Tutkijatohtori Lide Yao teki tutkimuksen Aalto-yliopiston Nanomikroskopiakeskuksessa, joka on materiaalien nanokarakterisaation keskus Suomessa ja osa kansallista OtaNano-tutkimusinfrastruktuuria. Kuva Mikko Raskinen.
”Läpäisyelektronimikroskoopissa elektronisäde läpäisee hyvin ohuen näytteen", kertoo tutkijatohtori Lide Yao teknillisen fysiikan laitokselta.
"Erilaiset ilmaisimet keräävät elektronit näytteen läpäisyn jälkeen, ja niistä saadaan yksityiskohtaista tietoa materiaalin atomirakenteesta ja koostumuksesta. Tekniikka on erittäin tehokas nanomateriaalin karakterisoinnissa, mutta jos sitä käytetään tavanomaiseen tapaan, sillä ei voi muokata materiaalia aktiivisesti mikroskoopin sisällä. Käytimme tutkimuksessamme erityistä näytepidintä, jossa on pietso-ohjattu metallinen näytteenotin sähköisen nanokontaktin aikaansaamiseksi. Tämän in situ –tekniikan avulla pystyimme lyhyitä jännitepulsseja käyttämällä hallitsemaan happi-ionien vaellusta näytteessä."
Tutkimusten mukaan happi-ionien vaeltaminen pois kontaktin läheltä johti äkilliseen muutokseen oksidin hilarakenteessa sekä sähkövastuksen kasvuun. Jännitteen napaisuuden vaihto palautti alkuperäiset ominaisuudet täydellisesti.
Tohtorikoulutettava Sampo Inkisen tekemät sähkötermiset simulaatiot osoittivat, että sähkövirran aiheuttaman näytteen lämpenemisen ja sähkökentän ohjaaman ionien liikkeen yhdistelmä aiheutti vaihto-ominaisuuden.
Ionotroninen periaate soveltuu useiden materiaalin ominaisuuksien muokkaamiseen
”Tässä tutkimuksessa tutkittu materiaali on kompleksioksidi", sanoo professori Sebastiaan van Dijken.
"Kompleksioksideissa voi esiintyä useita mielenkiintoisia fyysisiä ominaisuuksia, kuten magnetismia, ferrosähköisyyttä ja suprajohtavuutta. Nämä ominaisuudet vaihtelevat materiaalin hapetustilan mukaan. Happi-ionien jännitteellä aikaansaatu vaeltaminen muuttaa hapetustilaa ja aiheuttaa voimakkaita vasteita materiaalissa. Olemme osoittaneet suoran korrelaation happipitoisuuden, kiderakenteen ja sähkövastuksen välillä, ja samaa ionotronista periaatetta voisi hyödyntää muiden materiaalin ominaisuuksien hallitsemisessa.”
”Tässä tutkimuksessa käytimme erityistä näytteenpidintä, jonka avulla pystyimme suorittamaan yhtäaikaisia mittauksia atomirakenteesta ja sähkövastuksesta", jatkaa Yao.
"Kehitämme parhaillaan täysin uutta ja ainutlaatuista näytteenpidintä, jonka avulla TEM-mittauksia voisi suorittaa samalla kun näytettä säteilytetään voimakkaalla valolla. Aiomme tulevaisuudessa tutkia atomitason prosesseja perovskiitti-aurinkokennoissa ja muissa optoelektronisissa materiaaleissa tällä kokoonpanolla.”
Tutkimustulokset julkaistiin uusimmassa Nature Communications -julkaisussa (DOI: 10.1038/NCOMMS14544).
In situ -TEM-tutkimus tehtiin Aalto-yliopiston Nanomikroskopiakeskuksessa, joka on materiaalien nanokarakterisaation keskus Suomessa ja osa kansallista OtaNano-tutkimusinfrastruktuuria.
Juttu on perustuu Aalto-yliopiston tiedotteeseen.