Tämän vuoden fysiikan Nobel annettiin kahdelle neutriinotutkijalle, joiden työkalut ovat valtavia, syvällä kallioperässä olevia tutkimuslaitteita, joiden kohteina ovat pienenpienet alkeishiukkaset, neutriinot.
Neutriinot ovat pitkään massattomaksi oletettuja hiukkasia, joita syntyy ällistyttävän paljon koko ajan joka puolella erilaisten ydinreaktioiden oheistuotteina. Miljardeja sellaisia lentää itse asiassa lävitsemme joka sekunti, eikä niistä ole meille mitään haittaa – itse asiassa ne vuorovaikuttavat kaiken aineen kanssa niin vähän, että niiden havaitseminen on hyvin hankalaa.
Siihen tarvitaankin suuria, varsin omalaatuisia havaintolaitteita, ja jotta kaikki häiriötekijät voitaisiin karsia pois havainnoista, täytyy havaintolaitteet sijoittaa syvälle maaperään, kallion keskelle.
Juuri tällaista ollaan kaavailemassa myös Suomeen, Pyhäsalmen kaivokseen, missä voitaisiin tutkia tarkemmin ja paremmin myös tämänvuotisten nobelistien havaitsemaa omituista neutriino-oskillaatiota.
Kyse on siitä, että neutriinot muuttavat luonnettaan samalla kun ne lentävät valon nopeudella avaruuden halki. Tämä antaa viitteen siitä, että neutriinoilla olisi hyvin, hyvin pieni massa, mikä vaikuttaa kuvaamme koko maailmankaikkeudesta.
Ja ravistaa koko fysiikkaa.
Valontuikahduksia
Yllä oleva kuva on japanilaisen Super-Kamiokande -neutriino-observatorion sisältä Tokion luoteispuolelta.
Kyseessä on kilometrin syvyydessä sijaitseva noin 41 metriä korkea ja 40 metriä leveä sylinteri, jonka sisällä on 50 000 tonnia äärimmäisen puhdasta vettä. Kun neutriinot kulkevat veden läpi, pienenpieni osa niistä törmää vesiatomiin ja synnyttää heikon välähdyksen valoa. Näitä tuikahduksia havaitaan 11 000 säiliön seinillä olevilla ilmaisimilla.
Kuvassa huoltohenkilöt liikkuvat tyhjennetyn ilmaisimen sisällä kumiveneellä, koska näin he eivät vaurioita herkkiä lasista tehtyjä ilmaisimia.
Tämä on ollut japanilaisen Takaaki Kajitan työväline ja hänen kanssaan palkinnon jakava kanadalainen Arthur B. McDonald on tehnyt tutkimustaan toisella vastaavalla, Sudburyn lopetetussa nikkelikaivoksessa olevalla neutriinohavaintolaitteella.
Kajita julkaisi vuonna 1998 tutkimuksen, jonka mukaan Maan ilmakehässä kosmisten säteiden ja ilman molekyylien välisten törmäysten vuoksi syntyvät neutriinot muuttuvat ominaisuuksiltaan ennen osumistaan maan uumenissa olevaan Super-Kamiokanden ilmaisimeen.
Samaan aikaan Sudburyssä, Kanadan Ontariossa, McDonald työryhmineen havaitsi samanlaista tapahtuvan neutriinoissa, jotka ovat peräisin Auringosta. He julkaisivat havaintonsa vuona 2001.
Kummassakin tapauksessa kyse oli niin sanotusta neutriino-oskillaatiosta, missä neutriinot muuttuvat toisenlaisiksi.
Tämän ymmärtämiseksi täytyy kuitenkin katsoa hieman historiaan.
Hiukkanen, jota ei voi havaita?
Maailmankaikkeudessa on vain valoa sekä muuta sähkömagneettista säteilyä kuljettavia fotoneita enemmän kuin neutriinoita. Niitä syntyi valtavasti jo maailmankaikkeuden alussa, big bangissä, mutta niitä sikiää lisää koko ajan joka puolelta mitä erilaisimmista ydinreaktioista.
Jopa meistä ihmisistä sinkoaa ulos koko ajan uusia neutriinoja, sillä muun muassa kaliumin hajoaminen synnyttää niitä noin 5000 kappaletta sekunnissa.
Lisäksi niitä syntyy huimasti ydinreaktoreissa sekä Auringossa, josta pelkästään tulee Maahan noin 70 miljardia hiukkasta neliösentille.
Vaikka neutriinoja on näin paljon, on niiden erittäin huonon vuorovaikutuksen vuoksi niitä hankala havaita, ja niiden olemassaolosta saatiin vinkkiä vasta vuonna 1930. Silloin itävaltalainen fyysikko Wolfgang Pauli päätteli niiden olemassaolon epäsuorasti, sillä useat havaitut reaktiot voitiin selittää vain siten, että niistä vapautuisi tuntematon, neutraali ja hyvin kevyt tai massaton hiukkanen.
Pauli kertoi ajatuksistaan ensimmäistä kertaa joulukuussa 1930 kollegoilleen lähettämässään kirjeessä, jonka hän aloitti sykähdyttävästi sanoilla “Hyvät radioaktiiviset rouvat ja herrat”.
Kirjeensä lopussa hän totesi, että “olen tehnyt kauhean teon. Olen päätellyt olemassa olevaksi hiukkasen, jota ei voi havaita.”
Pauli sai tästä kauheasta teostaan Nobelin vuonna 1945.
Pian tämän jälkeen italialainen Enrico Fermi kehitti teorian, missä Paulin hiukkanen oli mukana ja hän nimesi hiukkasen neutriinoksi.
Neutriino saatiin nalkkiin
Vasta 1950-luvulla saatiin ensimmäiset havainnot, jotka voitiin tulkita neutriinojen aiheuttamiksi. Kun ydinvoimaloita alettiin rakentaa ja ydintekniikan kanssa tehtiin kokeita paremmin ja tarkemmin kuin koskaan, tuli neutriino väistämättä esiin.
Olennaisin oli kesäkuussa 1956 tehty havainto, missä fyysikot Frederick Reines ja Clyde Cowan löysivät selvästi neutriinon aikaan saamia jälkiä kokeissaan. He lähettivät löydöstä sähkeen heti Paulille, joka luonnollisesi oli harmissaan siitä, että hänen salahiukkasensa oli saatu havaittua. Tai kenties ei ollut.
neutriinojen tarkempi olemus on kuitenkin ollut hämärän peitossa viime vuosikymmeniin saakka. Niihin liittyi myös monia perustavaa laatua olleita (ja olevia) kysymyksiä, kuten se, että vaikka Auringosta tulee valtavasti neutriinoja, on niitä havaittu vain noin kolmannes teoreettisesti lasketusta.
Yksi ratkaisu tähän voisi olla se, että neutriinot muuttuvat toisenlaisiksi. Teorian mukaan on kolmenlaisia neutriinoja: elektronineutriinoja, muonineutriinoja ja tau-neutriinoja, joilla kullakin on hiukkaskartalla omat varaukselliset versionsa, eli elektroni, muoni ja tau.
Aurinko synnyttää teorian mukaan vain elektronineutriinoja, mutta jos osa niistä muuttuisi Auringosta lähtönsä jälkeen muunlaisiksi, selittyisi kahden kolmanneksen vajaus tällä.
Kun maanalaiset neutriino-observatoriot alkoivat olla tarpeeksi suuria ja tarkkoja 1990-luvun lopussa, tuli neutriinojen ongelmaan myös lisävaloa.
Ne hyvin harvat neutriinot, jotka törmäävät havaintolaitteissa olevassa nesteessä oleviin atomeihin tai elektroneihin, syntyy nopea, sähköisesti varattu hiukkanen, joka puolestaan synnyttää niin sanottua Cherenkovin säteilyä. Se on aavemaista, heikkoa sinertävää valoa, joka syntyy kun hiukkanen kulkee valoa nopeammin.
Kyllä: valoa nopeammin. Tämä tapahtuu silti Einsteinin suhteellisuusteorian mukaan, vaikka se sanoo, ettei mikään koskaan voisi kulkea valoa nopeammin. Olennaista onkin se, että valon nopeus vedessä on vain 75% siitä mitä se on tyhjiössä, ja siten pikavauhtia kulkeva hiukkanen voikin kulkea vedessä nopeammin kuin valo – mutta silti hitaammin kuin valo tyhjiössä.
Kun tätä Cherenkovin valoa analysoidaan tarkasti, voidaan päätellä millainen neutriino sen sai aikaan ja mistä se on peräisin.
Neutriinohavaintoja liukuhihnalta!
Super-Kamiokande oli huima askel eteenpäin neutriinojen tuntemuksessa, koska kahden ensimmäisen toimintavuotensa aikana se onnistui saamaan viitisentuhatta havaintoa. Laite havaitsee neutriinoja, jotka tulevat sen yläpuolelta ilmakehästä kosmisten säteiden törmätessä ilman kaasumolekyyleihin. Samoin se havaitsee neutriinoja suoraan altaan, maapallon toiselta puolelta – maapallon kiviaines ei neutriinoja paljoa hetkauta.
Nopeasti ajatellen havaintoja pitäisi tulla yhtä paljon ja samanlaisia ylä- ja alapuolelta, mutta näin ei ollut: maapallon toiselta puolelta havaittiin olennaisesti enemmän muonineutriinoja.
Elektronineutriinojen määrä oli se mitä teoriat ennustivat ja tau-neutriinojen määrästä ei voitu sanoa mitään varmaa, koska niitä ei voitu havaita. Jos siis alun perin muonineutriinoja on saman verran ala- ja yläpuolella, niin oli todennäköistä, että alapuolelta tulevat voisivat muuttua tau-neutriinoiksi, koska matkaa on riittävästi.
Tosin myös Sudburyn havainnoissa tosin tiedetään varsin hyvin millaisia neutriinoita lähtöpaikassa on, sillä Aurinko tuottaa vain elektronineutriinoita. Sudburyssä käytetään myös puhtaan veden sijaan ns. raskasta vettä, jolloin se pystyy havaitsemaan kaikkia neutriinotyyppejä. Raskaassa vedessä on hapen lisäksi tavallisen vetyatomin sijaan deuterium, eli vedyn raskaampi isotooppi. Se tekee havainnoista tarkempia (ja samalla vaikeampia tulkita).
Siten siellä tehdyistä havainnoista voitiin nähdä selvästi, että Auringon neutriinoista elektronityyppisiä oli olennaisesti arveltua vähemmän. Havaintomäärän kasvaessa kävi yhä ilmeisemmäksi, että osan neutriinoista on täytynyt muuttua matkallaan Auringosta Maahan toisenlaisiksi. Itse asiassa kaksi kolmasosaa neutriinoista muuttuisi 150 miljoonaa kilometriä pitkällä matkallaan toiseksi lajiksi.
Kun Sudburyn havainnot osuivat aika tarkalleen yksiin neutriino-oskillaation ennustamien määrien kanssa, oli asia aika saletti.
Hiukkasen kvanttifysiikkaa
Tällä tosin oli se mullistava seuraus, että teoreetikoiden mukaan muuttuminen toiseksi on mahdollinen vain jos neutriinolla on massa.
Tämä tulee siitä, että kvanttimaailmassa hiukkanen voidaan käsittää joko aaltona tai pienenpienenä kappaleena, hiukkasena. Tietyn määrän energiaa sisältävä hiukkanen vastaa tiettyä aallonpituutta. Niinpä elektroni-, muoni- ja tau-neutriinot voidaan käsittää omanlaatuisina aaltoinaan.
Kun aallot etenevät tasatahtiin, ei neutriinon eri persoonallisuuksia voi erottaa toisistaan, mutta mitä pitempään aallot matkaavat, sitä enemmän ne menevät epätahtiin. Vaihe-eron mukaisesti aallot voivat vaikuttaa toisiinsa, oskilloida keskenään, ja lopulta aallot ovat erilaisia ja siten neutriinot ovat eri tyyppisiä.
Tässä massa tulee kuvaan, sillä sen mukaisesti neutriinojen aallot muuttuvat – hyvin, hyvin, hyvin vähän, mutta silti, ja etenkin pitemmillä matkoilla käy juuri näin. Kun neutriinon massa, jos ja kun se on olemassa, on äärimmäisen pieni, ja erot massoissa ovat erittäin pieniä, ovat eroavaisuudetkin hyvin pieniä. Mutta kuten on huomattu, havaittavia.
Teorian mukaan pari tuhatta kilometriä on matka, jonka kuluessa muuttuminen saattaisi tapahtua. Siksi Laguna-ilmaisimen Pyhäsalmi olisi erinomainen paikka ilmaisimelle, koska siellä on tarkoitus havaita Euroopan hiukkastutkimuskeskuksessa CERNissä noin 2300 kilometrin päässä synnytettyjä neutriinoja: kun tiedetään tarkasti millaisia neutriinoja lähtöpisteessä on ja kuinka paljon, niin tätä neutriino-oskillaatiota on helpompi tutkia.
Fyysikoille hommia
Se, että neutriinoilla on pieni massa, saa aikaan monennäköistä harmia. Ensinnäkin kosmologeille tämä tarkoittaa sitä, että maailmankaikkeuden massa-arvio on pielessä. Vaikka neutriinon massa olisi lähes nolla, se ei ole nolla, ja koska neutriinoita on niin paljon, tulee niistä yhdessä arvioiden mukaan yhtä paljon “lisää” massaa maailmankaikkeuteen kuin kaikista näkyvistä tähdistä.
Tämä saattaa selittää osan havaituista kummallisuuksista maailmankaikkeuden laajenemistahdissa, mutta siihen vaikuttaa moni muukin asia.
Fyysikkojen parinkymmenen vuoden ajan rakentama ns. Standardimalli myös vaatii viilausta. Malli koettaa selittää paitsi hiukkaset, niin myös niiden väliset voimat ja vaikutukset, ja nyt massattomaksi oletettu neutriino ei olekaan massaton.
Mistä sen massa tulee? Mitkä on eri neutriinotyyppien massat? Miksi ne ovat niin äärimmäisen kevyitä? Onko niillä omat antihiukkasensa, kuten muilla? Ja miksi neutriinot vaikuttavat muutenkin niin erilaisilta kuin muut hiukkaset?
Vastauksista näihin perustavaa laatua oleviin kysymyksiin tullaan varmasti jakamaan monta Nobelia tulevaisuudessa.
Alla on Tiedetuubin video Suomeen suunniteltavasta Laguna-ilmaisimesta ja siinä selitetään varsin paljon myös neutriinojen omituisuuksia:
Eilen julkistettiin fysiikan Nobel, tänään oli vuorossa kemianpalkinto: arvostetut palkinnot annettiin Led-valolle ja fluoresenssimikroskopialle.
Fysiikan Nobel-palkinto meni kolmelle japanilaiselle, Isamu Akasakille, Hiroshi Amanolle ja Shuji Nakamuralle. Virallisen tiedotteen mukaan palkinto myönnettiin "tehokkaiden sinisten ledien keksimisestä, mikä on tehnyt mahdolliseksi kirkkaat ja energiaa säästävät valkoisen valon lähteet".
Kemian palkinto puolestaan meni kahdelle amerikkalaiselle, Eric Betzigille ja William Moernerille, sekä saksalaiselle Stefan Hellille. Palkinto myönnettiin "huipputarkan fluoresenssimikroskopian kehittämisestä".
Japanilaistutkijoiden keksintö on käytännössä tuttu meille kaikille. Ledejä käytetään nykyisin niin kotien ja julkisten tilojen valaisimissa, mainostauluissa, taskulampuissa kuin erilaisissa merkkivaloissakin.
Akasaki, Amano ja Nakamura kehittivät sinisen ledin 1990-luvun alussa. Punaisia ja vihreitä ledejä oli ollut olemassa jo vuosikymmeniä, mutta vasta sinisen ledin kehittäminen teki mahdolliseksi energiatehokkaan teknologian soveltamisen valaistukseen. Kolmella erivärisellä ledillä saadaan nimittäin aikaan valkoista valoa.
Led-valaisimien teho on suuri ja virrankulutus pieni. Tekniikka kehittyy kaiken aikaa, mutta jo nyt tehokkaimmat led-lamput vastaavat wattia kohti antavalta valoteholtaan 16 tavallista hehkulamppua ja lähes 70 loisteputkea. Keksintö on merkittävä myös ympäristön ja luonnonvarojen kannalta. Noin neljännes maailman sähkönkulutuksesta menee valaistukseen, joten led-lamppujen energiansäästö on merkittävä tekijä.
Myös niiden valmistus säästää raaka-aineita. Siinä missä tavallinen hehkulamppu kestää noin tuhat tuntia ja loisteputki noin 10 000 tuntia, ledien kesto on parhaimmillaan jopa 100 000 tuntia. Vähäinen tehontarve mahdollistaa lisäksi valaistuksen kehittämisen seuduilla, joilla ei ole kunnollista tai lainkaan sähköverkkoa: led-lamppuihin voi tuottaa tarvittavan määrän sähköä yksinkertaisilla aurinkopaneeleilla.
Kemian Nobel-palkinnon saanut tutkimus liittyy sekin valoon. Optisen mikroskoopin erotuskyvylle asettaa rajoituksen valon aallonpituus: sillä on mahdoton erottaa rakenteita, joiden koko on alle puolet käytetyn valon aallonpituudesta.
Eric Betzig, William Moerner ja Stefan Hell ratkaisivat ongelman tahoillaan kahdella eri tavalla. Hell kehitti vuonna 2000 STED-mikroskopian (Stimulated Emission Depletion). Siinä käytetään kahta lasersädettä, joista toinen saa ensin fluoresoivat molekyylit hohtamaan, ja toinen kumoaa niiden lähettämän säteilyn lukuunottamatta nanometriluokassa olevista rakenteista tulevaa valoa.
Betzigin ja Moernerin toisistaan riippumattomasti kehittämässä menetelmässä yksittäisiä fluoresoivia molekyylejä "sytytetään" ja "sammutetaan" vuoron perään, jolloin yhdistämällä niistä otetut kuvat saadaan aikaan huipputarkka näkymä tarkasteltavaan kohteeseen.
Tällaisen nanoskopian avulla pystytään tarkastelemaan esimerkiksi solujen toimintaa molekyylitasolla. Yhtenä sovelluksena on seurata Parkinsonin, Alzheimerin ja Huntingtonin tauteihin liittyvää proteiinien kertymistä hermosoluihin.
Lisätietoa Nobelin tämänvuotisista fysiikanpalkinnoista löytyy täältä ja kemianpalkinnoista täältä.
Matemaattisen fysiikan supertähdet ovat parhaillaan koolla Helsingin yliopistolla Mathematics Meets Physics -konferenssissa, joka alkoi Helsingissä 24. kesäkuuta ja jatkuu viikon loppuun saakka. Tapahtuma on ensimmäinen Suomessa järjestetty suurimuotoinen matemaattisen fysiikan konferenssi ja se kerää koleaan kaupunkiin noin 150 matemaatikkoa.
Alan tähdistä paikalle on saapunut muiden muassa Alan Sokal New Yorkin yliopistosta (kuvassa oikealla) ja neljä Fieldsin mitalin saanutta tutkijaa: belgialainen Jean Bourgain, venäläinen Stanislav Smirnov sekä ranskalaiset Cédric Villani ja Wendelin Werner (kuvassa toinen vasemmalta). Joka neljäs vuosi jaettavat Fieldsin mitalit ovat matematiikan suurin arvonosoitus, joka rinnastetaan Nobelin palkintoon.
Fysiikasta inspiraationsa saanut matematiikka ruotii usein fysiikan perusongelmia, ja Helsingin-konferenssikin painottuu perustutkimukseen.
"On vaikea suoraan sanoa, koska matemaattisen fysiikan tutkimustulokset sovelletaan käytäntöön", kuvailee konferenssijärjestelyistä vastannut professori Eero Saksman (kuvassa toinen oikealta).
"Toisinaan ne voidaan ottaa nopeastikin käyttöön, mutta on todennäköisempää, että ne ovat taustana myöhemmille läpimurroille ‒ joko perustutkimuksessa tai sovelluksissa."
Isäntä on päivänsankari
Konferenssin aikana juhlitaan Kumpulan kampuksella työskentelevän akatemiaprofessori Antti Kupiaisen (kuvassa vasemmalla) 60-vuotispäivää.
Kupiaisen tutkimusalaa ovat erityisesti kaoottiset dynaamiset systeemit, osittaisdifferentiaaliyhtälöt ja tilastollinen mekaniikka. Hänen johtamassaan huippututkimusyksikössä tavoitellaan läpimurtoja muun muassa diffuusioon ja lämmönjohtavuuteen liityvissä kysymyksissä.
Syntymäpäiväsankarin maailmanmaine auttoi tuomaan poikkeuksellisen nimekkään vierailijajoukon Helsinkiin, Saksman uskoo.
Tilaisuus lumoutua
Konferenssiohjelma on rakennettu mahdollisimman suuren hyödyn ajatusta kunnioittaen: päivastoin kuin monissa konfrensseissa, on osallistujien mahdollista kuunnella tapahtuman jokainen puheenvuoro. Kahvi- ja lounastauot puolestaan ovat riittävän pitkiä hyviin vapaisiin keskusteluihin.
"Ihmisten tapaaminen ja kysymysten tekeminen on tärkeää", selittää Saksman. "Vuorovaikutus on kaiken ydin. Kun näkee hyvän esityksen, siitä melkein lumoutuu ja saa niin paljon vaikutteita omaan ajatteluun."
Juttu perustuu lähes suoraan Helsingin yliopiston verkkosivuilla olevaan artikkeliin Annos maailman parasta matematiikkaa Helsingissä, jonka on kirjoittanut Sirkku Saariaho. Kuvan on ottanut Veikko Somerpuro.
Kynttilät luovat joulutunnelmaa, mutta mitä hämyisän valon lähteessä oikein tapahtuu? Kynttilänliekki sulattaa parafiinia, steariinia tai mehiläisvahaa – tai niiden yhdistelmää – ja kapillaari-ilmiön ansiosta sitä imeytyy kynttilän sydämeen, josta se höyrystyy. Kaasumaisessa muodossa se palaa, jolloin muodostuu vettä ja hiilidioksidia. Palamiseen tarvittava ilma (tarkkaan ottaen happi) puolestaan imeytyy liekin sivuilta sen alaosaan ylöspäin kohoavan kuuman ilman tilalle. Samalla "korvausilma" viilentää kynttilän yläpäätä, jolloin se ei sula kokonaan, vaan sulan osan ympärillä säilyy kiinteä reuna.
Kuvaan on merkitty paitsi liekin eri osien lämpötilat celsiusasteissa myös vyöhykkeet, joilla tapahtuu hieman eri ilmiöitä. Ykkösvyöhykkeellä eli liekin sisimmällä alueella parafiinin, steariinin ja/tai mehiläisvahan molekyylit hajoavat. Kakkos- ja kolmosvyöhykkeellä tapahtuu suurin osa varsinaisesta palamisesta, mutta enin osa valosta tulee liekin keskellä olevalta nelosvyöhykkeeltä. Seikkaperäinen kolmiosainen selvitys (englanniksi) kynttilän kemiasta löytyy ChemistryViews-sivustolta (osa 1, osa 2, osa 3).
Tänään vuonna 1905 myöhemmin tieteen superjulkkikseksi noussut Bernin patenttitoimiston virkailija Albert Einstein julkaisi kuuluisassa fyysikkojen julkaisusarjassa Annalen der Physik artikkelin, missä analysoitiin terävästi Max Planckin kvanttiteoriaa ja luotiin pohja suppealle suhteellisuusteorialle.
Vuosi 1905 oli Einsteinin elämässä tärkeä vuosi, jota kutsutaankin yleensä hänen ihmeiden vuodekseen, annus mirabilis 1905. Hän sai sen aikana valmiiksi paitsi tohtorinväitöskirjansa Zürichin teknillisellä yliopistolla niin myös julkaisi ajatuksiaan suppeasta suhteellisuusteoriasta ja valosähköisestä ilmiöstä, niin myös kehitti kuuluisan massan ja energian verrannollisuutta kuvaavan kaavansa E=mc². Nämä yksissään olisivat jo tehneet Einsteinista tunnetun ja tuoneet hänelle Nobel-palkinnon (jonka hän sai vuonna 1921).
Kesäisenä sadepäivänä pilvien jo hiljalleen hajaantuessa taivaalle voi leimahtaa upea sateenkaari. Silloin aurinko pilkahtaa pilvien raosta ja paistaa väistyvän sateen langettamiin pisaroihin. Sateenkaari näkyy aina vastakkaisella puolella taivasta kuin aurinko, koska valo heijastuu sadepisaroista takaisin tulosuuntaansa.
Pelkkä valon heijastuminen vesipisaroista ei kuitenkaan riitä selittämään sateenkaaren värejä, siihen vaaditaan myös valon taittumista. Kun auringonvalo taittuu ja heijastuu vesipisaroissa, valkoiselta näyttävä auringonvalo hajoaa – kirjaimellisesti – sateenkaaren väreihin. Punainen, oranssi, keltainen, vihreä, sininen, indigo ja violetti ovat väreinä sitä hehkuvampia ja kirkkaampia, mitä suurempia vesipisarat ovat.
Kun auringonvalo kulkee sadepisaran pinnan läpi, valon kulkusuuntaa muuttuu, koska se siirtyy harvemmasta aineesta tiheämpään: ilmasta veteen. Valo heijastuu kertaalleen pisaran sisäpinnasta ja kun se taas poistuu vesipisarasta, sen kulkusuunta muuttuu jälleen: tällä kertaa se siirtyy tiheämmästä aineesta harvempaan eli vedestä ilmaan.
Kahden taittumisen ja yhden heijastumisen seurauksena valon kulkusuunta muuttuu vesipisarassa aina saman verran, 42 astetta. Siksi sateenkaari näkyy taivaalla vastapäätä aurinkoa ja kaartuu ilmiötä ihailevan katsojan pään varjon ympärille 42 asteen etäisyydellä.
Valon kulkusuunta ei kuitenkaan muutu täsmälleen 42 astetta, sillä valon eri aallonpituudet eli värit taittuvat eri tavoin: punainen taittuu vähiten ja violetti eniten. Siksi punainen väri on sateenkaaren ulkoreunassa ja violetti sen sisäreunassa. Niiden välissä ovat muut värit eli oranssi, keltainen, vihreä ja sininen.
Usein kirkkaan sateenkaaren ulkopuolella näkyy toinen, hieman himmeämpi sivusateenkaari. Sen värit ovat samat kuin pääsateenkaaressa, mutta niiden järjestys on päinvastainen: ulkoreunalla on violetti ja sisäreunalla punainen. Sivusateenkaari on himmeämpi, koska sen synnyttävä valo heijastuu sadepisaran sisällä kahdesti. Jokaisessa heijastumisessa valoa menee hivenen haaskoon.
Sateenkaaren kirkkauden lisäksi ylimääräinen heijastus pisaran sisällä vaikuttaa myös kaaren kokoon. Valon kulkusuunta muuttuu kahden taittumisen ja kahden heijastumisen tuloksena noin 51 astetta, joten sivusateenkaari kaartuu katsojan pään varjon ympärille 51 asteen etäisyydellä. Siksi sivusateenkaari on aina pääsateenkaaren ulkopuolella. Pääsateenkaaren sisäreunalla näkyy toisinaan niin sanottuja interferenssikaaria, joita ei pidä sekoittaa sivusateenkaareen. Joskus useita kertoja toistuvat vihreän ja sinisen sävyt johtuvat valon aaltoliikkeestä: interferenssissä hieman eri vaiheissa olevat aallot vahvistavat tai heikentävät toisiaan.
Pää- ja sivusateenkaaren välissä on niin sanottu Aleksanterin tumma vyöhyke. Sen alueelta tulee katsojan suuntaan vähemmän valoa kuin pääsateenkaaren sisäpuolelta ja sivusateenkaaren ulkopuolelta. Nimensä vyöhyke on saanut Aleksanteri afrodisialaiselta, joka pohti sateenkaaren syntyä vuoden 200 tienoilla. Auringonvalon hajoamisen väreihin selitti Isaac Newton noin 1500 vuotta myöhemmin.
Sydänkesän keskipäivällä aurinko kohoaa eteläisessä Suomessa yli 53 asteen korkeudelle, joten silloin taivaalla ei voi näkyä sateenkaaria ollenkaan. Sekä pää- että sivusateenkaari jäävät taivaanrannan alapuolelle. Sen vuoksi sateenkaaria näkyykin eniten alku- ja loppukesästä.
Kun aurinko laskee alemmas, tulee ensin näkyviin sivusateenkaari – jos se on näkyäkseen – ja sitten myös pääsateenkaari. Toisinaan horisonttia viistävää sateenkaaren voimakkaan punaista yläreunaa ei välttämättä edes tunnista sateenkaareksi. Vasta kun kaari auringon hitaasti vajotessa kohoaa ylemmäs, tulee näkyviin myös muita värejä ja ilmiön tunnistaa sateenkaareksi. Aamupäivän puolella taivaanrantaa hipova sateenkaari tietysti vähitellen katoaa, kun auringon kipuaa yhä ylemmäs – edellyttäen, että sateenkaari pysyttelee taivaalla näkyvissä niin pitkään.
Vanhan kansanuskomuksen mukaan sateenkaaren päässä odottaa löytäjäänsä kulta-aarre. Sitä voi yrittää etsiä, mutta puuha voi osoittautua turhauttavaksi, koska sateenkaaren perään kiiruhtava aarteenetsijä joutuu huomaamaan, että sateenkaari pakenee samalla vauhdilla. Ehkä uskomus viittaa juuri tähän: kulta-aarteen löytäminen onnistuu yhtä helposti kuin sateenkaaren pään tavoittaminen.
Pääkuvan on ottanut davidyuweb ja se on julkaistu Creative Commons -lisenssillä Flickr-palvelussa.