Vauhdikkaat tähdet synnyttävät infrapuna-aaltoja

To, 01/07/2016 - 16:18 By Markus Hotakainen
Kosmisia iskuaaltoja

Linnunradan nopeimpia tähtiä etsitään nyt infrapuna-alueen avaruusteleskooppien havainnoista. Vauhdilla liikkuvat tähdet saavat aikaan iskuaaltoja, joiden kuumentama aine lähettää lämpösäteilyä. 

Ensimmäiset tähtien synnyttämät iskuaallot löydettiin jo 1980-luvulla IRAS-infrapunasatelliitin (InfraRed Astronomical Satellite) avulla. Tuoreempia havaintoja on tehty Spitzer- ja WISE-avaruusteleskoopeilla (Wide-field Infrared Survey Explorer).

Kaksi vasemmanpuoleista kuvaa on otettu Spitzer-avaruusteleskoopilla, oikeanpuoleisin WISE-teleskoopilla. Kuvissa iskuaallot näkyvät punaisina, tähtienvälinen pöly vihreinä haituvina ja tähdet sinisinä.

Kuvissa näkyvät tähdet ovat 8–30 kertaa Aurinkoa massiivisempia. WISE-teleskoopin kuvassa on itse asiassa kaksi tähteä, joista kumpikin on saanut aikaan kosmisen iskuaallon.

Kun massiivinen tähti liikkuu avaruudessa suurella nopeudella, sen edellä harva tähtienvälinen aine puristuu kasaan: syntyy iskuaalto, joka saa aineen kuumenemaan. Muutoin hyvin hankalasti havaittava kaasu ja pöly säteilee silloin voimakkaasti infrapuna-alueella.

"Jotkut tähdet saavat lentävän lähdön, kun niiden seuralaistähti räjähtää supernovana, jotkut sinkoutuvat ulos tiheistä tähtijoukoista", listaa William Chick Wyomingin yliopistosta Laramiesta. 

Esimerkiksi Zeta Ophiuchi, 20 kertaa Aurinkoa massiivisempi tähti, kyntää avaruutta 24 kilometrin sekuntinopeudella. Siitä lähtee suurella nopeudella etenevä tähtituuli, joka törmää sen kulkureitillä olevaan aineeseen.

Spitzer- ja WISE-arkistoista on löytynyt yli 200 utumaista kaarta, jotka viittaavat kosmiseen iskuaaltoon. Niistä 80 päätyi tarkempaan tutkimukseen, joka tehtiin Wyomingin infrapunaobservatoriossa. Useimmat kaaret osoittautuivat merkeiksi massiivisista, suurella nopeudella liikkuvista tähdistä. 

"Iskuaaltojen avulla pystymme löytämään massiivisia tähtiä, jotka ovat karkumatkalla", toteaa Henry "Chip" Kobulnicky. "Ne ovat kuin laboratorioita, joissa voidaan tutkia massiivisia tähtiä ja etsiä vastauksia niiden kehitystä ja kohtaloa koskeviin kysymyksiin."

Infrapunahavainnoista kerrottiin NASAn uutissivuilla

Kuva: NASA/JPL-Caltech/University of Wyoming

Eksoplaneettojen kadonnut vesi löytyi

Ma, 12/14/2015 - 21:38 By Markus Hotakainen
Eksoplaneettakymmenikkö

Lähes kahdentuhannen tunnetun eksoplaneetan joukossa on liuta "kuumia jupitereita". Ne ovat jättimäisiä kaasuplaneettoja, jotka kiertävät tähteään niin lähellä, että niiden pintalämpötila on vähintään satoja asteita.

Pieni etäisyys tähdestä tekee näistä eksoista hankalasti havaittavia, joten vain muutamaa on pystytty tutkimaan tarkemmin. Yhteistä monille maailmoille on, että niiden kaasukehässä näyttää olevan vettä paljon vähemmän kuin teoreettisten mallien perusteella voisi olettaa.

Hubble- ja Spitzer-avaruusteleskoopeilla on nyt tehty kymmenestä Jupiterin kokoluokkaa olevasta eksoplaneetasta havaintoja, jotka kertovat, mihin vesi on kadonnut: ei mihinkään.

Kaikki tutkitut eksot vaeltavat tähtensä editse, jolloin ylikulun aikana osa tähden valosta kulkee planeetan kaasukehän läpi. 

"Kaasukehä jättää ainutlaatuisen sormenjäljen tähden valoon, joka saapuu havaintolaitteisiimme", toteaa Hannah Wakeford NASAn Goddardin avaruuslentokeskuksesta.

Yhdistämällä Hubblella ja Spitzerillä tehdyt havainnot tutkijat pystyivät kokoamaan kustakin planeetasta spektrin, joka ulottuu näkyvästä valosta infrapuna-alueelle. Kun eri aallonpituusalueilla mitattuja planeetan läpimitan arvoja verrattiin toisiinsa, saatiin selville, onko kaasukehä pilvinen vai pilvetön.

Pilvien peittämä planeetta näyttää optisella alueella suuremmalta kuin infrapuna-aallonpituuksilla, jotka pääsevät syvemmälle kaasukehään. Näin saatiin määritettyä pilvisen tai utuisen kaasukehän ja vähäisen veden mahdollinen yhteys.

"On todella jännittävää saada lopultakin tietoa näin laajasta planeettojen joukosta, sillä nyt meillä on riittävästi havaintoja eri aallonpituusalueilla, jotta voimme vertailla planeettojen erilaisia ominaisuuksia toisiinsa", sanoo David Sing Exeterin yliopistosta.

"Tulostemme mukaan vesi yksinkertaisesti piileskelee pilvien alla, joten kuivia ja kuumia jupitereita ei olekaan", selittää Jonathan Fortney Kalifornian yliopistosta Santa Cruzista.

"Vaihtoehtoinen selitys on, että planeetat muodostuvat vähävetisissä ympäristöissä, mutta se edellyttäisi kokonaan uusia teorioita planeettojen synnystä."

Tutkimuksesta kerrottiin Hubblen uutissivuilla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuva: NASA/ESA (taiteilijan näkemys tutkituista maailmoista)

Kylmän kääpiön kaasukehässä myrskyää

Pe, 12/11/2015 - 09:16 By Markus Hotakainen
W1906+40-kääpiötähti

Lyyran tähdistön suunnassa noin 53 valovuoden etäisyydellä on kääpiötähti W1906+40, jonka viileässä kaasukehässä on käynnissä melkoinen myllerrys: tähden pohjoisilla napaseuduilla riehuu valtaisa pyörremyrsky.

"Tähti on Jupiterin kokoinen ja myrsky on Jupiterin Suuren punaisen pilkun kokoinen", arvioi John Gizis Delawaren yliopistosta. "Tiedämme myrskyn riehuneen vähintään kahden vuoden ajan, todennäköisesti pidempäänkin."

Tähtien kaasukehät ovat tunnetusti rauhattomia paikkoja, mutta kääpiötähdet ovat yleensä varsin vilpoisia eikä niissä esiinny yhtä voimallisia ”sääilmiöitä” kuin kuumemmissa tähdissä. 

W1906+40:n pintalämpötila on vain 2 000 celsiusastetta, joten se luokittuu vaivoin tähdeksi. Sen sisuksissa tapahtuu kuitenkin ydinreaktioita ja se säteilee, joten se kuuluu niin sanottuihin L-kääpiötähtiin sen sijaan, että olisi ruskea kääpiö eli "epäonnistunut tähti".

W1906+40 löytyi alun perin WISE-avaruusteleskoopilla (Wide-field Infrared Survey Explorer), mutta tähti sijaitsee sattumoisin taivaanalueella, johon eksoplaneettoja etsivä Kepler-avaruusteleskooppi tuijotti neljän vuoden ajan. 

Keplerin tekemien havaintojen perusteella tähden kirkkaus muuttui tavalla, joka viittasi suureen tähdenpilkkuun, vastaavanlaiseen ilmiöön kuin oman päivätähtemme auringonpilkut. Valonvaihtelussa on yhdeksän tunnin jakso, joka vastaa tähden pyörähdysaikaa.

Kun tähteä tarkkailtiin myös Spitzer-infrapunasatelliitilla, kävi ilmi, ettei kyse olekaan magneettisesta ilmiöstä vaan valtavasta, kolme kertaa Maata suuremmasta pilvipyörteestä. Tähden pintalämpötila on niin alhainen, että sen kaasukehässä muodostuu pilviä, jotka koostuvat erilaisista mineraaleista.

Aiemminkin kääpiötähtien kaasukehissä on havaittu myrskyjä, mutta ne ovat olleet paljon lyhytikäisempiä, kestoltaan vain joitakin tunteja tai korkeintaan päiviä. 

"Emme tiedä, ovatko tällaiset tähtien myrskyt harvinaisia vai yleisiä, emmekä tiedä, miksi tämä on jatkunut niin pitkään", Gizis toteaa. Jatkossa tutkijoiden onkin tarkoitus tutkia muita samankaltaisia tähtiä ja etsiä merkkejä niiden kaasukehissä mahdollisesti riehuvista pyörremyrskyistä.

Kääpiötähden myrskystä kerrottiin NASAn uutissivuilla ja tutkimus julkaistaan Astrophysical Journal -tiedelehdessä.

Kuva: NASA/JPL-Caltech (piirros)

Kaikkeuden kaukaisin galaksi

Ti, 05/05/2015 - 12:55 By Markus Hotakainen

Tähtitieteessä etäisyys tarkoittaa myös paluuta menneisyyteen: mitä pidempi matka, sitä kauemmas historiaan katsotaan. Kansainvälinen tutkijaryhmä on löytänyt poikkeuksellisen kirkkaan galaksin, jolla on etäisyyttä yli 13 miljardia valovuotta. Nyt havaittu säteily on siis lähtenyt matkaan, kun maailmankaikkeuden ikä oli vain viitisen prosenttia nykyisestä eli noin 670 miljoonaa vuotta.

Kymmenmetrisellä Keck I -teleskoopilla tehtyjen havaintojen mukaan EGS-zs8-1-nimellä tunnettu galaksi oli varhaisen maailmankaikkeuden kirkkaimpia ja massiivisimpia kohteita.

Galaksista on tehty havaintoja aiemminkin Hubble- ja Spitzer-avaruusteleskoopeilla, mutta etäisyys saatiin määritettyä Havaijilla sijaitsevan Keck-observatorion uudella MOSFIRE-instrumentilla (Multi-Object Spectrometer For Infra-Red Exploration). Sillä pystytään tekemään spektrimittauksia yhtä aikaa useista kohteista infrapuna- eli lämpösäteilyn aallonpituuksilla.

 

 

Nykymittapuun mukaan EGS-zs8-1 ei ollut mikään jättiläinen, sillä sen massaksi on määritetty vajaa kuudesosa Linnunradan massasta. Merkittävää on kuitenkin se, että galaksi oli ehättänyt kerätä niinkin paljon ainetta alle 700 miljoonassa vuodessa. Nopeasti kasautuneesta kaasusta syntyi myös tähtiä hyvin tiuhaan tahtiin, noin 80 kertaa nopeammin kuin Linnunradassa nykyisin.

Alle miljardin vuoden ikäisen maailmankaikkeus tutkimus on merkittävää paitsi galaksien synnyn myös universumin itsensä kehittymisen kannalta. Noihin aikoihin galaksienvälinen vetykaasu oli muuttumassa neutraalista ionisoiduksi eli elektronit lähtivät karkuteille.

"Näyttää siltä, että EGS-zs8-1:n kaltaisten ensimmäisten galaksien nuoret tähdet olivat keskeisin tekijä tässä reionisaatioksi kutsutussa muutoksessa", arvioi tutkimukseen osallistunut Rychard Bouwens Leidenin observatoriosta.

Viimeaikaiset havainnot sekä Keck- että Hubble- ja Spitzer-teleskoopeilla ovat osoittaneet, että massiivisia galakseja syntyi jo nuoressa maailmankaikkeudessa. Niiden ominaisuudet olivat kuitenkin tyystin toisenlaisia kuin nykyisillä tähtijärjestelmillä. Syynä oli mitä ilmeisimmin hyvin nopea massiivisten tähtien syntyprosessi ja näiden nuorten tähtien vuorovaikutus galakseissa olevan kaasun kanssa.

Kaikkeuden kaukaisimmasta galaksista kerrottiin Keck-observatorion uutissivuilla ja tutkimus julkaistiin tänään Astrophysical Journal Letters -lehdessä.

Kuvat: NASA/ESA/P. Oesch & I. Momcheva (YALE UNIVERSITY)/THE 3D-HST/HUDF09/XDF TEAMS (galaksi) ja NASA/JPL (Keck-observatorio)