Biomassa laukaistiin avaruuteen Jari Mäkinen Ti, 29/04/2025 - 15:37
Biomass taiteilijan näkemänä
Biomass taiteilijan näkemänä

Euroopan avaruusjärjestön uusin Maata havaitseva tiedesatelliitti Biomass on päässyt avaruuteen. Nimensä mukaisesti satelliitin tehtävänä on kartoittaa ja tutkia maapallon pinnalla olevaa biomassaa, etenkin metsiä sekä niiden osaa planeettamme hiilikierrossa.

Laukaisu tapahtui tänään Ranskan Guyanassa sijaitsevasta Kouroun avaruuskeskuksesta Vega-C-raketilla klo 12.15 Suomen aikaa. Satelliitti irrotettiin onnistuneesti raketin ylimmästä vaiheesta noin tunnin kuluttua laukaisusta ja klo 13.28 Suomen aikaa satelliitista saatiin ensimmäinen signaali – se toimi ja kaikki oli hyvin.

Saksan Darmstadtissa sijaitseva Euroopan avaruusoperaatiokeskus alkaa nyt tarkistaa satelliitin järjestelmiä ja virittää sitä vähitellen havaintotyöhön.

Satelliitin erikoisuus on suuri, 12 metriä halkaisijaltaan oleva antenni, joka on tehty verkosta. Laukaisun aikaan se oli pakattuna, mutta avaruudessa se avataan 7,5 metriä pitkän puomin päässä. Myös puomi oli laukaisun aikaan käännettynä kiinni satelliittiin, jotta se olisi mahtunut Vega-raketin nokkakartion sisään. Puomin avaaminen on myös jännittävä vaihe.

Suuri antenni on osa tutkalaitteistoa, jonka avulla pystytään mittaamaan ja tutkimaan paljon aikaisempia satelliitteja paremmin metsiä ympäri maailman.

Biomass puhjastilassa

 

Metsillä – niin pohjoisilla havumetsillä, tropiikin sademetsillä kuin autiomaiden käkkäräpuisilla ja kitukasvuisilla metsillä – on suuri osa maapallon hiilikierrossa. Ne sitovat ja varastoivat suuria määriä hiilidioksidia, mikä auttaa osaltaan säätelemään Maan lämpötilaa.

Metsät sitovat noin 8 miljardia tonnia hiilidioksidia vuosittain, mutta metsäkato ja metsien muuttuminen harvemmiksi sekä hiiliköyhemmiksi vapauttaa koko ajan metsiin varastoitunutta hiiltä takaisin ilmakehään. Tämä pahentaa osaltaan ilmastonmuutosta.

Haasteena on tähän saakka ollut se, että emme ole voineet määrittää tarkasti kuinka paljon hiiltä metsät varastoivat ja miten nämä varastot muuttuvat esimerkiksi nousevien lämpötilojen, ilmakehän hiilidioksidipitoisuuden kasvun ja ihmisen aiheuttamien maankäytön muutosten vuoksi.  

Biomass auttaa tässä. Sen tutka on ensimmäinen ns. P-kaistalla, eli taajuusalueella noin 300 MHz – 1 GHz, toimiva kaukokartoitustutka. Biomass-satelliitin tutka toimii 435 megahertsin taajuudella, sen lähettämien radioaaltojen aallonpituus on 69 cm.

Tämä aallonpituus on kätevä siksi, että signaali läpäisee tiheitä metsälatvustoja, pilviä ja jopa osittain maaperää. Se siis ei havaitse vain lehtiä ja latvustoja, vaan pystyy näkemään kirjaimellisesti puut metsältä koska kuvissa ovat myös puiden rungot ja oksat.

Näin voidaan kartoittaa tarkasti maapallon biomassan määrä ja jakautuminen, jotka kertovat suoraan metsien hiilivarastoista.

Lisäksi tämän aallonpituuden avulla voidaan "nähdä" metsättömillä alueilla pinnan alle. Biomass saattaa siis paljastaa myös pinnanalaisia geologisia muodostumia tai esimerkiksi ihmisten tekemiä, hiekkaan peittyneitä rakenteita.

Samoin P-kaistan tutkalla voidaan arvioida tulvariskejä eri alueilla sekä kuvata jääpeitteiden sekä jäätiköiden pinnan alapuolisia maisemia.

Vaikka antenni on suuri, niin satelliitti pystyy tekemään havaintojaan maksimissaan vain 50 metrin resoluutiolla. Se ei siis näe yksittäisiä puita, vaan kartoittaa puumassaa laajemmin.

Vega-C laukaisualustalla

Biomass-satelliittia kuljettanut Vega-C laukaisualustalla ennen laukaisua. Kuvat: ESA ja ESA / M. Pédoussaut.

 

Biomass-satelliitin laukaissut Vega-C on uusi, isompi versio alkuperäisestä Vega-raketista, joiden lennot päättyivät viime syyskuussa. Kummallakin raketilla on ollut viime vuosina vastoinkäymisiä, mutta nyt hyvin onnistunut laukaisu saanee Vega-C:n takaisin normaalirutiiniin. 

Tälle vuodelle on suunnitteilla vielä kymmenkunta Vega-C:n laukaisua – seuraava on heinäkuussa. Kaikki virallisessa suunnitelmassa olevat lennot eivät pääse tänä vuonna matkaan, mutta joka tapauksessa lentotahti on nyt nopeutumassa olennaisesti.

Vega-C on 35 metriä korkea ja sen massa laukaisuvalmiina on 210 tonnia. Siinä on kolme kiinteällä polttoaineella toimivaa vaihetta ja neljäs, ylin vaihe, joka käyttää nestemäisiä ajoaineita, jotta sen moottoria voidaan sytyttää ja sammuttaa – kuten tällä lennolla. Näin satelliitit voidaan ohjata tarkasti halutulle kiertoradalle.
 

Asteroidi 2024 YR4 - tänne törmäys voisi osua ja tällainen se voisi olla Jarmo Korteniemi Ke, 05/02/2025 - 15:31
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan

Seuraamme asteroidi 2024 YR4:n havaitsemista ja sen mahdollista törmäysuhkaa. Tässä jutussa  on analyysi sen koosta, mahdollisesta törmäyspaikasta ja siitä, miten törmäys saattaisi tapahtua.

Aloitetaan asteroiditapauksen analysointi kokoarviolla.

Kaikkein todennäköisimmin 2024 YR4 on läpimitaltaan noin 55-metrinen. Kuvittele siis eteesi 15-kerroksisen talon korkuinen kivimurikka, joka peittää jalkapallokentän (100x60 m) puolikkaan.

Tuollaisen asteroidin massa on noin 2 miljoonaa tonnia. Se on toisin sanoen 250 kertaa massiivisempi kuin raskain Suomessa operoiva tavarajuna, 18 kertaa massiivisempi kuin Turussa rakennettu Oasis of the Seas -jättiristeilijä, tai kolmanneksen Kheopsin kuulusta pyramidista.

Lisäksi mitat voivat olla jonkin verran suurempia tai pienempiä. Halkaisijasta voidaan sanoa varmasti vain että asteroidi on 40–100 -metrinen. Sen massa taas on 0,3–33 miljoonaa tonnia, tiheydestä riippuen. Materiaali kun voi olla komeettojen tapaan hötyistä jäätä, kivimurskaa, umpikiveä, tai jopa tiivistä rauta-nikkeliseosta. Kaikkea tältä väliltä.

Eduskuntatalo

Kokoja on varsin vaikea hahmottaa, mutta Eduskuntatalo Helsingissä on hyvä vertailukohta: sen leveys pohjois-eteläsuunnassa on 78 m ja länsi-itäsuunnassa 55 m. Ristimitta on noin 95 m. Kuva: Jari Mäkinen
 

Kokoarvio perustuu asteroidin oletettavasti heijastaman valon määrään. 

Aurinkokunnassa tiedetään kuljeskelevan niin kirkkaita kuin tummempiakin pienkappaleita. Jos 2024 YR4:n pinta sattuu heijastamaan paljon valoa, sen läpimitta olisi hieman alle 50-metrinen, kun taas tummempana ja huonosti heijastavana kappaleena halkaisija voisi olla jopa sadan metrin luokkaa. 

Edellisessä jutussamme mainittu ESA:n arvio on maksimissaan 95 metriä, mutta muutamalla metrillä ei ole ison kuvan kannalta merkitystä.

Jahka asteroidin spektri saadaan mitattua tarkemmin, nähdään kuinka se heijastaa eri aallonpituuksia. Tuolloin pintamaterian laatua voidaan arvioida tarkemmin ja sen koostumus ja halkaisija voidaan lyödä lukkoon varsin tarkkaan. Mutta sen massa on yhä tuolloinkin epäselvä, sillä näistä tiedoista ei vielä pystytä sanomaan että onko ehkä kyse soraläjästä, yhtenäisestä kiinteästä kappaleesta, vai jostain näiden ääripäiden väliltä.

Asteroidi Ida

Asteroidi 243 Ida on tyypillinen aurinkokunnan pienkappale, joskin se on kertaluokkaa suurempi kuin 2024 YR4. Halkaisijaltaan Ida on 59,8 × 25,4 × 18,6 kilometriä. Galileo-luotain lensi sen ohi Marsin ja Jupiterin välissä vuonna 1994. Kuva: Nasa.

 

Törmäystapahtuma hetki hetkeltä

Kuvitellaan, että 2024 YR4 todella törmää. Mitä tuolloin tapahtuisi?

Todennäköisin törmäyshetki näyttää tällä hetkellä olevan 22.12.2032 klo 11:37 Suomen aikaa. Epävarmuutta on tosin muutaman tunnin verran, eli se voi sattua joskus välillä klo 08.09–15.05. 

Kunhan törmäysaika lasketaan sekunnilleen, selviää myös lopullinen törmäyspaikka. Nykytiedoilla voidaan sanoa vain, että törmäyspaikka on luultavasti jossain hieman päiväntasaajan pohjoispuolella: Etelä-Amerikassa, Afrikassa, Intiassa, tai niiden välisillä merialueilla.

55-metrinen asteroidi on riittävän suuri näkyäkseen ihan paljaalla silmälläkin ehkä puolisen tuntia ennen törmäystä taivaalla nopeasti liikkuvana valopisteenä. Sen voi kuitenkin erottaa vain yöpuolelta, sieltä mistä katsoen Aurinko sattuu valaisemaan kappaleesta riittävän suurta osaa. 

Päiväpuolella asujat eivät kiveä voi nähdä ennen sen tuloa ilmakehään.

Sekä asteroidin kiertonopeus Auringon ympäri että Maan painovoiman vaikutus siihen on saatu laskettua jo varsin tarkkaan. Törmäyksessä asteroidi tunkeutuu ilmakehään huimalla 17 kilometrin sekuntivauhdilla.

Helsingistä pääsisi Tampereelle tuolla vauhdilla 10 sekunnissa. Asteroidin koko ilmalento hoituu samassa ajassa. Ilmassa ehtii kuitenkin tapahtua hyvin paljon.

Ilma asteroidin edessä puristuu kasaan, ionisoituu ja alkaa hehkua, kuumentaen samalla murikan pintaakin ehkäpä noin millin syvyydeltä. Taivaalla näkyy nopeasti suureneva ja paikoin hehkuva pallo. Sen perässä leviää sankka savuvana.

Ilmakehä jarruttaa asteroidia rankasti, rasittaen sen rakennetta äärimmilleen. Siihen syntyy pieniä rakoja ja halkeamia, jotka repeytyvät lopulta auki. 

Noin 50 kilometrin korkeudella asteroidi alkaa hajota, mikä tosin näkyy maanpinnalle vain välähdyksinä ja savuvanan hetkellisiä laajentumina. Lopulta 5 – 6 kilometrin korkeudella asteroidi hajoaa lähes täydellisesti suuressa räjähdyksessä.

Tseljabinskin asteroidi

Noin 15 metriä halkaisijaltaan ollut meteori törmäsi Maahan Tšeljabinskin luona 15. helmikuuta 2013. Se räjähti noin 30–50 kilometrin korkeudessa. Kuva: via ESA.

 

Räjähdyksen tuloksena pintaan alkaa parin sekunnin päästä ropista meteoriitteja, luultavasti yhä muutaman kilometrin sekuntinopeudella. Mukana on kaikkea tomusta pesukoneen kokoisiin järkäleisiin. 

Kivien jysähtelyä maahan voi verrata vaikkapa rypälepommien keskityksen. Rytäkässä syntyy pieniä kraatterinpoikasia sinne sun tänne. Mutta tämä pommitus rajautuu kuitenkin pääosin asteroidin alkuperäiseen lentosuuntaan. Se ei suinkaan ole pahinta mitä on luvassa.

Tiedetuubin klubi Arizonan meteorikraatterilla

Arizonassa oleva Barringerin kraatteri on noin 1200 metriä leveä ja 170 metriä syvä. Sen synnytti Maahan osunut noin 50-metrinen nikkelirauta-asteroidi 50 000 vuotta sitten. Tiedetuubin Klubi vieraili paikalla vuonna 2017. Kirjoittaja on eturivissä neljäs vasemmalta. Kuva: Jari Mäkinen.

 

Paineaalto

Törmäyksen suurin haitta tulee suoraan ilmassa tapahtuneesta räjähdyksestä. Voimakkuudeltaan posaus on noin kahdeksaa megatonnia TNT:tä, vastaten suurta vetypommia. Siitä lähtevä paineaalto suuntautuu tasaisesti joka suuntaan, kaataen ja murskaten taloja, puita, siltoja – lähes kaikki maanpäälliset rakenteet. Äänen nopeudella etenevä paineaalto saavuttaa minuutissa 20 kilometrin etäisyyden.

Tämä nähtiin selvästi vuonna 2013 tapahtuneessa Tšeljabinskin meteoritörmäyksessä: paineaalto sai aikaan suuria vaurioita, kappaleiden putoaminen maahan ei.

Suoraan räjähdyksen alla olevasta pisteestä täytyy mennä noin viiden kilometrin päähän, jotta selviäminen olisi mahdollista muutoin kuin aivan ihmeen kaupalla. Todennäköistä se alkaa kuitenkin olla vasta 15 kilometrin päässä.

Merellä sattuessaan paineaalto puskee alleen jopa parikilometrisen kraatterin, joka kuitenkin oikenee nopeasti. Samalla syntyy ulospäin leviävä tsunamiaalto. Aivan kraatterin reunalla sen korkeus on useita kymmeniä metrejä, mutta jo 10 kilometrin päässä vain 2–4 metriä. 

Symmetrisyydestä ja veden edestakaisesta loiskahtelusta johtuen tsunamia ei 20 kilometrin etäisyydellä enää ehkä edes huomaa.

Nyt määritellyllä vaaravyöhykkeellä elää vähintään 200 miljoonaa ihmistä. 

Miljoonakaupunkeja alueella on hieman yli 30 kappaletta. Äärimmäisen ikävästi osuessaan asteroidi voisi tuhota hetkessä vaikkapa jonkin jättimäisen metropolin, kuten Bogotan (11 miljoonaa asukasta), Kalkutan (15 milj.), Lagosin (21 milj.), Mumbain (23 milj.) tai Dhakan (24 milj.).

Törmäysriskialue

Rajattu alue osoittaa tämänhetkisen törmäysriskin alueen, pohjalla on vuoden 2020 väestöntiheyskartta. Kuva: Daniel Bamberger / Duncan Smith (LuminoCity3D) / Jarmo Korteniemi.

 

Onneksi törmäys on hyvin epätodennäköinen, ja osuminen kaupunkiin on vielä hirmuisen paljon epätodennäköisempää.

Nämä vaikutukset on laskettu uumoillun kokoiselle 55-metriselle kiviasteroidille. Laskennallisesti moisia törmää Maahan keskimäärin tuhannen vuoden välein.

Hieman pienempi tai harvempaa materiaalia oleva asteroidi räjähtäisi korkeammalla ja pienemmällä voimakkuudella. Sen synnyttämä paineaalto ei yltäisi yhtä vahvana yhtä kauas, eikä tuhovaikutus olisi yhtä mittava. Kaupungin päälle osuessaan kuolonuhreilta ei luultavasti voitaisi kuitenkaan välttyä, jos alla olevia alueita ei evakuoitaisi ajoissa.

Suurempi (tai tiheämpi) murikka räjähtäisi joko alempana ilmassa, tai yltäisi maahan asti ja siirtäisi energiastaan aimo osan kiveen. Tuolloin pahin ongelma ei lähiympäristössä olisi paineaalto, vaan niskaan satava kiviaines.

Kaikeksi onneksi 2024 YR4 on riittävän pieni (ja törmäyshetki on vielä tarpeeksi kaukana) että törmäys voitaisiin nykytekniikalla välttää. Toimeen täytyisi kuitenkin ryhtyä pian sen jälkeen jos ja kun törmäys varmistuu.

Riittää, että sen vauhtia hidastetaan tai nopeutetaan vain hieman, jotta se ei ole Maan kanssa samassa pisteessä aivan tismalleen samaan aikaan. DART-luotain osoitti vuonna 2022, että suurempikin asteroidi liikahtaa riittävästi kun saa vain riittävän nopean töytäisyn raskaalla laitteella.

DARTin törmäys Dimorphosiin kuvattuna Etelä-Afrikassa olevalla Lesedi-teleskoopilla. Kuva: SAAO

 

Mitä aikaisemmin asteroidia päästään tuuppimaan, sitä helpommin sen sijaintiin Maan luona vuonna 2032 voisi vaikuttaa.

Toisaalta, jos törmäyspaikka olisi riittävän syrjäinen, asteroidin kannattaisi ehdottomasti antaa törmätä. Törmäysprosessia ja sen vaikutuksia olisi nimittäin tärkeätä päästä tutkimaan ihan todellisessa maailmassa – tämä kappale kun on tarpeeksi suuri, mutta ei kuitenkaan niin iso, että sillä olisi maailmanlaajuisia vaikutuksia.

Olisi hyvä päästä varmistamaan että simulaatiot antavat edes suurpiirteisesti oikeata tietoa.

Tarkasti ennustettu ja seurattu isohko törmäys olisi täysin ainutlaatuinen tapahtuma koko ihmiskunnan historiassa. Pääsisimme kerrankin näkemään Aurinkokunnan yleisimmän geologisen prosessin toimessa.

Peukut pystyyn!

-

Otsikkokuvassa on liitetty yhteen Apollo-astronauttien kuvaama maapallo ja Lutetia-asteroidi. Alkuperäiset kuvat: Nasa.

Parker-luotain lähes sukelsi Aurinkoon – ja selvisi hengissä Jari Mäkinen Pe, 27/12/2024 - 23:12
Parker-aurinkoluotain Nasan piirroksessa
Parker-aurinkoluotain Nasan piirroksessa
Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Nasan Aurinkoa tutkiva luotain liippasi joulun aikaan hyvin läheltä tutkimuskohdettaan, ja selvisi tästä lähes kamikaze-tyyppisestä tempusta hengissä (kuten odotettiinkin).

Aurinkoa tutkii parhaillaan kaksi luotainta lähietäisyydeltä: Nasan Parker Solar Probe ja Euroopan avaruusjärjestön Solar Orbiter. 

Kumpikin näistä kiertää Aurinkoa planeettojen tapaan radoilla, jotka tuovat ne aina välillä hyvin lähelle Aurinkoa. Koska luotaintlen tutkimuslaitteet ja lentoradat on suunniteltu toisiaan täydentäviksi, hoitaa Nasan luotain lähemmän tutkimisen ja eurooppalaisluotain katselee kauempaa.

Nyt jouluaattona 2024 Parker-luotain teki toistaiseksi kaikkein läheisimmän Auringon ohilennon. Kello 13.53 Suomen aikaa sen etäisyys Auringon pinnasta oli vain 6,1 miljoonaa kilometriä.

Koska Auringon halkaisija on noin 1,4 miljoonaa kilometriä, tapahtui ohilento hyvin läheltä.

Auringolla ei ole kiinteää pintaa, vaan höttöisä välialue, missä turbulenttisen, kuuman kaasun tiheys muuttuu noin 500 kilomerin paksuisessa kerroksessa läpinäkyväksi. 

Tuon "pinnan" päällä on laaja kaasukehä, jota kutsutaan koronaksi. Silläkään ei ole tarkkaa yläpintaa, vaan se vain hiipuu vähitellen avaruuteen muuttuen aurinkotuuleksi. Karkeasti koronan tiiveimmät osat kurottavat kuitenkin noin kahdeksan miljoonan kilometrin päähän Auringon näkyvästä pinnasta.

Parker siis hujahti nyt koronan lävitse – kuten se teki jo edellisilläkin kerroilla, kun se on tullut radallaan lähelle Aurinkoa. Luotain kiertää Auringon noin 88 vuorokaudessa, ja syyskuusta 2023 alkaen se on ollut perihelissä (ratansa Aurinkoa lähimmässä kohdassa) noin 7,26 miljoonan kilometrin päässä.

Ratansa kaukaisimmassa kohdassa luotain on etääntyy Auringosta Venustakin kauemmaksi. Itse asiassa Venusta käytettiin hyväksi radan muuttamiseen tätä läheisintä ohistusta varten marraskuun 6. päivänä, jolloin se ohitti Venuksen vain 317 kilometrin etäisyydeltä – siis lähes sen pilvipintaa hipoen.

Tämänhetkisen lentosuunnitelman mukaan Parker tekee vielä neljä lähiohitusta (22. maaliskuuta, 19. kesäkuuta, 15. syyskuuta ja 12. joulukuuta) ennen kuin sen ensisijainen tehtävä päättyy.

Jos luotain on näiden jälkeen vielä toimintakuntoinen, sen todennäköisesti annetaan jatkaa vielä tutkimuksiaan. Toimivaa ja ainutlaatuisia havaintoja tekevää luotainta ei kannata sammuttaa.

Parker Solar Probe kuvattuna juuri ennen laukaisuaan elokuussa 2018.

Aurinko lämmittää luotainta erittäin voimakkaasti lähiohituksen aikana. Siihen kohdistunut paahde oli nyt joulu aikaan noin 457 kertaa voimakkaampi kuin on Auringon lämpöteho täällä maapallon luona. 

Siksi Parker-luotaon on suojattu 2,3 metriä halkaisijaltaan olevalla 11,4 cm paksulla lämpösuojalla, joka kestää noin 1370°C:n lämpötilan ja auttaa pitämään luotaimen sisällä olevat laitteet alle 30°C:n lämpötilassa.

Lähiohituksen aikana Aurinko itse häiritsee niin voimakkaasti yhteydenpitoa luotaimeen, että siihen ei voitu olla yhteydessä. Se oli ohjelmoitu tekemään ennalta tutkimuksensa ja ottamaan yhteyttä pahimman kuumennuksen jälkeen 27. joulukuuta.

Ja yhteys onnistuttiin palauttamaan. Tietojen lataaminen tältä jouluiselta ohilennolta alkaa aikaisintaan 1. tammikuuta uuden vuoden puolella.

Matkaan luotain lähetettiin elokuussa 2018.

Näin ilma muuttuu kiinteäksi (video) Jari Mäkinen Ke, 09/03/2016 - 11:42
Typpi muuttuu kiinteäksi
Typpi muuttuu kiinteäksi


Kuten tiedetään, on aineella kolme olomuotoa: kiinteä, neste ja kaasu. Listaan voisi lisätä vielä superkuuman plasman ja erittäin kylmät kondensaatit, mutta selvästi ympärillämme olevia olomuotoja on nämä kolme. Mutta milloin olet nähnyt viimeksi ilmassa olevia kaasuja kiinteinä? Et varmaan koskaan.


Päivän kuvaTänään vuonna 1893 professori James Dewar kertoi kuuluisan brittiläisen tiedeyhdistyksen Royal Societyn tapaamisessa, että hän oli onnistunut muuttamaan ilmaa kiinteäksi.

Hän sanoi pakastaneensa ilmaa kirkkaaksi, läpinäkyväksi jääksi.

Kyseessä oli omituinen havainto, koska jään tarkkaa koostumusta ei kyetty sanomaan ja jäätyminen oli tapahtunut kummallisesti.

"Se on kuin hyytelöä, missä on kiinteää typpeä ja mukana hieman nestemäistä happea samaan tapaan kuin lihahyytelössä voi olla nestemäistä vettä kiinteän liivatteen seassa."

"Tai se voi olla oikeaa, kiinteää ilmaa, missä happi ja typpi ovat kumpikin kiinteissä muodoissaan."

1800-luvun loppu oli jännittävää aikaa fysiikassa tässäkin suhteessa, koska tuolloin tekniikka oli sillä tasolla, että tutkijat pystyivät saavuttamaan typen ja hapen nesteyttämiseen vaadittavia matalia lämpötiloja.

Typpi kehuu -195,8°C:n lämpötilassa ja jäätyy -210°C:n lämpötilassa, hapen sulamispiste on -218,8°C ja kiehumislämpötila -182,9°C. Ne ovat siis hyvin saman kaltaisia ja voivat olla samanaikaisesti niin nesteenä kuin kiinteässäkin muodossa.

1800-luvun puolivälissä Michael Faraday onnistui nesteyttämään suuren osan kaasuista, paitsi kuusi hankalinta, joita hän kutsui pysyviksi kaasuiksi. Näitä olivat happi, vety, typpi, hiilidioksidi, metaani ja typpioksidi.

Heliumista ei tuolloin tiedetty vielä mitään (ja sen löytäminen ja nesteyttäminen on aivan oma tarinansa).

Ranskalainen Louis Paul Cailletet ja sveitsiläinen Raoul Pictet tekivät vuonna 1877 ensimmäiset pisarat nesteytettyä ilmaa, mutta ilman muuttaminen kiinteäksi jäi vielä odottamaan.

Ja 123 vuotta sitten professori Dewar onnistui siinä, mikä on mahdollista tehdä melkein missä tahansa kemianlaboratoriossa nykyisin. Tästä esimerkki on päivän kuvana oleva malja kiinteää ilmaa.

Kuva on kaappaus alla olevalta videolta, jolla temppu tehdään kätevästi painekammiossa painetta vähentämällä.

Ja tässä toinen video, jolla tehdään kiinteää typpeä:

Gaia saapui perille Lagrangen pisteeseen

Lentodynamiikkaväki työssään. Kuva: ESA / J. Mai
Lentodynamiikkaväki työssään. Kuva: ESA / J. Mai
Missä L2 on?

ESAn tähtitaivasta kartoittava luotain Gaia on saapunut onnellisesti perille Lagrangen pisteeseen 2 – tai tarkalleen ottaen kiertoradalle tämän painovoimien tasapainopisteen ympärillä. 

Sen jälkeen kun Gaia laukaistiin juuri ennen joulua, on se lentänyt kohti tätä 1,5 miljoonan kilometrin päässä olevaa paikkaa ja sen laitteita on käynnistetty hiljakseen. Gaia-hankkeen suomalainen tiedejohtaja Timo Prusti kirjoitti Gaian ensitoimista avaruudessa blogikirjoituksessaan 31. joulukuuta.

Asettuminen radalle matemaattisen pisteen ympärillä vaatii luonnollisesti paljon laskemista, lentodynamiikan tuntemusta ja kykyä tehdä satelliitilla tarkkoja ohjausliikkeitä. Kun Gaia asettui radalleen tiistaina (7. tammikuuta), sen kahdeksan pientä rakettimoottoria komennettiin toimimaan lähes kahden tunnin ajan klo 20.58 Suomen aikaa alkaen. 

Ne hidastivat matkavauhtia ratanopeudeksi ja muuttivat samalla lentorataa juuri sopivaksi. Tätä tosin tullaan vielä hienosäätämään 14. tammikuuta, kun kaikki rataparametrit on saatu varmistettua.

Tätä toimenpidettä oli valmisteltu jo muutaman vuoden ajan, sillä kaksitonnisen, vain pienillä rakettimoottoreilla varustetun avaruusaluksen vieminen siirtoradalta, minne Sojuz-kantoraketti sen jätti laukaisun jälkeen, L2-pisteen ympärillä olevalle erityiselle ns. Lissajous-tyyppiselle radalle ei ole yksinkertaista. 

Olennaisin hankaluus on se, että L2-pisteessä ei ole mitään kiinteää kappaletta, joka vetäisi alusta puoleensa ja jonka suhteen olisi helppo navigoida.

L2 on siis vain tyhjää avaruutta, missä sattumalta vain Maan ja Auringon vetovoimat sekä kiertoradan keskihakuisvoima (ns. keskipakovoima) nollaavat toisensa siten, että periaatteessa L2-pisteeseen sijoitettu alus kiertää Aurinkoa samalla periodilla Maan kanssa. 

Käytännössä L2:ssa ei olla, vaan sitä kierretään. Gaian kiertoaika pisteen ympärillä on 180 vuorokautta. Kiertorata on säädetty sellaiseksi, että se on kohtisuorassa tasossa planeettojen ratatason, ekliptikan, kanssa, mutta sen akseli osoittaa aina kohti Maata. Rata siis kiertyy suhteessa Aurinkoon koko ajan, mutta pysyy 263 000 x 707 000 x 370 000 km kooltaan olevan kuvitteellisen laatikon sisällä.

Rataa täytyy säätää voin kerra kuukaudessa, sillä L2:ta kiertävät kappaleet koittavat luontaisesti "karata" radoiltaan, ja siten Gaiaakin täytyy koko ajan sysätä ikään kuin takaisin paikalleen.

Missä L2 on?

Poissa varjosta, kaukana Auringosta

Eräs tärkeä kriteeri radanhallinnassa ja ennen kaikkea sitä etukäteen suunnitellessa oli se, että Gaiaa ei saa päästää Maan varjoon. Varjon koko ei ole kovin suuri 1,5 miljoonan kilometrin päässä, mutta koska määritelmänsä mukaisesti L2 on tarkalleen Maan varjossa, on vaara vaanimassa koko ajan. Gaian lämpötilaa säädellään hyvin tarkasti ja vaikka luotain itse kestäisikin varjossa olemisen, eivät sen kamerat toimi silloin normaalisti ja tulosten laatu kärsii.

Nykyinen rata estää tämän viiden vuoden ajan, mutta sen jälkeen rataa pitää säätää hieman enemmän, jotta Gaia ei joutuisi varjoon.

Gaian keskiakseli ei saa myöskään osoittaa kohti Aurinkoa: herkät teleskoopit rikkoontuvat välittömästi, jos kirkas Aurinko pääsee paistamaan niiden sisälle. Siksi Gaialla on koko ajan vähintään 15 asteen kulma Aurinkoon. Samalla aurinkopaneelien teho olisi parhain suoraan Aurinkoon osoitettaessa, joten kulma on määrätty siten, että sähköä saadaan tarpeeksi, mutta samalla havaintolaitteet ovat turvassa. Lisäksi ratadynamiikkatiimi on joutunut ottamaan huomioon Maahan osoittavan antennin suunnan.

"Suurin ero Gaian ja monien Maata tai vaikkapa Marsia kiertävien satelliittien välillä on se, että planeettaa kierrettäessä kiertoradat ovat yleensä stabiileita, ja jos jokin ratamuutos ei mene aivan toivotulla tavalla, sitä voidaan korjata helposti myöhemmin", selittää Mathias Lauer, eräs Euroopan avaruusoperaatiokeskuksessa ESOCissa Gaian parissa työskentelevistä ratadynamiikka-asiantuntijoista.

"Gaian tapauksessa rata ei ole stabiili, vaan meidän täytyy olla tarkkana jokaista askelta ottaessamme."

Jotta asettuminen radalle L2:n ympärillä sujui hyvin, Gaia laitettiin hyvissä ajoin ennen manovääriä erityiseen tilaan, missä se sieti normaalia enemmän epätavallisia toimia ennen menoa ns. turvatilaan. Tämä esti sen, että luotain olisi jäänyt odottamaan ohjeita Maasta kesken tärkeän toimenpidesarjan.

Ennen pitkän ratapolton alkua tiistaina illalla, lennojohto oli yhteydessä Gaiaan ESA:n Cerberoksessa, Espanjassa, olevan 35-metrisen antennin kautta ja tarkistivat, että Gaia oli valmis. 

Lennonjohtotoiminta siirrettiin sitten ESOCin suureen lennonjohtohuoneeseen, missä aluksen tilaa, rataa, avaruussäätä, tietoliikenneyhteyksiä ja kaikkea muuta asiaan vaikuttavaa voidaan seutata paremmin ja missä suuri määrä asiantuntijoita saadaan kerralla konsolien ääreen. Normaalisti Gaian lennonjohto tapahtuu pienemmästä tilasta ja lopulta osana rutiinitoimintoja.

Klo 20.20 tiistaina illalla Cerberoksen antennin kautta saatiin tieto siitä, että Gaia oli valmis, ja muutamaan minuuttia muöhemmin, klo 20.35, Gaia kääntyi oikeaan asentoon polttoa varten. Ja sitten, tarkalleen klo 20.58 rakettimoottorit syttyivät ja toimivat 103 minuutin ajan.

Ja niin Gaia oli oikealla radallaan. Kunhan tutkimuslaitteet on saatu nyt kalibroitua, voi Gaia aloittaa pitkän ja puuduttavan, mutta huiman kiinnostavan työrupeamansa.