ajan.
LAGUNA‐LBNO‐ilmaisimessa on ilmaisinaineena 20 000 tonnia nesteytettyä argon‐kaasua. Laitteiston kustannusarvio on 226 miljoonaa euroa ja arvioitu rakennusaika kahdeksan vuotta. Ennen tätä lopullista laitetta Pyhäsalmeen kaivokseen suunnitellaan rakennettavaksi pienempi pilottilaite. Sen kustannusarvio on 50 miljoonaa euroa ja arvioitu rakennusaika neljä vuotta.
Tehtyjen vaikuttavuusselvitysten mukaan hankkeella on toteutuessaan paljon myönteisiä vaikutuksia liike‐elämälle, tutkimukselle ja työllisyydelle. Se myös merkitsisi merkittäviä ulkomaisia investointeja Suomeen, kuten esimerkit saman kokoluokan hankkeista Argentiinassa, Chilessä ja Italiassa osoittavat.
Projekti tarjoaa Suomelle ainutlaatuisen mahdollisuuden vahvistaa kansainvälistä asemaansa ja näkyvyyttään huippututkimukseen panostavana maana. Suomen Akatemian hiljattain toteuttamassa Suomen fysiikan tutkimuksen arvioinnissa kansainvälinen arviointipaneeli toteaa LAGUNA‐hankkeen tarjoavan uuden ja positiivisen etenemistien hiukkasfysiikan tutkimukselle Suomessa. Se myös suosittelee maanalaisen tutkimuskeskuksen luomista Pyhäsalmen kaivokseen.
LAGUNA-hankkeesta kerrottiin Tiedetuubissa viime syksynä, myös videonmuodossa.