Eksokomeettojen kavalkadi Markus Hotakainen Ti, 11/02/2025 - 21:02
Kuva: Luca Matra
Kuva: Luca Matra

Muita tähtiä kiertävien komeettojen eli eksokomeettojen havaitseminen on vielä vaikeampaa kuin eksoplaneettojen. Silti se on mahdollista.

Yksittäiset komeetat eivät kuitenkaan erotu kymmenien tai satojen valovuosien etäisyydeltä. Komeettojen kokoluokka on – ainakin Aurinkokunnassa – vain kilometrejä tai korkeintaan joitakin kymmeniä kilometrejä, ja useiden, jopa kymmenien tuhansien kilometrien läpimittaisten planeettojenkin tutkiminen on haastavaa.

CfA:n (Harvard & Smithsonian Center for Astrophysics) tähtitieteilijät ovat tehneet havaintoja kokonaisista komeettavyöhykkeistä, muita tähtiä ympäröivistä ainekiekoista, jotka koostuvat komeettamaisista kappaleista. 

Vastikään Astronomy & Astrophysics -tiedelehdessä julkaistussa artikkelissa on listattu kaikkiaan 74 suhteellisen läheistä tähteä, joiden ympärillä on ”komeettakiekko”.

Havainnot on tehty Havaijilla sijaitsevalla Submillimeter Array -radioteleskooppiverkostolla (SMA) ja Chilessä Atacaman autiomaahan levittäytyvällä ALMA-järjestelmällä (Atacama Large Millimeter/submillimeter Array).

Tutkimuksen kohteina olleet tähdet vaihtelevat iältään hyvin nuorista jokseenkin Auringon ikäisiin, miljardeja vuosia vanhoihin tähtiin. Ikähaitari antaa edustavan kuvan siitä, miten komeettavyöhykkeiden synty kytkeytyy planeettakuntien kehittymiseen.   

Radioalueella tehdyt havainnot kertovat, miten joidenkin kilometrien läpimittaisten toisiinsa törmäilevien kiven ja jään muodostamien kappaleiden keskinäiset kolarit levittävät ainetta tähden ympärille.

Myös Aurinkokunnan ulko-osissa on vastaavanlainen kiekko, joka tunnetaan Kuiperin vyöhykkeenä. Se ulottuu suunnilleen Neptunuksen radan tienoilta eli 30 tähtitieteellisen yksikön etäisyydeltä noin 50 tähtitieteellisen yksikön päähän Auringosta.

Vielä sitäkin kauempana on pallomainen Öpikin-Oortin pilvi, joka saattaa ulottua jopa 100 000 tähtitieteellisen yksikön etäisyydelle. Siitä ei ole suoria havaintoja, vaan oletus sen olemassaolosta perustuu komeettaratojen ominaisuuksiin. 

Tilastollisesti näyttää siltä, että samankaltaisia komeettavyöhykkeitä ja -pilviä löytyy vähintään joka viidennestä planeettajärjestelmästä. 

 

 

 

 

 

 

 

 

 

Tähdistöt: Orion

Orionin tähdistö. Karttapiirros: Markus Hotakainen
Orionin tähdistö. Karttapiirros: Markus Hotakainen

Otavan jälkeen todennäköisesti tunnetuin tähtikuvio on Orion. Se toimiikin oivallisena siirtymänä syystalven tähtitaivaasta talvisiin näkymiin.

Orion, jättiläismetsästäjä ja soturi, oli komeimmista komein ja myös tiesi sen. Rangaistukseksi ylvästelystään jumalat lähettivät skorpionin pistämään häntä kuolettavasti jalkaan. Kumpainenkin päätyi taivaalle tähtikuvioksi, mutta Orionin rakastetun, jumalatar Dianan pyynnöstä siten, että Orion pääsee pakenemaan läntisen taivaanrannan taakse, kun Skorpioni nousee idästä.

Tiimalasia muistuttava Orionin hahmo komeilee talvisella iltataivaalla pystyasennossa suoraan etelässä. Jättiläismetsästäjän ”olkapäällä” on α Orionis, punainen Betelgeuze, joka on satoja kertoja Aurinkoa suurempi jättiläistähti. Betelgeuze on elämänsä ehtoopuolella oleva tähti. Se on kuluttanut ydinpolttoaineensa lähes loppuun ja voi räjähtää milloin tahansa supernovana.

Orionin toisena ”jalkana” on hieman pienempi jättiläistähti Rigel. Vaikka Rigel on tähdistön β-tähti, se on todellisuudessa kirkkaampi kuin α-tähti. Rigel on puolestaan väriltään sinertävänvalkoinen. Sekä Betelgeuze että Rigel ovat niin kirkkaita, että niiden värit erottuvat selvästi paljain silmin.

Keskellä Orionin kuviota on kolmen tähden muodostama Orionin vyö, joka osoittaa vasemmalle alaviistoon lähes suoraan naapuritähdistön, Ison koiran, kirkkaimpaan tähteen Siriukseen. Vyöstä roikkuu Orionin miekka, niin ikään kolmen hieman himmeämmän tähden muodostama jono. Orionin miekan ja vyön muodostamaa kuviota sanotaan suomalaisittain Väinämöisen viikatteeksi, jota se melkoisesti muistuttaakin.

Jo kiikarilla näkyy selvästi, että miekan keskimmäinen ”tähti” onkin jotain aivan muuta: se on tähtienvälinen kaasupilvi, jossa syntyy kaiken aikaa uusia tähtiä kaasusta tiivistymällä. Orionin suuri kaasusumu eli Messier 42 on ainoa Suomen leveysasteilta helposti havaittava kaasusumu.

Kaukoputkella sumun keskellä erottuu neljän vastikään syntyneen tähden muodostama joukko, Trapetsi, ja sumun sisällä on infrapunakaukoputkilla havaittu syntymässä olevia tähtiä. M42 ja sen vieressä oleva himmeämpi M43 ovat näkyvimmät osat valtavasta tähtienvälisestä vetykaasupilvestä, joka kattaa suuren osan Orionin tähdistön alueesta. Kaasusumun vety hohtaa punaista väriä, joka ei kuitenkaan erotu kuin kaukoputkilla otetuissa kuvissa.

Tähdistöt: Sisilisko

Sisiliskon tähdistö
Sisiliskon tähdistö

Jos vaatimattomuus kaunistaa, Sisilisko on öisen taivaan näteimpiä kuvioita. Harmi vain, että tähdistöä on varsin vaikea hahmottaa.

Sisiliskon pieni tähdistö sijaitsee Linnunradan valovyön reunamilla, Kefeuksen ja Pegasuksen välissä. Näinä aikoina se on illalla melkein suoraan pään yläpuolella eli periaatteessa hyvin havaittavissa.

Taivaallinen matelija koostuu kuitenkin niin himmeistä tähdistä, että tähtikartoissa viivoilla yhdistetty tähtikuvio hukkuu helposti tähtien paljouteen. Hahmoltaan se muistuttaa hieman Kassiopeiaa: sen kirkkaimmat tähdet muodostavat w-kirjaimen. Toisinaan tähdistöä onkin kutsuttu ”pieneksi Kassiopeiaksi”.

Sisiliskon kuvio on kuitenkin paljon pienempi ja muodostuu paljon himmeämmistä tähdistä kuin Kassiopeian W, joten erehtymisen vaaraa ei käytännössä ole, vaikka kummatkin ”kirjaimet” ovat melkein samassa asennossa.

Sisiliskolla ei ole antiikkista tai mytologista alkuperää, sillä se on muodostettu Joutsenen ja Andromedan välillä olevista himmeistä tähdistä vasta 1600-luvulla. Menneiden aikojen ihmisillä oli vilkas mielikuvitus heidän kansoittaessaan tähtitaivaan omituisilla otuksilla, eivätkä uudemmat tähtien kartoittajat jääneet siinä suhteessa yhtään huonommiksi.

Tähdistön "keksijä" Johannes Hevelius – jälleen sama heppu – oli näkevinään siinä "kippurahäntäisen näädänkaltaisen olion”. Jos osuu riittävän pimeälle paikalle, voi himmeiden tähtien joukosta haeskella tällaista hahmoa, mutta helposti se ei silmiin osu.

Sisiliskon tähdistön alueella ei ole ainuttakaan Messierin luettelon kohdetta, mutta kiikarilla voi katsastaa avoimen tähtijoukon NGC 7243. Siihen kuuluu toistatuhatta tähteä, jotka ovat varsin nuoria: niillä on ikää vain noin 100 miljoonaa vuotta.

Tähdistöt: Kolmio

Kolmion tähdistö
Kolmion tähdistö

Jos tähtitaivaalla järjestettäisiin maailmalla suosittu look-alike contest eli kaksoisolentokilpailu, Kolmio veisi jokseenkin kiistatta voiton.

Kolmio on pohjoisen taivaan tähdistöistä ainoa, joka on täsmälleen esikuvansa näköinen. Kolmion tähdet eivät ole kovin kirkkaita, mutta se on silti helppo löytää geometrisen muotonsa ansiosta Andromedan ja Oinaan tähdistöjen välistä. Sen lähettyvillä ei ole muita yhtä kirkkaita tähtiä, sillä se on jo selvästi Linnunradan tähtiä vilisevän vyön ulkopuolella.

Kolmion tähdistön nimenä on ollut myös Iso kolmio, kun Johannes Hevelius muodosti 1600-luvulla sen alapuolelle Pienen kolmion tähdistön. Uudempi kolmio teki tähtikartoilla kuitenkin vain pikavisiitin eikä Kolmion kokoon sittemmin ole enää viitattu.

Selkeän puhdaslinjaisesta ulkomuodostaan huolimatta tähdistön on eri aikoina ajateltu kuvaavan eri asioita. Siitä on käytetty esimerkiksi nimeä Nili Donum, Niilin lahja, sillä se on symboloinut suuren virran hedelmällistä suistoaluetta, kolmion muotoista deltaa.

Kolmion galaksi Messier 33 on pohjoisen taivaan toiseksi kookkain galaksi, mutta silti hyvin haastava kohde. Se kuuluu Paikalliseen galaksiryhmään Andromedan galaksin ja Linnunradan sekä noin neljänkymmenen pienemmän tähtijärjestelmän kanssa. Galaksin näennäinen koko on samaa luokkaa kuin Kuun, mutta se erottuu kiikarillakin vain hyvin himmeänä – ja paljon Kuuta pienempänä – utuläikkänä.

Taivaan on oltava täysin selkeä ja havaintopaikan hyvin pimeä,  jotta galaksia kannattaa ylipäätään etsiä. Jos sen löytää, on onnistunut kurkistamaan vielä kauemmas avaruuteen kuin Andromedan galaksia katsoessaan, sillä M33 on noin kolmen miljoonan valovuoden etäisyydellä.

Tähdistöt: Oinas ja Ilves

Oinas ja Ilves
Oinas ja Ilves

Öisen taivaan poikki kaartuvan Linnunradan valovyön eri puolilla – ikään kuin aidan toisistaan erottamina – ovat Oinaan ja Ilveksen tähdistöt.

Oinas tai pikemminkin sen kirkkaimpien tähtien muodostama kuvio ei muistuta vähimmässäkään määrin oinasta tai mitään muutakaan eläintä. Se on ”samassa asennossa” kuin kuvion naapurina oleva Kolmion tähtikuvio.

Oinas on paljon laajempi tähdistö kuin sen kolmen kirkkaimman tähden perusteella voisi kuvitella. Se ulottuu Kolmiosta Härkään ja Valaskalaan saakka; Oinaan tähtikuvio on aivan varsinaisen tähdistön eli sen rajaaman alueen reunassa.

Monien muiden tähdistöjen tavoin myös Oinas liittyy kreikkalaiseen mytologiaan. Athamaksen sankaripoika Fryksos pakeni sisarensa Hellen kanssa äitipuoltaan Oinaan selässä. Oinaan uidessa salmen yli Helle putosi veteen, mistä vesiväylä sai nimen Hellespontus.

Fryksos pääsi turvaan, uhrasi Oinaan ja antoi sen taljan lohikäärmeen vartioitavaksi. Talja muuttui kullaksi, ja oli myöhemmin myyttisten merenkävijöiden, Iasonin johtamien argonauttien, kiinnostuksen kohteena.

Oinaan tähdistön kolmanneksi kirkkain tähti γ Arietis eli Mesarthim on kaunis kaksoistähti, joka erottuu jo kiikarilla. Toisin kuin esimerkiksi Joutsenen Albireo, jonka tähdet ovat selvästi eriväriset, Mesarthimin tähdet ovat kuin identtiset kaksoset: samanväriset ja lähes yhtä kirkkaat.

Ilves on pitkänomainen, himmeä ja vaatimaton tähdistö Ison karhun etutassujen ja Ajomiehen välissä. Sitä on vaikea hahmottaa minkäänlaisena varsinaisena kuviona. Kirkkaimmat tähdet ovat Ison karhun ja Kravun välimaastossa, lähellä yhtä vaatimattoman Pienen leijonan tähdistön rajaa.

Kuvion kirkkainkin tähti on varsin himmeä. α Lyncis eli Elvashak on punainen jättiläistähti, jonka läpimitta on lähes 60 kertaa suurempi kuin Auringon. Jos tähti olisi Auringon paikalla, Merkurius jäisi sen sisään. Ilveksen α-tähti säteilee yli 600 kertaa Aurinkoa voimakkaammin, mutta 220 valovuoden etäisyys tekee sen ”loisteesta” varsin vähäisen.

Ilveksen tähdistö on yksi Johannes Heveliuksen 1600-luvulla nimeämistä kuvioista. Nimensä se on saanut siitä, että tähdistön erottamiseksi on oltava yhtä tarkka näkö kuin ilveksellä. Tähdistön toisena nimenä on ollut Tigris eli Tiikeri.

Vilkkaan mielikuvituksen lisäksi menneiden aikojen tähtitieteilijöillä oli mitä ilmeisimmin varsin erheelliset tiedot eläinmaailmasta: kuvion toinen nimi juontui siitä, että tähdistön monet himmeät tähdet muistuttivat mukamas tiikerin täpliä.

Elämälle tärkeää happea oli jo 500 miljoonan vuoden ikäisessä maailmankaikkeudessa

Happi on tuntemamme elämän kannalta keskeinen alkuaine. Se on syntynyt tähtien sisuksissa jylläävissä fuusioreaktioissa – uuden tutkimuksen mukaan jo maailmankaikkeuden vauvaiästä alkaen.

Vetyä, heliumia ja litiumia lukuun ottamatta kaikki universumin alkuaineet – myös elämän kannalta keskeiset hiili, happi ja typpi – ovat tulosta tähtien ydinfuusiosta. Ikääntyvien tähtien räjähtäessä alkuaineet leviävät avaruuteen ja niiden määrä kasvaa tähtisukupolvesta toiseen.

ALMA-teleskoopilla (Atacama Large Millimeter/submillimeter Array) tehtyjen havaintojen perusteella happea on esiintynyt maailmankaikkeudessa jo 13,28 miljardia vuotta sitten eli vain 500 miljoonaa vuotta alkuräjähdyksen jälkeen. Universumin ikä oli tuolloin ainoastaan neljä prosenttia nykyisestä.

Jotta nuoreen galaksiin, joka tunnetaan luettelotunnuksella MACS1149-JD1, olisi ennättänyt kertyä havaittava määrä happea, sen tähtien on täytynyt syttyä loistamaan jo paljon aikaisemmin, vain 250 miljoonan vuoden ikäisessä maailmankaikkeudessa.

"Oli jännittävää nähdä kaikkein kaukaisimman hapen signaali", kertoo tutkimusta johtanut Takuya Hashimoto Osaka Sangyo -yliopistosta.

"Äärimmäisen kaukainen ja äärimmäisen nuori galaksi osoittaa hämmästyttävää kemiallista kypsyyttä", ihmettelee puolestaan Wei Zheng, jonka johdolla määritettiin galaksin etäisyys Hubble-avaruusteleskoopin avulla.

Supernovaräjähdysten seurauksena tähtienväliseen avaruuteen levinnyt happi kuumeni ja ionisoitui massiivisten tähtien voimakkaassa säteilyssä, ja alkoi hohtaa infrapunasäteilyn aallonpituuksilla.

Yli 13 miljardissa vuodessa maailmankaikkeuden laajeneminen on venyttänyt hapen lähettämän säteilyn aallonpituutta niin paljon, että nykyisin se on havaittavissa ALMA-teleskoopin rekisteröimällä millimetrialueella.

Itse asiassa hapen ja sitä sisältävän nuoren galaksin etäisyys määritettiin nimenomaan aallonpituudessa tapahtuneen muutoksen perusteella. Havainto varmistettiin Euroopan eteläisen observatorion VLT-teleskoopilla ja lisätietoa galaksista saatiin infrapuna-alueella toimivalla Spitzer-avaruusteleskoopilla.

Sen lisäksi, että happea ei ole koskaan aiemmin havaittu näin etäältä, MACS1149-JD1 on myös kaukaisin galaksi, jonka etäisyys on onnistuttu määrittämään tarkasti.

Tutkijat arvelevat, että galaksin tähdet syntyivät 250 miljoonaa vuotta alkuräjähdyksen jälkeen. Niiden voimakas säteily ja tähtituuli puhalsivat ylijääneen kaasun galaksista ulos, jolloin uusia tähtiä ei syntynyt pitkiin aikoihin.

Vasta noin 250 miljoonaa vuotta myöhemmin galaksiin oli kertynyt riittävästi kaasua uutta tähtisukupolvea varten. Uusien tähtien säteily puolestaan ionisoi edellisen sukupolven tuottaman hapen.

"Nyt tehdyn löydön ansiosta olemme päässeet tarkastelemaan tähtien kehityshistorian varhaisinta vaihetta", Hashimoto toteaa.

Tutkimuksesta kerrottiin NRAOn (National Radio Astronomy Observatory) uutissivulla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuvat: ALMA (ESO/NAOJ/NRAO) / NASA/ESA Hubble Space Telescope / W. Zheng (JHU) / M. Postman (STScI) / the CLASH Team / Hashimoto et al. [otsikkokuva]; NRAO/AUI/NSF / S. Dagnello [taiteilijan näkemys]

Galaksien syntyä simuloitiin virtuaaliuniversumissa yhteensä lähes 4 000 vuoden ajan

Galaksien ja galaksijoukkojen synty on oleellinen koko maailmankaikkeuden kehityksen kannalta. Se on kuitenkin prosessina niin hidas, että suorien havaintojen tekeminen on turhauttavaa. Apu löytyy simulaatioista.

Galaksien varhaisvaiheiden simulointikaan ei ole yksinkertaista, sillä yhdessä ainoassa galaksissa voi olla satoja miljardeja tähtiä, kaasusta ja pölystä puhumattakaan. Ja mitä suurempaa avaruuden aluetta mallinnetaan, sitä enemmän siinä on yksittäisiä galakseja.

Tähän saakka massiivisin simulaatio tehtiin vuonna 2015. Nyt tuota "Illustris"-mallia on laajennettu ja uuden sukupolven simulaatiolle on annettu nimeksi "Illustris, The Next Generation".

Sekä tarkkuutta että tilavuutta on kasvatettu siten, että kolmesta uudesta mallista laajimmassa on laskentapisteitä 30 miljardia ja tarkasteltava avaruuden alue on yhdeltä kantiltaan melkein miljardi valovuotta.

Simuloidussa kuvassa kaasun lämpötilaa on kuvattu eri väreillä ja painetta kirkkauden vaihteluilla. Punainen väri suurten galaksijoukkojen keskusalueilla tarkoittaa 10 miljoonaa kelviniä. Kirkkaimmat rakenteet puolestaan kuvaavat galaksienvälistä kaasua, joka puristuu kasaan kosmisten onkaloiden ja säikeiden raja-alueilla.

Hankkeessa on ollut mukana useita yliopistoja ja tutkimuslaitoksia, ja varsinainen laskenta on tehty Stuttgartissa yhdessä Gauss-superlaskentakeskuksen kolmesta laitoksesta. Tutkijaryhmällä oli käytössä kaikkiaan 24 000 laskentaydintä, joilla tietokoneaikaa kertyi yhteensä 35 miljoonaa tuntia. Nyt julkaistun simulaation pyörittäminen aloitettiin jo kaksi vuotta sitten maaliskuussa 2016.

Galaksien synnyn simulointi ei ole pelkkää teoreettista numeroiden murskaamista, vaan se perustuu myös havaintoihin. Tietokoneeseen on syötettävä alkuehdot ja -arvot sekä esimerkiksi tähtien syntyä ja supermassiivisten mustien aukkojen kasvua kuvaavat algoritmit.

Simulaation mutkikkuutta lisää se, että siinä on otettu huomioon entistä tarkemmin myös galaktisten magneettikenttien vaikutus. Hanketta johtaneen Volker Springelin mukaan magneettikentät ovat mukana syntyprosessissa monella tavalla.

"Kosmiseen kaasuun kohdistuva magneettinen paine voi toisinaan olla yhtä suuri kuin lämpötilan aiheuttama terminen paine. Jos sen jättää huomiotta, siitä aiheutuvat ilmiöt jäävät pimentoon eivätkä tulokset ole luotettavia."

Uuden simulaation avulla saatiin tietoa myös mustien aukkojen fysiikasta. Havaintojen perusteella supermassiiviset mustat aukot sinkoavat kuumaa kaasua suurella nopeudella ympäröivään avaruuteen ja ulos galakseista.

Ilmiön on arveltu voivan "sammuttaa" tähtien synnyn kokonaan, jolloin suurimmat galaksit eivät voi kehittyä tiettyä rajaa kookkaammiksi.

Jo aiemman Illustris-simulaation perusteella näytti siltä, että mustien aukkojen ainesuihkut eivät pysty lopettamaan uusien tähtien syntyprosessia kokonaan. Kun laajennettua mallia muutettiin siltä osin hieman, saatiin teoria ja havainnot vastaamaan paremmin toisiaan.

Ennätyksellisestä simulaatiosta kerrottiin Gauss-superlaskentakeskuksen uutissivuilla ja tutkimus on ilmestynyt Monthly Notices of the Royal Astronomical Society -tiedejulkaisussa.

Kuvat: Illustris Team

Kosmisia karkotuspäätöksiä galaktisessa mitassa – Linnunrata lemppaa tähtiä ulos

Robert Heinlein julkaisi vuonna 1966 tieteisromaanin The Moon Is a Harsh Mistress, joka sittemmin suomennettiin nimellä Kuu on julma. Eipä ole Linnunratakaan erityisen lempeä.

Kotigalaksimme kierteistä kiekkoa ympäröi pallomainen halo, jossa on harvakseltaan tähtiä, kaasua ja pölyä. Max Planckin tähtitiedeinstituutin tutkijat ovat nyt selvittäneet, missä halosta löytyvät tähdet – tai ainakin jotkut niistä – ovat syntyneet.

Halon tähdet muodostavat ryppäitä, jotka kiertävät Linnunradan keskusta. Ne eivät ole kuitenkaan syntyneet siellä, missä ne nykyisin majailevat, vaan galaksin kiekossa. Sittemmin ne ovat saaneet häädön syntysijoiltaan.

Aiemmin arveltiin, että tähtiryhmittymät olisivat jäänteitä pienemmistä seuralaisgalakseista, jotka ovat sulautuneet Linnunrataan. Ilmeisesti tähdet ovat kuitenkin lähtöisin Linnunradasta, mutta kääpiögalakseilla on silti oma roolinsa näytelmässä.

"Kun massiivinen kääpiögalaksi kulkee galaksimme kiekon läpi, se tuuppaa tällaiset ryhmittymät pois Linnunradan tasosta. Ohikulku saa aikaan värähtelyitä, aaltoja, jotka sinkoavat tähtiä joko tason ylä- tai alapuolelle riippuen siitä, mihin suuntaan häiriöitä aiheuttava massa liikkuu", selventää tutkimuksessa mukana ollut Judy Cohen.

Värähtelyiden olemassaolo on ennustettu jo vuosikymmeniä sitten, mutta nyt niistä saatiin toistaiseksi vankin todiste. Oskillaatiot saavat Linnunradan "soimaan" ja samaan tapaan kuin maapallon tapauksessa, kotigalaksimme läpi kulkevista aalloista voidaan tehdä "galaktisen seismologian" keinoin päätelmiä sen rakenteesta.

Maria Bergemannin johtama ryhmä sai nyt ensimmäisen kerran määritettyä yksityiskohtaisesti halotähtien kemiallisen koostumuksen. Linnunradan kiekossa, halossa ja pallomaisissa tähtijoukoissa sekä lähiympäristön kääpiögalakseissa tähtien koostumus on hyvin erilainen.

Tutkijat tarkastelivat 14 tähteä kahdessa eri ryhmittymässä, joilla on nimet Triangulum-Andromeda (Tri-And) ja A13. Ne ovat vastakkaisilla puolilla Linnunrataa noin 14 000 valovuoden etäisyydellä kiekon tasosta.

Tutkijoiden verratessa kahden ryhmittymän kemiallista koostumusta paitsi toisiinsa myös Linnunradan kiekon tähtiin ne osoittautuivat lähes samanlaisiksi. Niinpä halosta löytyneiden tähtien täytyy olla peräisin Linnunradan kiekosta.

Toistaiseksi ei tiedetä, milloin kaukaiset tähdet joutuivat häädetyiksi Linnunradasta. Tutkijoiden tavoitteena on seuraavaksi määrittää näihin kahteen ryhmään kuuluvien tähtien massat ja iät, jolloin saataisiin tietoa myös ajankohdasta, jolloin Linnunrata heitti tähdet kylmästi pihalle.

Tutkimuksesta kerrottiin Keck-observatorion uutissivuilla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuva: T. Mueller/C. Lporte/NASA/JPL-CALTECH

Magneettikenttä paljastaa – musta aukko vispaa Linnunradan keskuksen kaasua ja pölyä

Kanarian saarilla voi tehdä muutakin kuin loikoilla ja ottaa aurinkoa. Siellä onnistuu esimerkiksi Linnunradan keskusalueiden tutkimus ennätyksellisen tarkasti.

Oxfordin yliopiston professorin Pat Rochen johdolla on laadittu huippuluokan "kartta" kotigalaksimme keskuksessa piileskelevän mustan aukon lähiympäristössä kieppuvista kaasu- ja pölypilvistä sekä tähdistä.

Linnunradan keskusalueilla tähtien on todettu kiitävän jopa 30 miljoonan kilometrin tuntinopeudella, mistä on pystytty laskemaan mustan aukon massan olevan yli miljoonakertainen Aurinkoon verrattuna.

Kartoitukseen käytettiin La Palman saarella sijaitsevaa 10,4-metristä GTC-kaukoputkea (Gran Telescopio Canarias) ja siihen kytkettyä CanariCam-infrapunakameraa. Sen toiminta-alue on 7,5–25 mikronin aallonpituuksilla ja sillä pystytään tutkimaan myös magneettikenttien ominaisuuksia säteilyn polarisaation perusteella.

Näkyvän valon alueella Linnunradan keskuksen tutkimus ei onnistu laisinkaan, sillä se on Maasta katsottuna tiheiden tähtienvälisten kaasu- ja pölypilvien takana. Infrapuna-alueella, samoin kuin radio- ja röntgenalueilla, havainnot kuitenkin onnistuvat.

Uusi infrapuna-alueen kartta kattaa alueen, joka ulottuu joka suunnassa noin valovuoden etäisyydelle mustasta aukosta. Kuvassa erottuvat siveltimenvetoja muistuttavat juovat syntyvät magneettikenttien myötäisesti liikkuvien lämpimien pölyhiukkasten ja kuuman kaasun säteilystä.

Valovuosien mittaiset säikeet kiertävät mustaa aukkoa, mikä kertoo kaasun ja pölyn liikkeistä sen lähiympäristössä. Magneettikenttä näyttää yhdistävän myös alueella olevia tähtiä.

Kentän voimakkuudesta on osoituksena se, että kaasun ja pölyn muodostamat säikeet säilyttävät muotonsa, vaikka niihin puhaltaa kaiken aikaa voimakas tähtituuli. Tosin osa aineesta päätyy ennen pitkää mustan aukon syövereihin.

Toistaiseksi ei tiedetä, mistä Linnunradan keskusalueen magneettikenttä saa alkunsa, mutta todennäköisesti sen ominaisuuksiin vaikuttaa vahvasti supermassiivinen musta aukko. Kun kenttä on kytkeytynyt kaasuun ja pölyyn sekä tähtiin, ja kaikkien niiden liikkeeseen vaikuttaa valtaisa gravitaatio, mustalla aukolla on oma osuutensa myös magneettikentän muotoutumisessa.

Kartoituksesta kerrottiin Royal Astronomical Societyn uutissivulla ja tutkimus on ilmestynyt Monthly Notices of the Royal Astronomical Society -tiedejulkaisussa.

Kuva: E. Lopez-Rodriguez/NASA Ames/University of Texas at San Antonio. 

Linnunrata on riistänyt tähtiä naapurigalaksilta

Oman galaksimme 11 kaukaisinta tähteä ovat kummallisia: selitys on todennäköisesti se, että ne ovat riistäytyneet mukaamme naapurigalaksista.

Nämä 11 kaukainta tähteä ovat noin 300 000 valovuoden päässä Maasta, selvästi litteän spiraalimaisen Linnunradan ulkopuolella.

Tuoreessa The Astrophysical Journal -lehdessä olleen julkaisun mukaan ne ovatkin osa pitkää tähtien rimpsua, joka on noin kymmenen kertaa oman galaksimme halkaisijan pituinen, ja johtaa lähes suoraan sylttytehtaalle: Linnunrataa kiertävään Jousimiehen kääpiögalaksiin.

Vasta vuonna 1994 löydetty Jousimiehen kääpiögalaksi on yksi noin kymmenestä Linnunrataa hitaasti kiertävästä minigalaksista, jotka ovat aikanaan kulkeneet useita kertoja hyvin läheltä meitä. Jokaisella ohituskerralla Linnunradan ja kääpiögalaksi tähdet lentelevät painovoimakenttien ohjaamana kauniissa kaarissa ja galaksit sekoittuvat osittain.

Se, että meillä on siis "yhteisiä" tähtiä, ei ole yllätys, mutta niiden yksilöiminen on kiinnostavaa.

Tähtirimpsua ei ole havaittu, mutta se on mallinnettu. Tämän simulaation perusteella tiedossa olevat 11 tähteä ovat juuri siellä, missä niiden pitäisi esitetyn teorian mukaan olla.

Mallinnuksen tekivät Harvardin yliopiston tutkijat Marion Dierickx ja Avi Loeb. Tietokoneen annettiin laskea tapahtumia viimeisen kahdeksan miljardin vuoden ajalta ja tulos on tällainen:

Simulointi ei ole aivan yksinkertaista, koska kaikkia alkuarvoja ei tiedetä. Siksi kaksikko teki laskelmansa eri arvoilla, joista he löysivät parhaiten nykyisiä havaintoja vastaavat.

Etenkin simulaation alussa Linnunradan ja kääpiögalaksin nopeus ja kohtaussuunta ovat olennaisia.

Toinen tärkeä, mutta epävarma arvo on Jousimiehen kääpiögalaksin massa simulaation alussa. Tässä on käytetty arvoa 10 miljardia Auringon massaa, eli noin prosentin verran Linnunradan massasta.

Ajan kuluessa kääpiögalaksi on menettänyt joka kolmanneksen tähdistään – siis näkyvästä aineesta – ja jopa 90 % pimeästä aineestaan. 

Simulaatiossa näkyy myös hyvin se, että tuloksena törmäyksistä on kolme selvää tähtijonoa, joihin kuuluvia tähtiä voidaan nyt alkaa etsiä. Käynnissä on useita taivaan kartoitushankkeita, joiden tuloksena saadaan nykyistä parempia ja himmeämpiä kohteita sisältäviä karttoja, joista saatetaan löytää enemmän kuin nämä tiedossa olevat 11 intergalaktista seikkailijaa.