Hubble-avaruusteleskooppi

Hubblen avaruusteleskooppi 30 vuotta - tässä kuusi erikoisjuttua tähtitieteen legendasta

Pe, 04/24/2020 - 12:46 Toimitus
Hubble 30 vuotta -logo

Avaruusteleskooppi Hubble laukaistiin kiertoradalleen Maata kiertämään avaruussukkula Discoveryllä  30 vuotta sitten.

Avaruusteleskooppi Hubble on kallein koskaan tehty tähtitieteellinen havaintolaite, mutta samalla se on myös kaikkein tuotteliain tieteellinen tutkimuslaite, kun lasketaan sillä tehtyjen havaintojen perusteella julkaistujen artikkelien määrä: niitä on yli 15 000, ja näihin on viitattu 738 000 muussa artikkelissa. 

Luvut ovat Hubblen nettisivuilta, enkä epäile niitä lainkaan. Hubblella otettuja kuvia ja tietoja ei ole vain netti pullollaan, vaan sen tekemät 1,3 miljoonaa havaintoa ovat olennainen osa tähtitiedettä viimeisten 30 vuoden ajalta.

Kyllä. Hubble on ollut avaruudessa tänään 30 vuotta. Se kuljetettiin avaruuteen avaruussukkula Discoveryllä lennolla STS-31, joka laukaistiin matkaan 24. huhtikuuta 1990. Siis tänään 30 vuotta sitten. 

STS-31 lähtee matkaan

Harvinainen näky Kennedyn avaruuskeskuksesta: taustalla Discovery lähtee lennolle STS-31 laukaisualustalta 39B ja etualalla noin kahden kilometrin päässä Columbia odottaa alustalla 39A toukokuuksi 1990 suunniteltua lentoaan.

 

Tuo avaruussukkulaohjelman 35. lento sujui hyvin ja Hubble vapautettiin omille teilleen sukkulan rahtiruumasta 25. huhtikuuta 1990. Periaatteessa siis Hubblen 30-vuotisjuhlaa pitäisi juhlia vasta nyt lauantaina, mutta yhtä kaikki: tätä kirjoitettaessa iltapäivällä 24.4.2020 oli Hubble jo kiertoradalla, tosin sukkulan ruumassa.

Se oli eräs merkkipaaluista avaruussukkulan historiassa, koska sukkulan periaatteena oli olla yleiskäyttöinen avaruusrahtari, joka voisi kuljettaa rutiininomaisesti avaruuteen kaikenlaista kamaa satelliiteista avaruusasemien kautta avaruusteleskooppeihin.

Hubbe vapautetaan avaruuteen Discoveryn ruumasta 25.4.1990.

 

Avaruusteleskooppi olikin 1970-luvun alusta alkaen suunnitelmissa. Paitsi että sukkulan ruumaan voitiin asettaa pieniä teleskooppeja kunkin noin viikon kestävän lennon aikana käytettäväksi, pohdittiin irrallisen, sukkulasta avaruuteen jätettävän avaruusteleskoopin tekemistä. 

NASA perustikin jo vuonna 1970 kaksi komiteaa tutkimaan itse teleskoopin suunnittelua ja hankkeen tieteellisiä tavoitteita. 

Ideoista ei ollut puutetta, mutta rahasta oli – etenkin kun sukkulan kehittäminen tuli oletettua kalliimmaksi ja rahaa oli käytettävissä odotettua vähemmän. Presidentti Fordin rajut julkisten menojen leikkaukset vuonna 1974 iskivät erityisesti avaruusteleskoopin tekemiseen ja hanke laitettiin jäihin.

Tähtitieteilijät eivät nielleet päätöstä: he lobbasivat asiansa puolesta niin senaatissa kuin kongressissakin, ja saivat hieman rahaa hankkeen jatkamiseen.

Rahaa oli tosin vain puolet aikaisemmasta, joten teleskooppia pienennettiin. Peilin halkaisija pudotettiin kolmesta metristä 2,4:ään ja Euroopan avaruusjärjestö värvättiin mukaan maksamaan osa viuluista: teleskooppiin tuli yksi instrumentti ja aurinkopaneelit Euroopasta. Vastineeksi tästä ESA sai 15 % osa teleskoopin käyttöajasta.

Eräs ensimmäisistä avaruusteleskooppisuunnitelmista.

 

Lopulta vuonna 1978 teleskooppi sai Yhdysvaltain puolella tarpeeksi rahaa, jotta sen rakentaminen pääsi alkamaan. 

Aikomuksena oli laukaista laite matkaan vuonna 1983, mutta kuten tavallista, hanke viivästyi – osin sukkulalentojen alkamisen viivästymisen vuoksi, mutta osin myös teleskoopin tekemisen hitauden vuoksi.

Viimein vuonna 1990 tähtitieteilijälegenda Edwin Hubblen mukaan nimetty avaruusteleskooppi pääsi avaruuteen. Ja kaikki olivat iloisia.

Kuvapari M100-galaksista näyttää selvästi peilin hiontaongelman: vasemmalla ennen korjausta, oikealla korjauksen jälkeen. 

 

Pahuksen peiliongelma

Ilo vaihtui kuitenkin suureen harmistukseen, kun Hubble otti ensimmäiset kuvansa. Aivan ensimmäisten odotettiinkin olevan huonoja ja epätarkkoja, sillä vasta niiden ottamisen jälkeen laitteita säädettäisiin paremmaksi, mutta varsin pian kävi ilmi, että ennätyskalliin teleskoopin kuva ei vain tarkentunut. 

Itse asiassa tarkentaminen ei paljoa vaikuttanut kuvan epäselvyyteen, koska pian kävi ilmi, että vaikka teleskoopin pääpeili oli kyllä hiottu erittäin tarkasti suunniteltuun muotoon, oli tuo suunniteltu muoto valitettavasti väärä. Peilin reuna-alueet oli hiottu hieman liian lattanaksi; tarkalleen ottaen sieltä lasia oli otettu 2,2 mikronia (eli noin 1/15 ihmisen hiuksen paksuudesta) liikaa. Tästä syystä peilin muodostama kuva oli sumuinen.

Onneksi Hubble oli suunniteltu kiertoradalla huollettavaksi. Huoltolennoilla oli tarkoitus vaihtaa teleskoopin havaintolaitteita ja vaihtaa sen laitteistoja muutenkin paremmiksi. Ensimmäinen suunniteltu huoltolento sai kuitenkin nyt aivan uuden tehtävän, sillä sen päätehtäväksi tuli asentaa teleskoopille silmälasit.

Oikeasti kyseessä oli viidestä pienestä peiliparista koostunut kokonainen laitteisto, jonka tehtävänä oli korjata peilin palloaberraatio. Optiikka vei yhden Hubblen neljästä instrumenttilaatikosta. 

Yksittäiset peilit olivat kooltaan (ja ulkonäöltään) hammaslääkärin peilin kaltaisia, tosin erittäin huolellisesti oikeaan muotoon hiottuja. 

Tämä COSTAR-nimisen laitteiston avulla teleskoopin kolme alkuperäistä instrumenttia pystyivät tekemään jälleen normaalisti havaintoja. 

COSTAR:ia asennetaan paikalleen.

 

Jo ensimmäisellä huoltolennolla havaintolaitteista yksi korvattiin uudella ja paremmalla, ja näin tehtiin myös myöhemmillä lennoilla.

Tämä joulukuussa 1993 tehty huoltolento on merkittävä myös siinä mielessä, että se on ensimmäinen paikan päällä USAssa seuraamani sukkulalento. STS-61 laukaistiin matkaan 2. joulukuuta, ja lentoon käytetty sukkula oli Endeavour. Laukaisun jälkeen pääsin tutustumaan lennon jatkumiseen Houstonissa lennonjohdossa, ja tein tästä aikanaan montakin ohjelmaa Yleisradion tiedeohjelmille nuoren miehen innokkuudella. Toivottavasti ne ovat jossain tallessa (itselläni ei ole valitettavasti noilta ajoilta muutamia valokuvia lukuun ottamatta mitään arkistossa).

Seuraavat huoltolennot tehtiin helmikuussa 1997, joulukuussa 1999, maaliskuussa 2002 ja toukokuu 2009. Viimeinen oli hyvin erikoinen, koska se tehtiin avaruussukkula Columbian onnettomuuden jälkeen ja silloin toinen sukkula oli samaan aikaan lähtövalmiina siltä varalta, että lennolla olleelle sukkula Atlantikselle olisi tapahtunut laukaisun aikaan jotain vastaavaa kuin Columbialle.

Lennoilla teleskooppia huollettiin, sen osia vaihdettiin uusiin, sen havaintolaitteita korvattiin paremmilla ja myös sen aurinkopaneelit vaihdettiin pariinkin kertaa uusiin. 

Nyt avaruudessa oleva Hubble ei siis ole sama kuin se Hubble, joka laukaistiin kiertoradalle 30 vuotta sitten.

 

Hubble vapautetaan sukkulasta huollon jälkeen

Hubble kuvattuna viimeisen huoltolennon päätteeksi.

 

Säästäminen kävi kalliiksi

Periaatteessa avaruusteleskoopin huollettavuus avaruudessa oli erinomainen ajatus. Se, että astronautit saattoivat käydä sitä korjailemassa ja parantamassa oli eräs avaruussukkulan kehittämisen perusajatuksista, mutta valitettavasti se ei toiminut ihan kuten oli tarkoitus.

Avaruussukkuloiden lennättäminen oli kalliimpaa ja hankalampaa kuin 1970-luvulla toivottiin. Utopistisimmissa ajatuksissa sukkulat olisivat lentäneet jopa pari kertaa viikossa, ja silloin tällaiset huollot olisivat olleet rutiinihommia muiden tehtävien seassa. 

Lopulta oli niin, että yhden huoltolennon hinnalla olisi saanut laukaisua avaruuteen kokonaan uuden avaruusteleskoopin perinteisellä raketilla. 

Tästä voi repiä tietysti pelihousunsa ja harmitella hukkaan menneitä mahdollisuuksia sekä kaikkea rahaa, jonka Nasa ja ESA olisi voineet säästää, mutta kolikolla on myös toinen puolensa: tulevaisuudessa tällaiset huollot ovat varmasti rutiinia ja silloin Hubblea sekä sen huoltolentoja kiitellään. Niillä saatiin paljon kokemusta avaruudessa toimimisesta.

Hubblen seuraajan tekeminen ei sekään ole tullut halvaksi, sillä James Webb Space Telescope (JWST) on hurjasti myöhässä aikataulustaan ja ylittänyt suuresti budjettinsa. Kyseessä on ”huoltovapaa” kaukoputki, jonka sijoituspaikaksi tulee Lagrangen piste noin 1,5 miljoonan kilometrin päässä Maasta.

Sen peili on yli tuplasti Hubblen peiliä suurempi halkaisijaltaan ja sen hartioilla on suuria odotuksia kosmologian suurten kysymysten ratkaisemisesta eksoplaneettojen havaitsemiseen.

 

JWST:n mallikappale avaruusnäyttelyssä kuvattuna

JWST:n mallikappale avaruusnäyttelyssä kuvattuna.

 

Jos se saadaan avaruuteen lopulta noin vuoden päästä ja se toimii odotetusti, on se aivan ällistyttävän hieno havaintolaite. Juuri nyt työt teleskoopin kanssa ovat kuitenkin keskeytyksissä koronaepidemian vuoksi; nähtäväksi jää, kuinka paljon tämä vaikuttaa aikatauluun.

Itse Hubble on toiminnassa edelleen avaruudessa, mutta jokin sen tärkeistä systeemeistä saattaa rikkoontua koska tahansa. Tähän saakka lennonjohto on saanut joko ongelmat ratkaistua tai keksinyt temppuja, joilla havaintojen tekoa on voitu jatkaa. 

Nykyinen rahoitus teleskoopin toiminnalle päättyy ensi vuonna, ja sitä seuraava määräaika on 2030-luvun puolivälissä. Jos Hubblea ei voida hivuttaa sitä ennen korkeammalle kiertoradalle, se syöksyy silloin ilmakehään ja tuhoutuu.

Toivottavasti JWST on silloin jo taivalla, ja voimme sanoa valtavan suuren kiitoksen Hubblelle.

---

Tiedetuubi kokosi viisi vuotta sitten Hubblen 25-juhlan kunniaksi juttusarjan avaruusteleskoopin historiasta ja olemuksesta. Niiden avulla voi juhlistaa edelleen tätä tähtitieteen mullistajaa.

Hyvää hubbleilua!

25 kosmista kynttilää Hubblelle


Hubblen huippuhavainnot


Avaruusteleskoopin anatomiaa


Hubblen huoltolennot


Hubblen muodonmuutos


Hubblen seuraaja JWST

Juttu on julkaistu myös Ursan blogina.

-->

Hubblen avaruusteleskooppi vaikeuksissa – asennonsäätö rikkoontunut

Ma, 10/08/2018 - 12:03 Jari Mäkinen
Hubble-avaruusteleskooppi

Havaintojen tekeminen Hubble-avaruusteleskoopilla on keskeytynyt, kun sen asennonsäätöön käytetty gyroskooppi on mennyt rikki. Lennonjohdolla on takanaan hektinen viikonloppu, kun teleskooppiveteraania on koetettu saada jälleen hallintaan.

Huhut Hubblen vaikeuksista alkoivat kierrellä netissä viikonlopun aikana, ja niihin saatiin nyt aamulla vahvustus.

Ongelma on yksinkertaisesti se, että Hubble on jo vanha: se on ollut avaruudessa vuodesta 1990 alkaen, eli ikää sillä on jo kohta 30 vuotta. Tänä aikana sitä on käyty huoltamassa viisi kertaa, ja eräs näiden lentojen olennaisin tehtävä on ollut asennonsäätöön tarvittavien gyroskooppien vaihtaminen.

Gyroskoopit ovat hyrriä, joiden avulla teleskooppia pidetään oikeassa suunnassa. Ne mittaavat tarkasti teleskoopin asentoa ja niitä on Hubblella kaikkiaan kuusi kappaletta. Ne kaikki uusittiin toukokuussa 2009, kun astronautit kävivät korjaamassa Hubblea viimeisen kerran.

Normaaliin toimintaan tarvitaan vähintään kolme, ja nyt niitä on ollut käytössä enää kaksi. Nyt viikonloppuna siis viimeinenkin gyro oli yskinyt.

Rachel Osten, Hubblen toimintoja ylläpitävän tiimin varajohtaja toteaa, että teleskooppi voi toimia myös yhdellä, mutta se ei ole helppoa. Onkin mahdollista, että nyt kun käytössä on enää kaksi gyroa, niistä toinen jätetään varalle ja teleskooppia koetetaan käyttää vain yhden gyron avulla.



"Tämä ei ollut yllätys. Tiesimme, että tämä tilanne tulee vielä", twiittasi Osten. "Tämä gyro kesti kuusi kuukautta pitempään kuin odotimme."

Maavalvomossa koetetaan nyt ensin saada gyro jälleen toimintaan, minkä jälkeen normaali havaintojenteko voidaan aloittaa uudelleen.

Hubblen asennonsäätölaitteet

Hubblen asennonsäätöjärjestelmään kuuluvat vauhtipyörät, eli hyrrät, jotka pitävät asentoa paikallaan ja joiden nopeutta muuttamalla asentoa voidaan muutta, sekä gyroskoopit, jotka tarkkailevat asentoa koko ajan. Lisäksi asentoa tarkkaillaan tähtietsimin.


Hubbe suunniteltiin huollettavaksi astronauttien ja avaruussukkuloiden avulla, mutta nyt kun sukkulat eivät enää ole käytössä, ei sitä voida käydä enää korjaamassa aikaisempaan tapaan. On toki mahdollista, että uusilla avaruusaluksilla astronautit voisivat käydä korjaushommissa, mutta siihen menee aikaa: NASA ilmoitti juuri kummankin uuden avaruusasemaliikenteeseen tarkoitetun avaruusaluksen ensilennon myöhästyvän ja kolmas tulossa oleva alus, Orion, on sekin myöhässä.

Huoltolennon saaminen mukaan niiden lento-ohjelmiin on käytännössä mahdotonta.

On myös kyseenalaista, kannattaako pian 30-vuotiasta teleskooppia enää käydäkään huoltamassa, vaikka se olisi mahdollista. Lennon hinnalla saisi jo uuden teleskoopin.

Sen sijaa tekeillä on robottilaitteita, jotka voisivat huoltaa satelliitteja. Jotkut ehdottavat Hubblea hyväksi tällaisten robottien testikohteeksi: jos Hubble saadaan korjattua robotilla, niin melkeinpä mikä tahansa muukin onnistuisi.

Alkuperäisen suunnitelman mukaan Hubble olisi lähetetty eläkkeelle jo pitkän aikaa sitten, ja uuden, Hubblen seuraajaksi suunnitellun James Webb -avaruusteleskoopin olisi pitänyt olla avaruudessa jo vuosia sitten. Nyt näyttää siltä, että JWST laukaistaan avaruuteen vasta syksyllä 2021.

Arvoituksellinen neutronitähti hohkaa infrapuna-alueella

Ti, 09/18/2018 - 08:36 Markus Hotakainen

Hubble-avaruusteleskoopilla on havaittu neutronitähden lähettyviltä infrapunasäteilyä. Tutkijat ovat ymmällään, sillä vastaavaa kohdetta ei ole aiemmin tunnettu.

Yleensä neutronitähtien tutkimus keskittyy radio- ja röntgenalueille, mutta nyt niihin on avautunut ikkuna myös infrapuna- eli lämpösäteilyn aallonpituuksilla.

”Tämä neutronitähti on yksi seitsemästä läheisestä röntgenpulsarista, jotka ovat kuumempia kuin niiden pitäisi ikänsä ja pyörimisliikkeen hidastumisesta saatavan energian perusteella olla”, toteaa kansainvälistä tutkijaryhmää johtanut Bettina Posselt Pennsylvanian valtionyliopistosta.

Neutronitähden ympärillä on laaja infrapunasäteilyä lähettävä alue, RX J0806.4-4123, jonka läpimitta on lähes 30 miljardia kilometriä eli noin 200 kertaa suurempi kuin Auringon ja Maan välinen etäisyys.

Kyseessä on ensimmäinen neutronitähti, josta on tehty tällaisia infrapunahavaintoja. Tutkijoiden mukaan ne selittyvät joko pulsaria ympäröivällä pölykiekolla tai ”pulsarituulella”.

”Yhden teorian mukaan neutronitähden ympärille on voinut kertyä ainetta, joka on peräisin supernovana räjähtäneestä tähdestä. Vuorovaikutus kertyneen aineen kanssa on hidastanut pulsarin pyörimistä ja saanut sen lämpötilan kohoamaan”, Posselt arvioi.

Pulsarin magneettikentän kiihdyttämät hiukkaset ovat toisaalta voineet muodostaa ”pulsarituulisumun”. Neutronitähden vaeltaessa tähtienvälisessä avaruudessa ääntä nopeammin – jos ääni kulkisi liki tyhjässä avaruudessa – pulsarista puhaltavan hiukkastuulen ja tähtienvälisen aineen vuorovaikutuksessa muodostuu shokkiaalto. Siinä syntyy synkrotronisäteilyä, joka havaitaan infrapuna-alueella.

”Yleensä pulsarituulisumut ’näkyvät” röntgenalueella, joten infrapuna-alueen kohde olisi hyvin epätavallinen ja kiinnostava”, Posselt toteaa.

Tutkimuksesta kerrottiin NASAn Goddardin avaruuslentokeskuksen uutissivuilla ja se on julkaistu Astrophysical Journal-tiedelehdessä (maksullinen).

Kuva: NASA/ESA/N. Tr'Ehnl (Pennsylvania State University)

Sattuuhan sitä paremmissakin (tiede)piireissä – osa 1

Pe, 03/23/2018 - 18:17 Markus Hotakainen

Viime päivinä on mediassa ja varmasti myös akateemisissa kahvipöytäkeskusteluissa naureskeltu kosmologian professori Peter Dunsbylle, joka äskettäin löysi ”hyvin kirkkaan kohteen Trifidi- ja Laguunisumujen lähistöltä”.

Hätäpäissään professori ehätti viestittää siitä netin välityksellä kollegoilleen ja kehotti muitakin tarkkailemaan löytöään, kunnes hyvin pian huomasi itsekin bonganneensa taivaalta planeetta Marsin.

Sattuuhan näitä eikä kosmologian professorilta voi edellyttää tähtitaivaan yksityiskohtien tarkkaa tuntemusta, kun varsinaisena tutkimuskohteena on koko maailmankaikkeus. Tai pitäisi voida, mutta näemmä ei.

Tieteellisen tutkimuksen yksi keskeinen lähtökohta on kyseenalaistaminen, niin havaintojen kuin teorioidenkin. Joskus se vain innostuksen huumassa unohtuu. Ja siitä sitten seuraa näitä hassuja löytöjä, jo aiemmin tehtyjä keksintöjä ja tuulesta temmattuja väitteitä.

Hypoteesit on tietenkin paljon helpompi osoittaa vääriksi kuin oikeiksi, mutta vääriksi osoittautuneet hypoteesitkin viitoittavat usein tietä kohti sitä oikeaa tai ainakin parempaa teoriaa.

Kun Albert Einstein kehitti vähän yli 100 vuotta sitten yleisen suhteellisuusteorian, hän joutui lisäämään yhtälöihinsä niin sanotun kosmologisen vakion, hihasta vedetyn poistovoiman. Se piti staattiseksi mielletyn maailmankaikkeuden kasassa, sillä gravitaatio olisi muuten saanut kosmoksen luhistumaan kasaan.

1920-lopulla todettiin, että maailmankaikkeus ei olekaan staattinen, ikuisesti samanlaisena pysyvä, vaan se laajenee. Kosmologista vakiota ei enää tarvittu, koska maailmankaikkeuden luhistumisen esti sen jatkuva laajeneminen.

Einstein piti kosmologisen vakion lisäämistä "suurimpana munauksenaan" – mutta ei voinut tietenkään tietää, että tuli tehneeksi tuplamöhläyksen.

1990-luvun lopulla todettiin, että maailmankaikkeuden suhteen oltiin sittenkin oltu väärässä. Se kyllä laajenee, mutta ei vähitellen hidastuen, vaan kaiken aikaa kiihtyen. Jokin saa maailmankaikkeuden koon kasvamaan nopeammin ja nopeammin. Universumissa täytyy olla aiemmin tuntematon poistovoima, joka kumoaa gravitaation jarruttavan vaikutuksen.

Kosmologinen vakio is back! Vaikka sitä sanotaankin pimeäksi energiaksi. Albert Einstein erehtyi kahdesti.

Maailmankaikkeuden laajenemisesta ja muistakin ominaisuuksista on tehty kohta kolmenkymmenen vuoden ajan havaintoja Hubble-avaruusteleskoopilla, mutta läheltä piti, ettei kalliista kaukoputkesta tullut täysi susi.

Kun Hubble vietiin avaruussukkulalla kiertoradalleen ja sen kameroilla otettiin ensimmäiset kuvat, tähtitieteilijöiden suut loksahtivat auki, mutta muista syistä kuin olisi voinut odottaa. Kristallinkirkkaiden ja huipputarkkojen otosten sijasta ruudulla näkyi suttuista puuroa, joka oli laadultaan kehnompaa kuin harrastajakaukoputkilla otetut kuvat.

Hubble oli likinäköinen. Pian selvisi syykin. 2,4-metrinen pääpeili oli hiottu väärin. Ei tyystin, mutta ratkaisevasti: paraboloidin muotoinen pinta on reunoiltaan neljä mikrometriä liian loiva. Virhe oli luonteeltaan sellainen, että kuka tahansa huolellinen harrastaja pystyy kaukoputken peiliä hioessaan moisen välttämään.

Onneksi Hubble-avaruusteleskooppi oli alkujaankin suunniteltu huollettavaksi avaruudessa, joten pikaisesti – tai niin pikaisesti kuin se avaruustekniikan osalta on mahdollista – rakennettiin korjausoptiikkamoduuli, joka käytiin vaihtamassa yhden havaintoinstrumentin tilalle. Hubble sai periaatteessa silmälasit, vaikka todellisuudessa ne rakentuvatkin pienistä peileistä.

Virheistä opitaan, mutta suoranaisten huiputusten hyötyjä on vaikea keksiä, pikemminkin niistä on pelkkää haittaa.

Vuonna 1908 harrastaja-paleontologi Charles Dawson osui Sussexissa kotinsa lähistöllä hiekkakuopalle, jossa joukko työmiehiä oli lapioimassa soraa. He näyttivät Dawsonille luunpalasia, joita olivat löytäneet soran seasta. Tai itse asiassa he olivat löytäneet kokonaisen kallon, mutta se oli lapion iskusta rikkoutunut palasiksi.

Osa palasista oli ehtinyt jo hukkua hiekan ja soran joukkoon, mutta käsiinsä saamista osista Dawson sai koottua jonkinlaisen hahmotelman hajonneesta kallosta.

Ja se oli mullistava! Kun Luonnonhistoriallisen museon tutkija Arthur Woodward tarkasteli kalloa huolellisesti, hän tuli siihen tulokseen, että se on vähintään 500 000 vuotta vanha. Kallossa oli samanlaisia piirteitä kuin apinoilla, mutta leukaluu ja erityisesti hampaat muistuttivat ihmisen purukalustoa.

Charles Darwinin evoluutioteorian puuttuva rengas oli vihdoin löytynyt. Tässä oli ihmisen esi-isä, tieteelliseltä nimeltään Eoanthropus dawsoni eli kansanomaisemmin Piltdownin ihminen.

Paitsi ettei ollut. Usko löydön aitouteen oli kuitenkin niin vahva, että kallo pystyttiin osoittamaan väärennökseksi vasta 1950-luvun alussa, pitkälti yli 30 vuotta Charles Dawsonin kuoleman jälkeen.

Kallon luut olivat vanhoja, mutta eivät kuitenkaan 50 000 vuotta vanhempia. Ihmisen kallosta peräisin olevien palasten lisäksi todistuskappaleina olleet leukaluu ja hampaat olivat orangin ja soran seasta löytynyt yksittäinen kulmahammas oli kuulunut simpanssille. Hampaistoa oli viilailtu, jotta se muistutti enemmän ihmisen hampaita.

Edelleenkään ei tiedetä, oliko huijari Dawson itse vai joku muu. Joka tapauksessa Piltdownin ihminen johti tutkijoita harhaan vuosikymmenten ajan. Ihmisen uskottiin kehittyneen Euroopassa, vaikka nykykäsityksen mukaan sukujuuremme ovat vahvasti Afrikan puolella.

Tieteellisessä tutkimuksessa tehdyt virheet – elleivät sitten ole häikäilemättömiä huijauksia – johtuvat usein tietämättömyydestä tai taitamattomuudesta, mutta joskus syynä voi olla myös lapsellisuus. Tosin silloin kyse ei ole varsinaisesti tieteellisestä tutkimuksesta.

Nikola Tesla, erityisesti sähkötekniikan alalla useita merkittäviä keksintöjä tehnyt amerikanserbi, oli jo pikkupoikana kiinnostunut kaikesta mahdollisesta maan ja taivaan välillä. Ihan kirjaimellisestikin.

Tesla oli huomannut, että hengittäessään hyvin tiheään eli hyperventiloidessaan hän alkoi tuntea olonsa kevyeksi. Siitähän voisi olla apua lentämisessä!

Poikamaisella innolla Tesla päätti testata teoriaansa saman tien. Hän nappasi käteensä sateenvarjon, kapusi navetan katolle ja hengitteli hetken kiivaasti sisään ja ulos, kunnes alkoi tuntea huimausta. Silloin oli Teslan mielestä oikea aika hypätä – ja hän myös hyppäsi.

Tömähdys maahan vei pojalta tajun ja hän toipui saamistaan vammoista vasta viikkojen kuluttua. Ehkä neron varhaiset, joskin epäonnistuneet kokeilut lentämisen saralla saivat hänet myöhemmällä iällään mieltymään syvästi kyyhkysiin.

Jatkuu…

Kuvat: www.natedsanders.com, NASA/ESA, John Cooke

Eksoplaneetan kaasukehästä löytyi vettä – ja paljon

Ma, 03/05/2018 - 22:52 Markus Hotakainen

WASP-39b on vuonna 2011 löytynyt "kuuma Saturnus", joka sijaitsee noin 700 valovuoden etäisyydellä meistä. Planeetta kiertää Neitsyen tähdistöön kuuluvaa tähteä, joka muistuttaa Aurinkoa ja on vain hieman omaa keskustähteämme pienempi.

Planeetalla on massaa reilu neljäsosa Jupiterista eli suunnilleen Saturnuksen verran, mutta halkaisijaltaan se on neljänneksen Jupiteria suurempi. WASP-39b on siis kuin turvonnut Saturnus.

WASP-39b kiertää tähteään vain 7,3 miljoonan kilometrin etäisyydellä, joten se on hyvin kuuma. Helteisyyttä lisää se, että planeetan pyörimisliike on lukkiutunut eli se kääntää aina saman puolen kohti tähteä.

Päiväpuolella lämpötila kohoaakin lähes 800 celsiusasteeseen. Tosin yöpuolen ikuisessa pimeydessä on miltei yhtä kuuma, sillä pimeän ja valoisan alueen rajan eli terminaattorin yli puhaltaa voimakkaita tuulia, jotka kuljettavat lämpöä öiselle pallonpuoliskolle.

Silti planeetan kaasukehässä on runsain mitoin vettä, joskin korkean lämpötilan seurauksena se ei ole nestemäisessä olomuodossa, vaan vesihöyrynä.

Hubble- ja Spitzer-avaruusteleskoopeilla tehtyjen spektrihavaintojen perusteella WASP-39b:n kaasukehässä on vettä kolme kertaa enemmän kuin Saturnuksessa.

Tutkijat olivat aavistelleet jo ennalta, että planeetan kaasukehässä voisi olla vettä, mutta sen määrä yllätti. Sitä on niin paljon, että WASP-39b ei ole voinut syntyä niillä nurkilla, missä se nyt kiertää tähteään.

Veden arvellaan olevan peräisin jäisistä kappaleista, jotka pommittivat planeettaa sen syntyvaiheissa. Alle kymmenen miljoonan kilometrin etäisyydellä auringonkaltaisesta tähdestä ei voi vaellella jäisiä kappaleita, joten WASP-39b on muotoutunut paljon kauempana ja vasta myöhemmin vaeltanut nykyiselle kiertoradalleen.

"WASP-39b osoittaa, että eksoplaneetat voivat poiketa koostumukseltaan huomattavasti Aurinkokunnan kiertolaisista. Toivon mukaan eksoplaneetoissa näkemämme monimuotoisuus antaa meille vihjeitä siitä, miten erilaisilla tavoilla planeetat voivat syntyä ja kehittyä", toivoo tutkimuksessa mukana ollut David Sing.

WASP-39b:stä tehdyt spektrihavainnot ovat jokseenkin yksityiskohtaisimpia, joihin nykytekniikalla on mahdollista päästä. Hannah Wakefordin johtama tutkijaryhmä odottaakin malttamattomana Webb-avaruusteleskoopin laukaisua avaruuteen – joka näillä näkymin lykkääntyy ensi vuoden loppuun tai peräti vuoden 2020 alkupuolelle.

Webb-teleskoopin havaitseman infrapunasäteilyn aallonpituuksilla on mahdollista tutkia esimerkiksi hiilen mahdollista esiintymistä planeetan kaasukehässä. Hiilen ja myös hapen runsaudet kertovat vesihöyryn ohella siitä, missä ja miten WASP-39b aikoinaan syntyi.

Löydöstä kerrottiin NASAn uutissivuilla ja tutkimus on julkaistu Astronomical Journal -tiedelehdessä.

Kuva: NASA/ESA/G. Bacon & A. Feild (STScI)/H. Wakeford (STScI/University of Exeter)

Neptunuksen suuri pilkku on katoamassa

Ti, 02/20/2018 - 12:12 Jari Mäkinen
Neptunus Hubblen kuvaamana eri aikoina. Kuva: NASA, ESA ja M.H. Wong and A.I. Hsu, UC Berkeley

Kaikki muistavat Jupiterin suuren punaisen pilkun, mutta myös Neptunuksella on pinnallaan valtava pyörremyrsky – tai oli, sillä tämä pilkku on nyt lähes kadonnut. .

Kun Voyager 2 -luotain lensi vuonna 1989 Neptunuksen ohi ja lähetti kaasuplaneetan näkyvän pinnan muodostavasta pilvikerroksesta ensimmäiset kunnolliset kuvat, näkyi kuvissa varsin suomalaishenkinen pallo; sinertävä pinta ja siinä suuri vaalea pyörremyrsky.

Hubblen avaruusteleskoopilla havaittiin samanlainen suuri pilkku 1994, mutta sen jälkeen planeetan kaasukehä näytti olevan rauhallisempi, sillä vasta vuonna 2015 sen pinnalta  äkättiin uusi, suuri pyörremyrsky. Tuolloin Keck-teleskoopilla saatiin siitä paljon ammoisia Hubblen ottamia kuvia parempia ja tarkempia kuvia, ja niiden mukaan planeetan pilvissä oli meneillään uusi hässäkkäkausi.

Pilkut ovat pilvikerroksessa olevia korkeapainealueita, pyörremyrskyjä, joiden syntyä Neptunuksessa ei ymmärretä ihan tarkasti. Ne näyttävät olevan suuria kaasumaisia linssin muotoisia vuoria, jotka kohoavat selvästi muuta pilvikerrosta korkeammalle.

Vuonna 2015 havaittu suuri tumma pilkku sai nimen SDS-2015 (kirjainlyhenne tulee sanoista Great Dark Spot) ja sen kehittymistä havaittiin Hubblella. Kyseessä oli viides Neptunuksesta koskaan havaittu pilkku.

Se oli selvästi pienempi kuin Voyagerin havaitsemat pilkut, mutta vain hieman pienempi kuin sen jälkeen havaitut pilkut. Kooltaan se oli jotakuinkin Atlantin valtameren kokoinen, eli Neptunuksen kokoon verrattuna ei mitenkään valtava, mutta silti selvästi näkyvä.

Pilkun tarinasta on kerrottu seikkaperäisesti juuri ilmestyneessä The Astronomical Journalin artikkelissa

Koska aiemmat Neptunuksen pilkut ovat kadonneet varsin nopeasti, ei tämän pilkun hiipuminen sinällään ollut yllätys. Jupiterissa pyörteet pysyvät nähtävästi satoja vuosia, mutta Neptunuksessa vain muutamia vuosia.

Näin kävikin: pilkku pieneni ja heikkeni. Sen sijaan odotusten vastaisesti se liikkui kohti etelänavan seutuja. Aikaisemmat ovat hivuttautuneet kohti päiväntasaajaa.

Nyt Neptunuksessa on meneillään taas hieman rauhallisempi vaihe – mutta miksi juuri nyt? Sinisen planeetan kaasukehässä on selvästi paljon vielä tutkittavaa.

Tällä haavaa Hubble ja sen kyky tehdä ultraviolettihavaintoja ovat ainoa tapa havaita tarkemmin Neptunusta ja sen kaasukehää, sillä ultraviolettivalon avulla on mahdollista nähdä hieman pilvipinnan alle. Tuleva James Webb -avaruusteleskooppi ei tuo tähän apua juuri lainkaan, sillä se on viritetty katsomaan avaruutta näkyvän valon lisäksi infrapunaisen alueella – mistä on iloa monissa muissa tutkimuksissa, mutta ei niinkään esimerkiksi Neptunuksen pilkkujen tarkemmassa havaitsemisessa.

Ei ihme, että pilkkututkimuksen julkaisseet tutkijat haikailevat nyt uuden, isokokoisen avaruuteen vietävän ultraviolettiteleskoopin perään. Nykyisessä talouspoliittisessa tilanteessa ei sellaiseen ole paljoakaan mahdollisuuksia. Sen sijaan sopii toivoa, että Hubble pysyy toiminnassa vielä senkin jälkeen, kun JSWT on otettu käyttöön.

Kuva: NASA, ESA ja M.H. Wong and A.I. Hsu, UC Berkeley

Luomuteleskoopille uusi suurennusennätys

Su, 02/04/2018 - 13:33 Markus Hotakainen

"Kuinka paljon tuo kaukoputki suurentaa?" Kysymys on varmasti tuttu jokaiselle tähtiharrastajalle.

Niin sanotuissa "markettikaukoputkissa" lupaillaan jopa 1000-kertaisia suurennuksia, mutta käytännössä moisista lukemista ei ole mitään iloa. Näkökenttä menee tuhruksi jo paljon pienemmilläkin kertoimilla.

Suurennus ei edes ole kaukoputken keskeisin ominaisuus, vaan kyky kerätä mahdollisimman paljon valoa. Esimerkiksi Euroopan eteläinen observatorio ei parhaillaan rakenna Andeille Extremely Large Telescope -jättiläiskaukoputkea, jotta tähtitieteilijät saisivat käyttöönsä entistä isompia suurennuksia.

Syynä on se, että 39-metrinen mosaiikkipeili kerää valoa yli 250 kertaa enemmän kuin esimerkiksi Hubble-avaruusteleskoopin 2,4-metrinen pääpeili.

Höveliäisyydessään luonto on järjestänyt tutkijoille myös ”luomuteleskooppeja”, joilla pystytään tekemään havaintoja maailmankaikkeuden kaukaisimmista kohteista.

Suurten galaksijoukkojen vetovoima taivuttaa kauempana olevien kohteiden valoa, ja sopivissa olosuhteissa etäiset galaksit ja kvasaarit näkyvät monin verroin todellista suurempina ja kirkkaampina.

Albert Einsteinin ennustama ilmiö onnistuttiin näkemään ensimmäisen kerran 99 vuotta sitten, kun täydellisen auringonpimennyksen aikana otetuissa kuvissa Auringon lähellä erottuvat tähdet näyttivät hieman siirtyneen.

Tällaisten gravitaatiolinssien suurennukset jäävät kauas ihan tavallisten harrastajakaukoputkienkin lukemista, mutta nyt on tehty uusi ennätys. Ja kun kyse on miljardien valovuosien etäisyydellä olevista taivaankappaleista, jopa suurennuksella on väliä.

Hubble-avaruusteleskoopilla on kuvattu galaksijoukkoa nimeltä eMACSJ1341.9-2441 ja sen taustalta on löytynyt kaukainen galaksi, jolla on yhtä mielikuvituksellinen nimi eMACSJ1341-QG-1.

Galaksijoukon vetovoiman synnyttämä gravitaatiolinssi on suurentanut etäisen tähtijärjestelmän kuvajaisen 30-kertaiseksi.

Samaa luokkaa olevia "gravitaatiosuurennuksia" on havaittu aiemminkin, mutta tässä tapauksessa on oleellista, millaisen kohteen kuvajainen näkyy kymmeniä kertoja todellista suurempana.

eMACSJ1341-QG-1 on "uinuva" galaksi eli siinä ei synny kiivaaseen tahtiin uusia tähtiä, kuten yleensä kaukaisissa ja siten hyvin nuorissa tähtijärjestelmissä tapahtuu.

"Ison suurennuksen ansiosta meille tarjoutuu harvinainen tilaisuus tarkastella kaukaisen kohteen tähtipopulaatioita ja muodostuu käsitys sen todellisesta muodosta sekä muista ominaisuuksista", sanoo tutkimusryhmään kuuluva Johan Richard Lyonin yliopistosta.

Kuvaan on rajattu keltaisella katkoviivalla galaksin 30-kertaisesti suurentunut kuvajainen, pienemmässä laatikossa on galaksi sellaisena kuin se näkyisi ilman gravitaatiolinssiä.

Galaksihavainnosta kerrottiin Havaijin yliopiston uutissivuilla ja tutkimus on julkaistu Astrophysical Journal Letters -tiedelehdessä (maksullinen).

Kuva: Harald Ebeling/University of Hawaii, Institute for Astronomy.

Hubblen seuraaja tärisee taas

Pe, 01/27/2017 - 11:39 Jari Mäkinen
JWST valmistautuu tärinätestin

Hubblen avaruusteleskoopin suuren seuraajan testaaminen jouduttiin keskeyttämään viime joulukuussa, kun sen käyttäytyi testin aikana kummallisesti. Insinöörit pelkäsivät jopa kalliin ja pitkään tehdyn teleskoopin menneen rikki, mutta onneksi näin ei ollut.

James Webb Space Telescope, eli tuttavallisesti JWST, on parhaillaan testattavana erityisessä täristimessä, jotta voidaan olla varmoja, että se kestää rakettikyydin rasitukset.

Tarkalleen ottaen testattavana on nyt teleskoopin niin sanottu instrumenttiosa, johon kuuluvat tieteelliset havaintolaitteet, suuri 18 pienestä peilistä tehty pääpeili sekä sen avausmekanismi. Peili on niin suuri, että laukaisun ajaksi se täytyy taittaa monimutkaisella mekanismilla kasaan. 

Testaaminen tehdään yksinkertaisesti täristämällä laitetta samaan tapaan ja hieman voimakkaamminkin kuin kantoraketti sitä rökittää laukaisun aikana.

Ennen testejä instrumenttiosan käyttäytymistä on simuloitu tarkasti, ja insinöörit tietävät varsin hyvin miten sen pitäisi täristä täristettäessä. Testin aikana siihen on kiinnitettynä paljon kiihtyvyysmittareita, jotka mittaavat miten eri osat oikeasti liikkuvat. 

Joulukuussa tehdyissä testeissä todelliset tärinämittaukset erosivat kuitenkin olennaisesti ennakkosimulaatioista, joten testi päätettiin keskeyttää. 

Omituisuuksia oli ennen kaikkea peilin avausmekanismissa, joka koostuu ikään kuin kahdesta siivestä: otsikkokuvassa näkyy peilin keskiosa, joka on kiinnitettynä kiinteästi instrumenttiosaan, mutta sen takana on kaksi samaan tapaan pienemmistä peilinosista koottua sivupalaa, jotka liikkuvat paikalleen muodostaen lopulta yhden, suuren peilin. Kaikkiaan peilissä on 18 pienempää, kultapäällysteistä peiliä.

Laukaisun aikana peili on siis taitettuna origamin tapaan kolmeen osaan, mutta avaruudessa siitä tulee yksi iso peili.

Liian suuret kiihtyvyysarvot saattoivat olla merkki siitä, että mekanismi oli hajonnut – tai siitä, että etukäteen tehdyt simulaatiot eivät olleet kunnollisia.

Teleskooppia on jouluun aikana tutkittu tarkasti, eikä siinä havaittu mitään omituisuuksia. Myöskään simulaatioissa ei havaittu mitään kummallista, mutta kun samalla teleskooppi on käyttäytynyt normaalisti muilta osin testeissä, päätettiin testejä jatkaa.

Tällä viikolla uudelleen alkaneet testit tehdään Yhdysvaltain pääkaupunki Washingtonin luona olevassa Goddardin avaruuskeskuksessa. Kunhan nämä tärinätestit on tehty, altistetaan sama instrumenttiosa ja peilisysteemi suurelle metelille akustisessa testikammiossa. Sen avulla simuloidaan laukaisun meteliä.

Sen jälkeen peilin avausmekanismin toimintaa testataan vielä kerran, ennen kuin instrumenttiosa peileineen kuljetetaan huhtikuussa Johnsonin avaruuskeskukseen Houstoniin, Teksasiin, missä on avaruuden olosuhteita jäljittelevä suuri kammio. 

Sieltä instrumenttiosa viedään edelleen Kaliforniaan, Northrop Grumman -yhtiön tiloihin, missä se kiinnitetään huoltomoduuliin. Se pitää huolen teleskoopin sähkönsaannista, tietoliikenneyhteyksistä Maahan ja asennonsäädöstä. 

Yhdessä nämä muodostavat avaruuteen lähetettävän teleskoopin, ja kunhan sitä on vielä kerran testattu, se kuljetetaan vuoden 2018 kesällä Kouroun avaruuskeskukseen. 

Sieltä JWST laukaistaan Ariane 5 -kantoraketilla avaruuteen lokakuussa 2018. 

Teleskooppi ohjataan Maan painovoimatasapainopisteeseen 2, niin sanottuun toiseen Lagrangen pisteeseen noin 1,5 miljoonan kilometrin päässä Maasta ulospäin aurinkokunnassa – siis päinvastaiselle puolelle missä Aurinko sijaitsee Maasta katsottuna.

Hubblella havaittiin tähti, jonka ympärillä sataa komeettoja

La, 01/07/2017 - 12:17 Jari Mäkinen

Tähden nimeltä HD 172555 ympärillä oleva avaruus olisi varmasti käynnin arvoinen paikka, ainakin jos haluaisit nähdä komeita maisemia: siellä nimittäin sataa komeettoja.

HD 172555 on nuorekas, vain 23 miljoonaa vuotta vanha tähtönen, ja se sijaitsee 95 valovuoden päässä Maasta. Siis hyvin lähellä omassa Linnunradassamme.

Tähden ympärillä on selvästikin Jupiterin kokoinen planeetta, jota ei ole vielä havaittu, mutta kohti tähteään syöksyvät komeetat ovat seurausta planeetan painovoimasta: kiertäessään tähteä se sinkoaa muita, pienempiä kappaleita eri suuntiin, ja myös kohti tähteä. 

Kun nämä kappaleet putoavat kohti tähteään, ne joko syöksyvät siihen suoraan, tai viilettävät sen ohitse hyvin läheltä. Silloin ne loistavat kirkkaina pyrstötähtinä – ja saattavat hajota tähden painovoimakentän murskaamana.

Juuri näin käy aina välillä omassa Aurinkokunnassammekin, kun pyrstötähdet tulevat hyvin lähelle Aurinkoa. 

Aiemmin Aurinkokunnan nuoruudessa tällaisia auringonliippaajia on ollut enemmänkin, ja nyt tehty löytö auttaa ymmärtämään paremmin oman planeettakuntamme syntyä ja kehitystä. Nähtävästi sinne tänne sinkoilevat komeetat ovat osa tähden nuoruusaikaa.

Kiinnostavinta näissä komeetoissa on se, että ne levittävät muun muassa elämän kannalta olennaisia aineita ympäriinsä nuoressa planeettakunnassa. Muun muassa käytännössä kaikki vesi maapallolla on peräisin tänne syöksyneistä komeetoista. Komeettaytimissä on myös hiiltä ja ne kypsyttelevät erilaisia mutkikkaampia hiiliyhdisteitä pinnallaan, kun ne käyvät aina silloin tällöin lähellä tähteään kuumentumassa.

Kuin katse oman Aurinkomme nuoruuteen

HD 172555 kuuluu samaan vastasyntyneiden tähtien joukkoon 16 muun tähtikunnan kanssa. Joukon tähdet ovat eteläisellä tähtitaivaalla seitsemän tähtikuvion alueella Etelän ristin tienoilla.

Joukkoa kutsutaan Beta Pictoriksen liikkuvaksi joukoksi, koska Beta Pictoris – Maalarin tähtikuvion toiseksi kirkkain tähti – oli ensimmäinen tällainen nuori tähti, joka havaittiin. Sittemmin samoilla seuduilla, samoihin aikoihin syntyneitä ja samalla tavalla avaruudessa liikkuvia tähtiä on löydetty 16 muutakin. Myöhemmin osalta näistä on löytynyt tähtikumppaneita, joten joukkoon kuuluu kaikkiaan 28 tähteä sekä ruskeaa kääpiötä. Ruskeat kääpiöt ovat ikään kuin liian pieniä tähtiä ollakseen kunnolla tähtiä.

Myös Beta Pictoriksen ympäriltä on havaittu komeettoja sen lisäksi, että sen ympärillä on suuri kaasukiekko ja eksoplaneettoja. Kaikkiaan 11 tähdeltä on havaittu toistaiseksi komeettoja (kun Aurinkoa ei lasketa mukaan).

Beta Pictoriksen joukko on kiinnostava siksi, että se on kaikkein lähinnä Maata sijaitseva nuorten tähtien kerääntymä. Sen tähdet ovat juuri sen ikäisiä, jolloin aurinkokunnankin oletetaan alkaneen muodostaa planeettoja ympärilleen. 

Havainnot esiteltiin tällä viikolla pidetyssä Yhdysvaltain tähtitieteellisen yhdistyksen kokouksessa.

Löydettiin päättelemällä – ei suoraan komeettoja näkemällä

Alun perin komeetat HD 172555:n ympärillä havaittiin vuosien 2004 ja 2011 välillä Euroopan eteläisen observatorion HARPS-spektrografilla, joka onnistui löytämään tähden valosta tyypillisesti tähteensä syöksyvien komeettojen jättämiä jälkiä.

Lisää havaintoja tehtiin Hubblen avaruusteleskoopilla vuonna 2015, ja nyt tähden ympäriltä havaittiin myös piitä ja hiiltä. Lisäksi näitä sisältävät alueet näyttivät liikkuvan suurella nopeudella. Todennäköisin selitys havainnolle ovat tähteä ympäröivässä kaasukiekossa liikkuvat komeetat.

Havainnot ovat selvästi erilaisia kuin eksoplaneetoista saatavat merkit. 

Komeettojen suoraan näkemiseen tarvittaisiin paljon nykyisiä suurempia ja tarkempia havaintolaitteita, joten esimerkiksi jutun alussa oleva kuva on taiteilijan näkemys siitä, miltä komeettatähden ympärillä voisi näyttää.

Lisää löydöstä: hubblesite.org/news_release/news/2017-02

Kuva: NASA, ESA, and A. Feild and G. Bacon (STScI)

 

Hubblen seuraajateleskooppi uusissa vaikeuksissa: JWST kärsi tärinäkokeessa

Ke, 12/21/2016 - 10:20 Jari Mäkinen

Hubble-avaruusteleskoopin seuraajaksi nimitetty, suuri James Webb -avaruusteleskooppi on ollut viimein testeissä, joissa sen kestävyys avaruudessa sekä laukaisun aikana avaruuteen on varmistettu. Valitettavasti testit eivät ole menneet hyvin. 

James Webb -avaruusteleskooppi (tuttavallisesti JWST) valmistui viime kesänä, jolloin sen sydämessä olevat tieteelliset havaintolaitteet sitältävä osa ja suuri 18-osainen peilirakennelma osat laitettiin viimein yhteen ja tätä kokonaisuutta on päästy testaamaan lähes yhtenä kappaleena. Kaikki osat on testattu moneen kertaan jo aikaisemmin, mutta kuten aina, yhdessä ne tuottavat usein yllätyksiä. Kuten nähtävästi nytkin.

Kaikkein rajuin testin osa on ns. tärinätesti, missä teleskooppia on ravisteltu juuri samaan tapaan kuin se olisi kantoraketin nokassa kiitämässä kohti avaruutta. Kyyti raketilla on raju kokemus, vaikka sen jälkeen avaruuden painottomuudessa olo onkin rauhallista ja leppoisaa.

JWST on ollut testattavana NASAn Goddardin avaruuslentokeskuksessa lähellä pääkaupunki Washingtonia. Tuoreen tilannetiedotteen mukaan joulukuun 3. päivänä tehdyssä testissä havaittiin jotain omituista, ja tämän perusteella testiohjelma on nyt keskeytetty ja tutkijat keskittyvät löytämään syyn omituisiin tuloksiin.

Testeissä teleskooppiin on kiinnitetty eri puolille erilaisia kiihtyvyysmittareita ja muita antureita, ja saadut kiihtyvyysarvot olivat olennaisesti erilaisia kuin odotettiin.

Onneksi teleskoopissa tai sen suuressa ja herkässä peilissä ei näytä olevan rakenteellisia vaurioita, vaan tulokset viittaavat vain odottamattomiin mittausarvoihin. 

Siksi nyt joulukuun aikana teleskooppia on täristetty uudelleen, pienemmillä kiihtyvyysarvoilla, jolloin sen käyttäytymisestä on saatu lisätietoa.

On mahdollista, että tarkemmissa tutkimuksissa ja simulaatioissa käy ilmi, että saadut mittausarvot eivät anna aihetta suurempaan huoleen, mutta voi myös olla niin, että edessä on muutoksia teleskooppiin ja uusi viivästys.

JWST on vuosia myöhässä alkuperäisestä aikataulustaan ja sen kustannukset ovat karanneet käsistä. Ennen nyt paljastunutta huolenaihetta oli teleskooppi tarkoitus laukaista lokakuussa 2018 avaruuteen Ariane 5 -kantoraketilla.

Piirroskuva James Webb -teleskoopista avaruudessa täysin avattuna: siinä on suuren, vasta avaruudessa avautuvan peilin lisäksi kookas aurinkosuoja alla. Otsikkokuvassa on teleskooppi siirrettävänä testattavaksi. Kuvat: Nasa.

Testeissä paljastuu usein pieniä vikoja ja omituisia mittausarvoja, ja tämä on yksi syy miksi avaruuslaitteita testataan armottomasti: on parempi, että omituisuudet tulevat esiin ennen laukaisua kuin vasta avaruudessa. Yleensä nämä epäkohdat voidaan korjata nopeasti tai ne voidaan analyysien perusteella päätellä vaarattomiksi.

Edessä Goddardissa ovat vielä optiikan sekä koko suuren peilin ja sen avausmekanismin testit täristyksen jälkeen.

Tämän jälkeen JWST on tarkoitus kuljettaa Hosutoniin Nasan Johnsonin avaruuskeskukseen, missä olevalla avaruussimulaattorilla se altistetaan avaruuden tyhjiölle ja lämpötiloille. Sieltä teleskooppiosa viedään edelleen Kaliforniaan Northrop Grumman -yhtiön tiloihin, missä se liitetään huoltomoduuliin, joka tulee huolehtimaan avaruudessa teleskoopin asennonsäädöstä, ohjaamisesta, virransaannista ja tietoliikenneyhteyksistä Maahan. Sen olennainen osa on myös suuri, monikerroksinen, avaruudessa avattava aurinkosuoja.

Lopulta, ennen kuljetusta laukaisupaikalle Kouroun avaruuskeskukseen on koko JWST tarkoitus testata vielä Goddardissa.

Juttua on päivitetty julkaisun jälkeen: Alun perin siinä kerrottiin koko JWST:n olleen nyt testissä, mutta kyseessä oli luonnollisesti "vain" kokonaisuuden teleskooppiosa. Samalla juttuun on päivitetty JWST:n edessä olevien testien aikalu.