Kvasaarien sylkemä plasma valaisi varhaisen maailmankaikkeuden

Kvasaarit ovat tunnetusti aktiivisia galakseja, joiden supermassiivisiin mustiin aukkoihin syöksyvä aine saa ne säteilemään voimakkaasti. Joissakin tapauksissa osa aineesta sinkoutuu suihkuina kauas avaruuteen.

Eduardo Bañadosin johtama tutkimusryhmä on löytänyt toistaiseksi "kirkkaimmin" radioalueella säteilevän nuoren kvasaarin, joka on syntynyt maailmankaikkeuden ollessa alle miljardin vuoden ikäinen.

Kvasaarin löytymisen jälkeen Emmanuel Momjian teki siitä havaintoja, joiden avulla plasmasuihkusta saatiin ennennäkemättömän tarkkoja tietoja. Niiden ansiosta pystytään entistä paremmin selvittämään varhaisen maailmankaikkeuden ilmiöitä ja kehittymistä.

Tarkkaan tutkittu kvasaari tunnetaan luettelonimellä PSO J352.4034-15.3373. Kvasaarit löytyivät 1960-luvulla voimakkaan radiosäteilynsä perusteella, mutta todellisuudessa vain noin joka kymmenes kvasaari on "kirkas" radioalueella.

Voimakas radiosäteily on yleensä lähtöisin mustan aukon pyörimisakselin suuntaan lähtevistä suihkuista, joissa kuuma plasma liikkuu lähes valon nopeudella.

Nyt löytynyt kvasaari on erikoinen myös sikäli, että sen lähettämä säteily on taivaltanut halki maailmankaikkeuden lähes 13 miljardin vuoden ajan. Se onkin ensimmäinen alle miljardin vuoden ikäisessä maailmankaikkeudessa havaittu kvasaari, jolla on todettu olevan radioalueella säteilevä suihku.

"Varhaisessa maailmankaikkeudessa oli niukalti voimakkaita radiolähteitä, mutta tämä kvasaari on kertaluokkaa kirkkaampi kuin muut tuon aikakauden lähteet", Bañados arvioi.

Kun maailmankaikkeus alkuräjähdyksen jälkeen laajeni ja jäähtyi, kuumasta hiukkaspuurosta muodostui neutraalia vetykaasua. Alkuun universumi oli täysin pimeä, mutta kun gravitaatio kasasi osan aineesta ensimmäisiksi tähdiksi ja galakseiksi, niiden säteily sai vetykaasun ionisoitumaan. Ja valtaosa vedystä on edelleen samassa tilassa.

PSO J352.4034-15.3373 -kvasaarin säteily on peräisin aikakaudelta, jolloin maailmankaikkeuteen syttyivät pitkän pimeyden jälkeen jälleen valot.

"Kvasaarin suihkun avulla voi olla mahdollista kalibroida tulevia havaintoja, tarkastella alkuaikojen pimeyttä ja kenties selvittää, miten ensimmäiset galaksit syntyivät", Bañados toteaa.

Tutkimuksesta kerrottiin Carnegien tiedeinstituutin uutissivuilla ja se on julkaistu The Astrophysical Journal -tiedelehdessä (maksullinen).

Kuva: Robin Dienel/Carnegie Institution for Science

Elämälle tärkeää happea oli jo 500 miljoonan vuoden ikäisessä maailmankaikkeudessa

Happi on tuntemamme elämän kannalta keskeinen alkuaine. Se on syntynyt tähtien sisuksissa jylläävissä fuusioreaktioissa – uuden tutkimuksen mukaan jo maailmankaikkeuden vauvaiästä alkaen.

Vetyä, heliumia ja litiumia lukuun ottamatta kaikki universumin alkuaineet – myös elämän kannalta keskeiset hiili, happi ja typpi – ovat tulosta tähtien ydinfuusiosta. Ikääntyvien tähtien räjähtäessä alkuaineet leviävät avaruuteen ja niiden määrä kasvaa tähtisukupolvesta toiseen.

ALMA-teleskoopilla (Atacama Large Millimeter/submillimeter Array) tehtyjen havaintojen perusteella happea on esiintynyt maailmankaikkeudessa jo 13,28 miljardia vuotta sitten eli vain 500 miljoonaa vuotta alkuräjähdyksen jälkeen. Universumin ikä oli tuolloin ainoastaan neljä prosenttia nykyisestä.

Jotta nuoreen galaksiin, joka tunnetaan luettelotunnuksella MACS1149-JD1, olisi ennättänyt kertyä havaittava määrä happea, sen tähtien on täytynyt syttyä loistamaan jo paljon aikaisemmin, vain 250 miljoonan vuoden ikäisessä maailmankaikkeudessa.

"Oli jännittävää nähdä kaikkein kaukaisimman hapen signaali", kertoo tutkimusta johtanut Takuya Hashimoto Osaka Sangyo -yliopistosta.

"Äärimmäisen kaukainen ja äärimmäisen nuori galaksi osoittaa hämmästyttävää kemiallista kypsyyttä", ihmettelee puolestaan Wei Zheng, jonka johdolla määritettiin galaksin etäisyys Hubble-avaruusteleskoopin avulla.

Supernovaräjähdysten seurauksena tähtienväliseen avaruuteen levinnyt happi kuumeni ja ionisoitui massiivisten tähtien voimakkaassa säteilyssä, ja alkoi hohtaa infrapunasäteilyn aallonpituuksilla.

Yli 13 miljardissa vuodessa maailmankaikkeuden laajeneminen on venyttänyt hapen lähettämän säteilyn aallonpituutta niin paljon, että nykyisin se on havaittavissa ALMA-teleskoopin rekisteröimällä millimetrialueella.

Itse asiassa hapen ja sitä sisältävän nuoren galaksin etäisyys määritettiin nimenomaan aallonpituudessa tapahtuneen muutoksen perusteella. Havainto varmistettiin Euroopan eteläisen observatorion VLT-teleskoopilla ja lisätietoa galaksista saatiin infrapuna-alueella toimivalla Spitzer-avaruusteleskoopilla.

Sen lisäksi, että happea ei ole koskaan aiemmin havaittu näin etäältä, MACS1149-JD1 on myös kaukaisin galaksi, jonka etäisyys on onnistuttu määrittämään tarkasti.

Tutkijat arvelevat, että galaksin tähdet syntyivät 250 miljoonaa vuotta alkuräjähdyksen jälkeen. Niiden voimakas säteily ja tähtituuli puhalsivat ylijääneen kaasun galaksista ulos, jolloin uusia tähtiä ei syntynyt pitkiin aikoihin.

Vasta noin 250 miljoonaa vuotta myöhemmin galaksiin oli kertynyt riittävästi kaasua uutta tähtisukupolvea varten. Uusien tähtien säteily puolestaan ionisoi edellisen sukupolven tuottaman hapen.

"Nyt tehdyn löydön ansiosta olemme päässeet tarkastelemaan tähtien kehityshistorian varhaisinta vaihetta", Hashimoto toteaa.

Tutkimuksesta kerrottiin NRAOn (National Radio Astronomy Observatory) uutissivulla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuvat: ALMA (ESO/NAOJ/NRAO) / NASA/ESA Hubble Space Telescope / W. Zheng (JHU) / M. Postman (STScI) / the CLASH Team / Hashimoto et al. [otsikkokuva]; NRAO/AUI/NSF / S. Dagnello [taiteilijan näkemys]

Kemiallinen joulukalenteri 11/24: Litium saa joulun tähdet välkkymään

Kuvituskuva

Joulun lahjoihin kuuluu monia hilavitkuttimia ja hyötylaitteita, jotka toimivat paristoilla tai akuilla. Kenties yleisin nyt käytössä oleva uudelleenladattava akkutyyppi on ns. litiumioniakku – tai litiumpolymeeriakku – ja olennaista siinä on litium.

Päivän kuva

Mutta mitä se oikeastaan on?

Litium on kevein alkuaine heti vedyn ja heliumin jälkeen eli normaalioloissa ylivoimaisesti kevyin kiinteä aine. Litium on metalli, joka kelluu vedessäkin – sen tiheys kun on vain puolet veden tiheydestä (535 kg/m3).

Kelluminen tosin ei kestä kauaa, sillä puhdas litium on herkästi reagoiva alkalimetalli. Veteen tai jopa vain kosteaan ilmaan joutuessaan se muodostaa nopeasti litiumhydroksidia ja helposti leimahtavaa vetykaasua. Puhdas litiumpinta hapettuu mustaksi kuivassakin ilmassa.

Litiumia käytetään juuri reaktiivisuutensa vuoksi hyvin moniin tarkoituksiin. Se on tärkeässä osassa erittäin keveissä käyttömetalleissa, ilotulitteissa, ilmansuodattimissa, optiikassa ja tietoliikennetekniikassa. Se toimii katalyyttinä kemiallisissa reaktioissa, rakettipolttoaineena ja oivasti mielialalääkkeenäkin. Ja tietysti tehokkaissa akuissa ynnä monessa muussa.

Litiumia ei esiinny vapaana luonnossa. Sitä löytyy hyvin yleisesti monista yhdisteistä ympäri maailman, mutta pitoisuudet ovat aina varsin pieniä.

Lipoakku

Litiumioniakussa (mikä ei ole sama asia kuin kertakäyttöinen litiumparisto!) akun toiminta perustuu siihen, että akun positiivinen elektrodi (katodi) on valmistettu litiumoksidista ja negatiivinen (anodi) grafiitista tai muusta hiilipohjaisesta aineesta. Kun akku latautuu, litiumionit kulkevat anodista katodiin, ja varauksen purkautuessa liikenne on toiseen suuntaan.

Ioniliikenne tapahtuu akun sisällä elektrolyyttiaineessa. Yleisesti elektrolyyttinä käytetty aine on dimetyylikarbonaatti, joka on hyvin ionirikasta ja sopii tehtävään erinomaisesti, paitsi että sillä on yksi ikävä ominaisuus: se on hyvin paloherkkää jopa huoneenlämmössä.

Litiumin sähkökemiallinen jännite on suuri ja siksi sen energiatiheys on suuri, mutta myös se on kemiallisesti erittäin reaktiivinen. Yhdessä paloherkän elektrolyytin kanssa se on tehokas, mutta ei kovin mielekäs kumppani. Hyvien ominaisuuksien vuoksi niiden kanssa on pitänyt vain osata tulla toimeen.

Pienissä akuissa käytetään pieniä määriä ja lataukset ovat hyvin pieniä, joten paloherkkyys ei ole ongelma. Sen sijaan suurempia varausmääriä ja tehoja käytettäessä, siis esimerkiksi autoissa ja lentokoneissa, paloherkkyys on otettava huomioon. Olennaisinta on valvoa koko ajan akun latausta ja toimintaa, ja katkaista lataus, jos lämpötila alkaa nousta.

Paloherkkyyden vuoksi litiumille etsitään kovaa vauhtia korvaajia, ja niitä onkin löytynyt. Valitettavasti vain ne ovat joko huonompia tai paljon kalliimpia, joten litium on ja pysyy vielä pitkään akkujen suosikkiaineena.

Salar de Uyuni Boliviassa

Leijonanosa teollisesti käytetystä litiumista tuotetaan Chilessä, Australiassa, Argentiinassa ja Kiinassa sekä Boliviassa, mistä on yllä oleva kuva. Yleisin paikka litiumin keräämiseen on suolajärvi, missä sitä runsaasti sisältävää savea on suolan alla.

Myös Suomessa on mahdollisuuksia tällä alalla, sillä Pohjanmaalle on suunnitteilla Euroopan suurimmaksi tituleerattu litiumkaivos. Suomessa litium on sitoutunut malmiin, eikä sen eristäminen siitä käy niin helposti ja edullisesti kuin aavikoilta.

Litiumakku kuiskii myös menneistä, itse asiassa hyvin kaukaisista tapahtumista.

Tähtitieteilijä Carl Sagan kertoi aikanaan oivasti kuinka olemme kaikki peräisin ammoin kuolleista tähdistä. Mutta kaikki litium ei ole. Se on vanhempaa perua – suoraa seurausta alkuräjähdyksestä. Litium oli raskainta ainetta mitä siinä rytäkässä ehti syntyä, vedyn ja heliumin lisäksi. Litiumin osuus oli noin 10−10.

Toki litiumia syntyy nykytähtien fuusiossakin, mutta se kulutetaan lähes saman tien muiden aineiden rakentamiseen.

Sininen pikkugalaksi juoruaa universumin varhaislapsuudesta

AGC 198691 -kääpiögalaksi

Pienen leijonen tähdistön suunnassa on himmeä galaksi, jolla on etäisyyttä noin 30 miljoonaa valovuotta. Se on siis suhteellisen läheinen tähtijärjestelmä, mutta tuoreen tutkimuksen mukaan se kertoo silti hyvin kaukaisista tapahtumista.

"Pikkuleijonaksi" ristityn AGC 198691 -galaksin tähdissä vetyä ja heliumia raskaampien alkuaineiden eli "metallien" osuus on alhaisempi kuin missään muussa tunnetussa tähtien muodostamassa ryppäässä.

"Metalliköyhimmän galaksin löytyminen on jännittävää, sillä sen avulla on kenties mahdollista testata alkuräjähdystä koskevia teorioita", toteaa tutkimukseen osallistunut John Salzer. "Maailmankaikkeuden syntyolosuhteiden tutkimiseen on käytettävissä vain harvoja keinoja, mutta metallipitoisuudeltaan alhaiset galaksit kuuluvat lupaavimpiin kohteisiin."

Nykyinen alkuräjähdysmalli antaa selkeitä ennusteita vedyn ja heliumin määristä, ja näiden alkuaineiden suhteelliset osuudet metalliköyhissä galakseissa kertovat suoraan aikojen alussa vallinneista olosuhteista.

Yleensä metalliköyhiä galakseja löytyy vain hyvin kaukaa, koska läheisemmissä galakseissa tähtien kehitys on ehtinyt muuttaa huomattavasti alkuainekoostumusta. Pikkuleijona kuuluu kuitenkin "paikalliseen maailmankaikkeuteen", joka ulottuu noin miljardin valovuoden etäisyydelle Linnunradasta.

Alhainen metallipitoisuus kertoo tässä tapauksessa vähäisestä "kosmisesta kierrätyksestä": galaksissa on aikojen kuluessa muodostunut uusia tähtiä vain harvakseltaan, joten vetyä ja heliumia raskaampia alkuaineita on ehtinyt syntyä vain hyvin vähän.  

Tutkimuksessa käytettiin Kitt Peakin observatorion nelimetristä Mayall-teleskooppia ja Mount Hopkinsilla sijaitsevaa MMT-teleskooppia, jossa on 6,5 metrin läpimittainen peili. Kaukoputkilla mitattiin galaksin spektri, jonka avulla pystyttiin määrittämään eri alkuaineiden runsaudet. 

"Kuva kertoo enemmän kuin tuhat sanaa, mutta spektri kertoo enemmän kuin tuhat kuvaa", luonnehtii Salzer. 

Pikkuleijona on todella hyvin pieni galaksi. Sen läpimitta on ainoastaan tuhat valovuotta ja siihen kuuluu vain joitakin miljoonia tähtiä. Galaksi on väriltään selvästi sininen, sillä siinä on suhteellisesti ottaen runsaasti vastikään syntyneitä, kuumia tähtiä. Ne ovat kuitenkin hyvin himmeitä, mikä on ollut alhaisen metallipitoisuuden ohella yllätys tutkijoille.

Tutkimuksesta kerrottiin Indianan yliopiston uutissivuilla ja se on julkaistu Astrophysical Journal -tiedelehdessä (maksullinen).

Kuva: NASA/A. Hirschauer & J. Salzer, Indiana University/J. Cannon, Macalester College/K. McQuinn, University of Texas

Uusi teoria: alkuräjähdystä seurasi kaksi inflaatiota

Kosminen inflaatio

Kosmologian standardimallin mukaan alkuräjähdystä seurasi inflaatio, maailmankaikkeuden äkillinen ja hyvin nopea laajeneminen. Sen seurauksena kosmoksesta kehittyi sellainen kuin havaitsemme sen olevan. Paitsi että…

Ongelmana on pimeä aine, joka muodostaa neljänneksen koko maailmankaikkeudesta. Pimeää energiaa on noin 70 prosenttia, tavallista näkyvää ainetta vain muutama prosentti.

"Yleisesti ottaen luonnon perusteoria selittää tietyt ilmiöt, mutta se ei välttämättä anna oikeaa pimeän aineen määrää", selittää Hooman Davoudiasl, jonka johtama Brookhavenin laboratorion tutkijaryhmä on kehittänyt uuden version inflaatioteoriasta. 

"Jos tuloksena on liian vähäinen määrä pimeää ainetta, voi esittää toista lähdettä, mutta on ongelmallista, jos sitä on liikaa."

Jotkut teoriat selittävät hyvin useita fysiikan omituisuuksia, mutta ne eivät voi olla ihan kohdallaan, koska niiden ennustama pimeän aineen määrä on suurempi kuin sen tiedetään todellisuudessa olevan.

Uusi teoria ratkaisisi ongelman. Standardimallin mukaan inflaatio eli maailmankaikkeuden eksponentiaalinen laajeneminen alkoi ainoastaan 10-35 sekuntia alkuräjähdyksen jälkeen. Hetken kestäneen humauksen jäljiltä maailmankaikkeus laajeni ja jäähtyi nykyiselleen. Sekuntien tai korkeintaan minuuttien ikäisessä kosmoksessa alkoi muodostua keveimpiä alkuaineita.

Davoudiaslin ryhmän kehittämän teorian mukaan inflaation päättymisen ja alkuaineiden synnyn välillä saattoi olla muitakin inflatorisia ajanjaksoja. 

"Ne eivät olisi olleet yhtä merkittäviä tai voimakkaita kuin ensimmäinen, mutta ne voisivat selittää pimeän aineen määrän", arvelee Davoudiasl.

Kun hyvin pienikokoisen maailmankaikkeuden lämpötila oli miljardeja asteita, pimeän aineen hiukkasia törmäili toisiinsa ja tuhoutui annihilaatiossa. Kun laajeneminen jatkui ja lämpötila laski, törmäysten määrä väheni ja pimeän aineen määrä asettui lopulliselle tasolle.

Ongelmana on se, että alkuvaiheen annihilaatio ei tuhonnut riittävästi pimeää ainetta. Ratkaisu olisi toinen inflaation aikakausi – tai ehkä silmänräpäyksellistä hetkeä ei oikein voi kutsua "aikakaudeksi" – joka kasvatti maailmankaikkeuden tilavuutta ja pienensi pimeän aineen tiheyttä niin paljon, että se vastaa havaittua.

Teorian testaaminen on kuitenkin hyvin vaikeaa. Suurimmilla hiukkaskiihdyttimillä on kenties mahdollista päästä energioihin, joissa tulee esiin toisen inflaation edellyttämiä ilmiöitä.

Tutkimuksesta kerrottiin Brookhaven National Laboratoryn uutissivuilla ja se julkaistaan Physical Review Letters -tiedelehdessä.

Kuva: BNL

Vihreä herne - galaksi, joka kuumensi kosmoksen

Vihreä herne -galaksi

Alkuräjähdyksen jäljiltä maailmankaikkeus oli niin kuuma ja tiheä, että kaikki aine oli ionisoitunutta – toisin sanoen elektronit olivat ytimien ympäriltä karkuteillä. 

Kuitenkin jo 380 000 vuoden kuluttua lämpötila oli laskenut niin paljon, että atomien ytimet ja elektronit löivät hynttyyt yhteen. Alati laajeneva maailmankaikkeus muuttui läpinäkyväksi, säteily pääsi kulkemaan esteettä ja aine saattoi kasautua vety- ja heliumpilviksi.

Valtavista kaasupilvistä muodostuivat ensimmäiset ja tähdet ja galaksit – kunnes noin miljardi vuotta myöhemmin maailmankaikkeus kuumeni uudelleen.

Ylivoimaisesti yleisin alkuaine vety ionisoitui uudelleen, mutta tähän saakka syytä siihen ei ole tiedetty. Tai ainakin siitä on käyty kovaa kiistaa.

Nyt näyttäisi siltä, että syypäitä tähän kuumentumiseen olivat nuoret kääpiögalaksit. 

Galaksit ovat olleet aiemminkin epäiltyjen listalla, mutta kansainvälinen tutkijaryhmä on tehnyt Hubble-avaruusteleskoopilla ultraviolettihavaintoja, jotka vahvistavat arvelun. 

Tutkimuksen kohteena oli suhteellisen läheinen, hyvin tiivis kääpiögalaksi. Sen todettiin lähettävän voimakkaasti ionisoivaa säteilyä, juuri sellaista, joka voisi olla vastuussa maailmankaikkeuden alkuaikojen ionisaatiosta.

"Galaksi vaikuttaa erinomaiselta paikalliselta vastineelta lukuisille kääpiögalakseille, joiden on arveltu aiheuttaneen varhaisen maailmankaikkeuden ionisoitumisen uudelleen", toteaa tutkijaryhmää johtanut Trinh Thuan Virginian yliopistosta.

Teorian ongelmana on ollut se, että galaksien lähettämän ionisoivan säteilyn pitää päästä etenemään galaksienväliseen avaruuteen: yleensä sen matka päättyy jo galaksien omiin kaasu- ja pölypilviin. Aiemmin ei ole onnistuttu havaitsemaan galaksia, joka lähettäisi riittävästi ultraviolettisäteilyä riittävän kauas avaruuteen.

Tuoreen tutkimuksen kohteiksi valittiin "vihreiksi herneiksi" kutsuttuja pienikokoisia, pyöreitä, hyvin tiiviitä ja näkyvän valon alueella vihreinä näkyviä galakseja. Niissä tapahtuu voimakkaita supernovaräjähdyksiä, joissa vapautuvat ionisoivat fotonit pääsevät galaksienväliseen avaruuteen saakka. Tai näin oletettu. Ja ihan syystä.

Sloan Digital Sky Survey -kartoituksen tietokannasta löytyi peräti 5 000 galaksia, jotka ovat hyvin tiiviitä ja säteilevät hyvin voimakkaasti ultraviolettialueella. Niistä viisi valittiin Hubble-avaruusteleskoopilla tehtävien havaintojen kohteiksi.

Yksi niistä, kuvassa näkyvä J0925+1403, on noin kolmen miljardin valovuoden etäisyydellä. Vain noin 6 000 valovuoden läpimittaisen galaksin todettiin lähettävän ionisoivia fotoneita voimakkaammin kuin koskaan aiemmin on havaittu.

"Hubblella tehtävien lisähavaintojen avulla odotamme ymmärtävämme paremmin, miten fotonit sinkoutuvat tällaisista galakseista, ja millaiset galaksit saivat aikaan kosmisen ionisoitumisen", sanoo Trinh.

Tutkimuksesta kerrottiin EurekAlert-uutissivustolla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuva: NASA

Ensimmäisten tähtien hautausmaa

Euroopan eteläisen observatorion ESOn VLT-teleskoopilla (Very Large Telescope) on löydetty kaasupilvi, joka on syntynyt mahdollisesti maailmankaikkeuden ensimmäisten tähtien kuollessa ja levittäessä raskaampia alkuaineita avaruuteen. 

Kuva on simulaatiosta, jossa tarkastellaan tähden räjähdystä varhaisessa maailmankaikkeudessa. Rengasmainen rakenne on kaasupilvi, joka laajenee supernovaräjähdyksen seurauksena ja rikastaa lähistöllä olevaa tiheämpää pilveä (merkitty punaisella).

Löytyneessä kaasupilvessä on äärimmäisen vähän raskaampia alkuaineita kuten hiiltä, happea ja rautaa – alle tuhannesosa Auringossa mitatuista pitoisuuksista. Koska pilvi on hyvin kaukana, näemme sen siinä kuosissa kuin se oli ainoastaan 1,8 miljardia vuotta alkuräjähdyksen jälkeen. 

"Raskaita alkuaineita ei muodostunut alkuräjähdyksessä, vaan niitä syntyi myöhemmin tähdissä", toteaa Neil Crighton Swinburnen yliopistosta. "Ensimmäiset tähdet koostuivat kokonaisuudessaan alkuperäisestä kaasusta ja ne muotoutuivat melko lailla eri tavalla kuin nykyiset tähdet."

Ihkaensimmäiset eli niin sanotut populaatio III:n tähdet räjähtivät hyvin voimakkaina supernovina, jotka levittivät niiden sisuksissa syntyneitä alkuaineita avaruuden kaasun joukkoon. Niinpä näihin ikivanhoihin pilviin tallentui kemiallinen tieto ensimmäisistä tähdistä ja niiden kuolemasta.

"Aiemmin havaituissa kaasupilvissä on enemmän raskaita alkuaineita, joten myöhemmät tähtisukupolvet ovat 'saastuttaneet' niitä ja häivyttäneet jäljet ensimmäisistä tähdistä", Crighton selittää. 

"Tässä pilvessä raskaiden alkuaineiden osuus on juuri niin pieni kuin ainoastaan ensimmäisten tähtien rikastamassa pilvessä voisi olettaa olevan", toteaa tutkimukseen osallistunut Michael Murphy niin ikään Swinburnesta.

Tutkijat toivovat löytävänsä lisää samankaltaisia pilviä, jotta niistä saataisiin mitattua useiden eri alkuaineiden keskinäiset runsaussuhteet.

"Pystymme mittaamaan tästä pilvestä kahden alkuaineen – hiilen ja piin – suhteen. Sen arvo ei osoita kiistatta, että se olisi vain ensimmäisten tähtien rikastama. Myös myöhemmät tähtisukupolvet ovat voineet rikastaa sitä", arvioi John O’Meara Saint Michael’s Collegesta.

"Jos löydämme uusia pilviä, joissa voimme havaita useampia alkuaineita, pystymme testaamaan olettamuksia runsaussuhteista, joita ensimmäisten tähtien rikastus on tuottanut."

Kaasupilvestä kerrottiin Royal Societyn uutissivuilla ja tutkimus ilmestyy Monthly Notices of the Royal Astronomical Society -tiedelehdessä.

Kuva: Britton Smith/John Wise/Brian O’Shea/Michael Norman/Sadegh Khochfar

Ikivanhat tähdet kertovat nuoresta kosmoksesta

Kun maailmankaikkeus syntyi noin 13,8 miljardia vuotta sitten, se oli pelkkää kuumaa hiukkaspuuroa. Avaruuden laajeneminen alkuräjähdyksen jäljiltä sai lämpötilan laskemaan ja kosmokseen laskeutui pimeys.

Valot saatiin uudestaan päälle vasta kun maailmankaikkeudella oli ikää "jo" 400 miljoonaa vuotta eli alle kolme prosenttia nykyisestä. Silloin syttyivät ensimmäiset tähdet. 

Tähtien rakennusmateriaaliksi oli tarjolla vain vetyä ja heliumia sekä vähäisiä määriä litiumia. Tähtitieteilijät ovat olleet siinä käsityksessä, että näin ankeasta alkuainevalikoimasta muodostuneet tähdet olisivat olleet hyvin suuria ja massiivisia, ja loistaneet hyvin kirkkaasti.

Tuoreen tutkimuksen mukaan näin ei kuitenkaan välttämättä ollut. Tähtitieteilijät ovat nyt löytäneet kolme "kosmista metusalemia", ikivanhaa tähteä, joilla on ikää noin 13 miljardia vuotta. Ne kuuluisivat siten maailmankaikkeuden ensimmäisiin tähtisukupolviin.

Jotta tähtikolmikko voisi olla yhä olemassa, ne eivät voi olla kovin massiivisia. Mitä suurempi tähti, sitä kiivaammin se kuluttaa ydinpolttoaineensa, ja räjähtää elämänsä ehtoolla supernovana. Ensimmäisten tähtien on ajateltu olleen niin suuria, että niiden elinkaarella olisi ollut mittaa ehkä vain joitakin miljoonia vuosia.

Tähtien sisuksissa vedystä ja heliumista oli fuusioitunut raskaampia alkuaineita ja supernovaräjähdykset levittivät niitä ympäröivään avaruuteen uusien tähtien raaka-aineeksi. Seuraavat tähtisukupolvet olivat selvästi rikkaampia ja niissä oli vedyn, heliumin ja litiumin lisäksi myös raskaampia alkuaineita, kaikkia niitä, joista myös elämä sittemmin kehittyi.

Nyt löytyneissä "ikitähdissä" alkuainekoostumus on hyvin köyhä. Tutkijoiden yllätykseksi niissä on kuitenkin yllättävä määrä hiiltä. Ja juuri siinä saattaa olla avain tähtien pieneen kokoon ja pitkäikäisyyteen.

Tähdistä tehtyjen havaintojen ja niiden kaasukehien koostumusta mallintavien tietokonesimulaatioiden perusteella on päätelty, että hiili toimi hyvin varhaisessa maailmankaikkeudessa jäähdytysaineena. Avaruuden kaasupilvien lämpötila oli aiemmin arveltua alhaisempi, jolloin niistä saattoi tiivistyä oletettua pienempiä ja pidempään loistavia tähtiä.

Ne muodostivat ehkä kokonaan uuden tähtien luokan varhaisessa maailmankaikkeudessa. Kun ihkaensimmäiset, hyvin suuret tähdet räjähtivät jo muutamassa miljoonassa vuodessa, niiden sisuksissa muodostunut hiili ehti mukaan kevyempien tähtien syntyprosessiin ja teki mahdolliseksi niiden muodostumisen. 

Laskelmien mukaan näiden pienempienkin tähtien olisi pitänyt olla vähintään kymmenen kertaa massiivisempia kuin tutkimuksen kohteena ollut kolmikko. Tutkijat arvelevatkin, että hiilen ohella lämpötilaa laski pöly, jota tuolloin jo esiintyi avaruuden kaasupilvissä.  

Vielä suurempi arvoitus on kuitenkin kolmen tähtinestorin litiumin määrä: sitä ei ole ollenkaan. Seuraavaksi tutkijoiden tavoitteena on selvittää, miten se on mahdollista, vaikka litiumia oli maailmankaikkeudessa jo ennen ensimmäistenkään tähtien syntyä.

Tutkimus on julkaistu Astronomy & Astrophysics -lehdessä (maksullinen) ja siitä kerrottiin Heidelbergin yliopiston uutissivuilla.

Kuva: NASA/WMAP Science Team​

Mitä oli ennen alkuräjähdystä?

Olen pannut merkille, että termit kosminen inflaatio ja alkuräjähdys aiheuttavat usein hengenahdistusta silloin, kun ne esiintyvät samassa lauseessa. Oliko ensin alkuräjähdys ja sitten inflaatio, vai päinvastoin?

Kosmologeille alkuräjähdys tarkoittaa äärimmäisen kuumaa ja tiheää alkutilaa, josta nyt näkyvä universumimme on kehittynyt avaruuden laajentuessa ja aineen samanaikaisesti jäähtyessä. Suurelle yleisölle alkuräjähdys sen sijaan on usein matemaattinen piste, joka jostakin käsittämättömästä syystä otti ja pamahti.

Tämä kadunmiehen käsitys perustuu Einsteinin yleiseen suhteellisuusteoriaan – kadunmies (vai pitäisikö sanoa kadunhenkilö?) on siis varsin oppinut olento.

Suhteellisuusteoria sanoo seuraavaa: jos universumimme ainesisältö koostuu pelkästään alkeishiukkasista, Einsteinin yhtälöiden ratkaisu on laajeneva avaruus. Menneisyydestä ratkaisun matematiikka vannoo löytävänsä hetken, jolloin avaruuden tilavuus oli puhdas nolla. Silloin kaikki aine on ollut pusertuneena äärettömän tiheään tilaan.  Tämä on tuo mieliä kiehtova singulariteetti, joka värisyttää herkimpien sielujen syvyyksiä.

Fyysikon arvomaailmassa matematiikka on kuitenkin idealisaatio, johon tulee suhtautua tietyllä skeptisyydellä. Siksi kosmologien satukirja tapasi aina sivuuttaa singulariteetin ja alkoi tyyliin: "Olipa kerran, kauan kauan sitten, maailmankaikkeus, joka nykyiseen verrattuna oli hyvin pieni ja täynnä kuumaa, tiheää alkeishiukkaspuuroa."

Alkeishiukkasia ovat mm. elektronit ja kvarkit, mutta myös fotonit ovat tässä väestönlaskennassa alkeishiukkasia. Säteily ei ole mikään oma olemisen lajinsa vaan pelkästään nimi alkeishiukkasille, jotka liikkuvat käytännössä valon nopeudella. Ja nykytietämyksen mukaan kaikki tunnetut alkeishiukkaset liikkuivat täsmälleen valon nopeudella 0,01 nanosekuntia nuoremmassa universumissa.

Alkeishiukkasten liikenopeudella on pieni vaikutus universumin laajenemislakiin. Mutta paljon tärkeämpi kysymys on: esiintyikö varhaisessa maailmankaikkeudessa myös jotakin muuta energiamuotoa kuin alkeishiukkasia?

Inflaatioteorian mukaan vastaus on kyllä. Inflaation käyttövoima on tyhjiön energia, ja se muuttaa laajenemislakia ratkaisevalla tavalla. Inflaation aikana avaruus pullistuu valoa nopeammin ja käytännössä tyhjenee kuin tilkitsemätön vesisaavi. Samalla lämpötila, yhdessä hiukkastiheyden kanssa, putoaa nollaan.

Inflaatioteorian alkumaailma ei ole kuuma ja tiheä vaan jääkylmä ja autio.

Inflaatioteoriat olettavat kuitenkin, että tyhjiön energia on epävakaa. Ennen pitkää se hajoaa alkeishiukkasiksi. Näin syntyy kuuma ja tiheä alkeishiukkaspuuro, jota kosmologit kutsuvat alkuräjähdykseksi.

Mutta tuolloin avaruudella oli jo koko.

Itse asiassa avaruus on voinut olla aina äärettömän kokoinen. Inflaatio voi tapahtua vain avaruuden yhdessä pikkuruisessa, sattuman määräämässä osasessa.  Siellä pienestä siemenestä kasvaa koko meille nyt näkyvä universumi. Mitä tuolle kaikelle muulle avaruudelle kuuluu, se on, Kiplingin sanoin, kokonaan toinen juttu.

Marssijärjestys oli siis seuraava. Ensin oli inflaatio. Sitä kesti aikansa. Sitten inflaatio loppui ja meille tärkeä universumin osa kuumeni. Siitä alkanutta vaihetta kutsumme alkuräjähdykseksi.

Kun nyt sanomme, että universumi on 13,8 miljardia vuotta vanha, tarkoitamme siis oikeastaan, että inflaation päättymisestä on kulunut nuo pyöreät vuodet. Tai jos puhumme 0,01 nanosekunnin ikäisestä maailmankaikkeudesta, tarkoitamme että inflaation loppumisesta oli tuolloin vierähtänyt nanosekunnin sadasosa.

Emme tiedä, miten kauan inflaatio kesti. Emme tiedä, edelsikö inflaatiota jonkinlainen singulariteetti. Jos veikata pitäisi, arvaisin, että luultavasti ei. Maailmankaikkeuden ikä voi olla myös ääretön.