ilmastomallit

Se on virallista: vuosi 2016 oli ennätyskuuma

Ti, 01/10/2017 - 21:20 By Jari Mäkinen
Lämpötilan ero tavalliseen vuonna 2016

Viime viikon pakkasten jälkeen ei ilmaston lämpeneminen liene ensimmäisenä mielessä, mutta lukuarvo on 1,5°C. Vuosi 2016 oli tuon verran kuumempi kuin vuodet keskimäärin ennen kuin teollinen vallankumous alkoi.

Ensimmäisenä viime vuoden tilastoja ennätti esittelemään EU:n Copernicus -maanhavainnointiohjelman tietojen varassa työskentelevä C3S -tutkijaryhmä (Copernicus Climate Change Service), jonka mukaan maailmanlaajuinen keskilämpötila vuonna 2016 oli 14,8°C. 

Se ylittää vähän, mutta selvästi edellisen vuoden: 2015:n oli 0,2°C viileämpi.

Kun tilastoja katsotaan kauemmaksi, 1700-luvun puoliväliin, niin nyt mennään 1,3°C korkeammalla tasolla. Kun tätä verrataan Pariisin ilmastokokouksessa vuonna 2015 sovittuun alle kahden asteen lämpenemistavoitteeseen, on kehitys menossa jopa nykyisin päästöleikkauksin huonoon suuntaan.

Pelkkä lämpeneminen ei ole ongelmana, vaan myös äärimmäisten sääilmiöiden yleistyminen ja siihen liittyen jäätiköiden sulaminen sekä meren pinnan nouseminen. Näistä koituu C3S:n mukaan lähiaikoina miljardien eurojen ylimääräiset kustannukset vuosittain.

“Lämpötila kiinteän maan ja merten päällä nousee, maailman merijään pinta-ala pienenee, jäätiköiden tilavuus ja lumipeite kutistuvat”, luettelee Euroopan keskipitkän ajanjakson sääennustekeskuksen Copernicus-palveluiden johtaja Juan Garcés de Marcilla jo nähtävissä olevia seurauksia.

“Sadetta tuovat sääsysteemit ovat muuttumassa ja ilmastoon liittyvät äärimmäisyydet, kuten kovat helteet, tulvat ja kuivuudet lisääntyvät.”

Viime vuonna lämpötiloihin vaikutti etenkin alkuvuodesta vielä voimissaan ollut El Niño -ilmiö, mutta päinvastoin kuin tavallisesti, lämpötilat eivät alkaneet pudota ilmiön heikennyttyä. Todennäköisesti pohjoisen ja eteläisen napa-alueen ennätyksellisen vähäinen merijää on vaikuttanut asiaan.

Lämpötilan nousu vuosittain
Kuvaaja esittää kunkin vuoden keskimääräisen lämpötilan kahden metrin korkeudelta mitattuna. Otsikkokuvassa on lämpötilan ero verrattuna vuosien 1981-2010 keskiarvoon.

C3S:n tietojen perusteella lähes kaikkialla ympäri planeettamme viime vuoden keskilämpötila oli normaalia suurempi. Suurimpia erot olivat pohjoisnavan ympäristössä, missä viime aikoina on ollut edelleen lähes 20°C tavallista lämpimämpää kuin normaalisti näihin aikoihin. Nyt tilanne on palautunut lähemmäksi normaalia.

Vuoden 2016 aikana hiilidioksidin määrä ilmakehässä oli varsin suuri, mutta ihmisen lisäksi asiaan vaikuttivat suuret metsäpalot, jotka osaltaan johtuivat kesän helteistä; kuiva, kuuma metsä syttyy ja palaa helpommin.

Ensimmäistä kertaa koskaan maailmanlaajuinen hiilidioksidin keskimääräinen arvo ei laskenut alle 400 ppm:n syksyllä, jolloin arvo on normaalisti kaikkein alhaisin pohjoisen pallonpuolen kesän innostaessa kasveja yhteyttämään. Tällä hetkellä keskimääräinen arvo on 406 ppm.

Lisätietoja Copernicus -ohjelman ilmastotutkimuksesta on osoitteessa climate.copernicus.eu ja ilmakehän mittaustietoja on osoitteessa atmosphere.copernicus.eu.

Tuoreet ilmastoennusteet: Suomi kuumenee muuta maailmaa nopeammin

Ma, 12/19/2016 - 19:48 By Toimitus
Helsinkiä joulukuussa 2016

Miten ilmastonmuutos iskee Suomeen? Arviot tästä on nyt päivitetty vastaamaan uusien, tarkempien ilmastonmuutosmallien tuloksia: Suomesta on tulossa Puola tai Unkari (säämielessä ainakin).

Ilmastonmuutoksen arviointi ja ennustaminen ei ole helppoa, mutta se on mahdollista.

Kaikkiaan 28 erilaista tarkasteltavana ollutta mallia povaavat, että Suomen vuotuinen keskilämpötila nousee lähes kaksi kertaa niin nopeasti kuin koko maapallon keskilämpötila.

 

Edellisen mallisukupolven tuloksiin verrattuna suurin ero on uusien mallien ennustama kesien jonkin verran voimakkaampi lämpeneminen. Sademäärien muutosennusteet sen sijaan ovat säilyneet kutakuinkin entisellään.

Lämpeneminen on voimakkainta talvella. 

Jos kasvihuonekaasujen päästöt kasvavat hallitsemattomasti (ns. RCP8.5-skenaario), Keski-Suomessa saattaa vallita vuosisadan lopulla samankaltainen lämpötilailmasto kuin nykyisin Unkarissa. Lämpötilat nousisivat tällöin 1900-luvun lopun lukemista talvella 4 - 10 °C ja kesällä 2 - 7 °C. 

Vastaavasti päästöjä kohtuullisen tehokkaasti leikattaessakin (RCP4.5-skenaario) meitä odottaisivat likimain Puolan lämpöolot: talvella lisää lämmintä 2 - 7 °C ja kesällä 1 - 4 °C.

Sademäärä todennäköisesti lisääntyy kaikkina vuodenaikoina, prosentteina ilmaistuna eniten talvella.  RCP8.5-skenaariota vastaava vuotuisen sademäärän noin 20 % lisäys antaisi meille vuodessa saman verran vettä kuin mitä nykyisin sataa monin paikoin Englannissa.

Talvet muuttuvat meillä todennäköisesti nykyistäkin pilvisemmiksi ja valottomammiksi. Synkeimpien malliennusteitten mukaan maan pinnalle pääsevän auringon säteilyn määrä voisi pudota yli 20 %. Tuulen voimakkuudet sen sijaan eivät välttämättä muuttuisi paljoakaan, joskin eri mallien tulokset poikkeavat toisistaan paljon.

Maailmanlaajuisesti haitalliset vaikutukset ovat selvästi suuremmat kuin hyödyt

Koko Eurooppaa tarkasteltaessa lämpötila nousee talvella eniten pohjoisessa, kesällä taas etelässä.  

Pohjois-Euroopassa sataa entistä enemmän ja mantereen eteläosissa vähemmän.  Keski-Euroopassa talvet muuttuvat sateisemmiksi ja kesät kuivemmiksi. Välimeren alueen maissa kuivuusongelmat pahenevat, kun varsinkin kesäpuolella vuotta sademäärä putoaa, lämpötila kohoaa voimakkaasti ja Auringolta suojaavaa pilvisyyttäkin on vähemmän.

Vaikka ilmaston lämpiämisestä voi suomalaisesta näkökulmasta kapeasti ajatellen olla hyötyäkin, maailmanlaajuisesti ilmiö on vahingollinen. 

Ilmaston lämpeneminen johtaa laajamittaisiin ja mahdollisesti peruuttamattomiin maailmanlaajuisiin haittavaikutuksiin, kuten tuhoisiin sään ääri-ilmiöihin ja luonnon monimuotoisuuden katoamiseen. Ilmastonmuutos voi aiheuttaa myös suuria yhteiskunnallisia ongelmia varsinkin kehitysmaissa.

Tutkimusta on rahoittanut Suomen Akatemia PLUMES- ja ADAPT-hankkeiden kautta sekä Liikenne- ja viestintäministeriö Sektoritutkimusohjelman SETUKLIM-hankkeen kautta. Tutkimus ilmestyi tuoreessa Geofysiikan seuran Geophysica -julkaisusssa.

Juttu perustuu Ilmatieteen laitoksen tiedotteeseen.

Kosmiset säteet paransivat ilmastomalleja roimasti

To, 07/09/2015 - 19:19 By Jarmo Korteniemi
Kuva: Richard Masoner / Cyclelicious / Flick

Suuret tulivuorenpurkaukset viilentävät Maan ilmastoa jopa kymmeneksi vuodeksi, selvittivät tutkijat. Tutkimuksessa selvitettiin purkausten vaikutukset ennennäkemättömällä tarkkuudella viimeisen 2500 vuoden ajalta. Tutkimus julkaistiin heinäkuun alussa tiedelehti Naturessa.

Kosmisten säteiden vaikutusta hyödyntäneen tutkimuksen anti oli, että purkausten ja ilmaston lämpötilavaihtelun aikaskaalat kyettiin sitomaan toisiinsa paljon tarkemmin kuin ennen.

Samalla päästiin eroon tähän asti ilmastotulkintoja vaivanneista turhauttavista oletuksista. Tulokset tarkentavat roimasti muunmuassa IPCC:n malleja tulevaisuuden lämpötiloista.

Jäätä, puuta, tulivuoria ja kosmisia säteitä

Tutkijat käyttivät apunaan maanulkoisia tapahtumia. Alkuvuonna 775 sekä vuonna 994 planeetan ilmakehän koostumus muuttui hyvin äkisti - tosin vain vähän. Tämä tiedetään siitä, että hiilen raskaan 14C-isotoopin suhteellinen määrä kasvoi tuolloin ympäri maailmaa eläneiden puiden vuosirenkaissa. Vastaavasti sekä Gröönlannin että Antarktiksen jääkairauksista erottuu selvä berylliumin 10Be -isotoopin piikki. Syynä kumpaiseenkin oli luultavasti kosmisten säteiden aalto, joka muutti ilmakehän isotooppijakaumaa hetkellisesti. Kumpikin havainto on ainutlaatuinen, ja sopii hyvin oletukseen. Aikojen saatossa anomaliat jäivät puiden renkaiden sisään ja tuoreempien jäämassojen alle.

Sekä jääkairauksia että puiden vuosirenkaita on jo pitkään käytetty ilmastohistorian tulkinnassa. Kun jäästä löydetään merkittäviä vulkaanisen tuhkan jäämiä, tiedetään, että jossain tapahtui suuri purkaus. Pohjoisella pallonpuoliskolla sattunut purkaus erottuu lähinnä Gröönlannin jäässä, eteläiset taas Antarktiksella. Päiväntasaajalla alkunsa saava tuhkapilvi näkyy kummassakin. Useimmiten purkauksen aikaan eläneiden puiden vuosirenkaat ovat tuolloin myös normaalia ohuempia. Tästä sitten päätellään, että ilmasto viileni purkauksen aikoihin, koska ilmaan tupsahtaneet rikkiyhdisteet ja muut aerosolit heijastavat auringon säteilyä.

Vaikka puiden ja jään tarjoamat aikasarjat täsmäävätkin erittäin hyvin suuressa mittakaavassa, niissä on kuitenkin tarkemmin katsottuna pientä, 10 - 15 vuoden heittoa. Syy- ja seuraussuhteita on vaikea todeta pitävästi, ja päättelyssä joudutaan luottamaan malleihin ja moniin oletuksiin. Tuollaiset selitykset ovat aina avoimia tulkinnoille ja kritiikille.

Yllä: Näkymä USA:n tukikohdasta Pinatubon suuren 1991 purkauksen aikaan. Kuva: R.S. Culbreth U.S.A.F. / Kentucky National Guard Public Affairs office / Flickr

 

Nyt ongelma on korjattu. Synkronoimalla samaan aikaan syntyneet isotooppianomaliat toisiinsa tutkijat sitoivat puurenkaat ja jääkairaukset entistä tiiviimmin yhteen. Ja vieläpä kahdesta kohdasta. Parasta on, että sitomiseen käytettiin keinoa, joka on täysin ilmastomalleista riippumaton.

Kun aikasarjojen linkitys oli tehty, alkoi jää- ja puunäytteistä näkyvien tapahtumien vertailu. Niiden havaittiin täsmäävän erittäin tarkasti, käytännössä vuodelleen, ainakin muutama sata vuotta kumpaankin suuntaan isotooppi-anomalioista. Kauempanakin tarkkuus on paljon aiempaa parempi: Vuoden 500 eaa. tienoillakin heitto on enimmillään vain viisi vuotta. Virheraja tippui siis reippaasti alle puoleen.

Bonuksena tutkijat vielä löysivät kahden, toistaiseksi tuntemattoman erittäin suuren purkauksen vaikutukset. Ne sattuivat vuosina 536 ja 540, jossain päin päiväntasaajan seutua. Niiden tuottamat aerosolimäärät olivat suurempia kuin Tamboran, historiallisen ajan ylivoimaisesti suurimman purkauksen. Lämpötila laski tuntemattomien purkausten ansiosta ainakin Euroopassa 1,4 - 2,7 asteella - kymmeneksi vuodeksi. Euroopassa ja ehkä myös Kiinassa riehui nohin aikoihin sekä nälänhätä että Justinianuksen ruttona tunnettu tautiepidemia. Noin puolet maanosamme väestöstä kuoli.

Parantaa ilmastonmuutoksen ennusteita

Tiedeyhteisö on lähes yksimielinen siitä, että ihmiskunnan kasvihuonekaasupäästöt lämmittävät ilmastoa. Tulkinnoissa on eroja, sillä eri tutkijat painottavat eri mekanismeja eri tavoin. Tämän vuoksi lämpenemisen nopeusarvioissa on suuriakin eroja. IPCC:n kokoamien arvioiden mukaan hiilidioksiditason kaksinkertaistaminen lämmittää planeettaa 2 - 4,5 asteella. Vaihteluväli on suuri, ja yhtenä muuttujana - epävarmuustekijänä - on ollut vulkanismin syöttämien aerosolien merkittävyys.

Nyt julkaistu tutkimus pienentää virherajoja ja auttaa siis ennusteiden tarkentamisessa.

 

Päivitys klo 21.00: Kirjoitusvirheitä korjattu.

Jutun lähteenä on käytetty Scientific Americanin uutista sekä mainittua Naturen tiedeartikkelia.

Otsikkokuva: 2200-vuotiaan punapuun vuosirenkaat. Kuva: Richard Masoner / Cyclelicious / Flickr

12.3.2012 - Kuumaa on (vaikka ei uskoisi)

Ma, 03/11/2013 - 22:30 By admin

Viime vuoden havaintojen perusteella tehtyjen Nasan Goddardin avaruuslentokeskuksen tutkijoiden laskelmien mukaan vuosi 2012 oli yhdenneksi kuumin vuosi maailmanlaajuisesti sitten tilastoinnin alun. Globaali keskilämpötila oli 14,6°C, mikä on 0,6°C enemmän kuin pitkän ajan keskiarvo. Tuoreen laskelman mukaan maapallon keskilämpötila on noussut 1,4°C sitten vuoden 1880, jolloin tilastojen kerääminen aloitettiin. Suoria ja epäsuoria havaintoja on myös aiemmilta ajoilta, mutta tiedot vuodesta 1880 alkaen ovat tarpeeksi kattavia, hyviä ja vertailukelpoisia.

Kuvassa on maailmanlaajuisesti keskilämpötilan muutos vuodesta 2008 vuoteen 2012. Kymmenen kuuminta tilastoitua vuotta ovat olleet sitten vuoden 1998, ja suunta on ollut koko ajan voimistuvasti ylöspäin. Kartassa punainen tarkoittaa keskiarvoa kuumempaa ja sininen viileämpää. Kuten kuvasta näkyy, on lämpeneminen ollut eritysen voimakasta pohjoisella napa-alueella.

On selvää, että ihmisen toiminta on vaikuttanut – ja vaikuttaa edelleen mitä suurimmissa määrin – kotiplaneettamme nopeaan kuumenemiseen. Samalla ääri-ilmiöiden, myrskyjen ja nopeiden säävaihteluiden määrä on lisääntynyt, ja ennusteiden mukaan tämä kehitys tulee myös jatkumaan. Ennätyslämpimien vastapainoksi on siis myös epänormaalin kylmiä säitä!

Tietojen lähde: Nasa Goddard Institute for Space Studies
Visualisointi: Nasa Goddard's Scientific Visualization Studio

Katso edellisiä päivä kuvia täältä.

Pilvipisarat ja niiden kasvunopeus

Pe, 03/01/2013 - 14:30 By Toimitus

Uuden mittauksia ja mallinnusta yhdistävän tutkimuksen tulokset ilmakehän pisaroiden kasvunopeuksista useissa eri ympäristöissä on julkaistu Proceedings of the National Academy of Sciences of the United States of America -lehdessä. Tulokset osoittivat, että erityisen hitaasti kasvavia hiukkasia ei löydy tai ne ovat niin harvinaisia, että niillä ei ole merkittävää vaikutusta pilvien muodostumiseen. ”Havainto poistaa yhden merkittävän pilvi- ja ilmastomallinnuksen epävarmuuden osoittamalla usein käytetyn oletuksen paikkansapitävyyden”, sanoo tutkimuksessa mukana ollut Ilmatieteen laitoksen tutkija Tomi Raatikainen.

Suuresti vaihtelevat arviot pilvipisaroiden kasvunopeuksista on ollut yksi suuri epävarmuus pilvimallinnuksessa ja erityisesti pilvien ilmastovaikutuksia arvioitaessa. Ilmastomallinnuksella voidaan tutkia ilmastojärjestelmää ja sen eri osia kuten pilvien ja pienhiukkasten vuorovaikutuksia. Ilmastomallinnusta käytetään myös ilmastonmuutoksen voimakkuuden ja vaikutusten ennustamiseen. Aikaisemmin on havaittu, että ainakin laboratorio-oloissa pisaroiden kasvu voi hidastua merkittävästi esimerkiksi silloin, kun pisaran pintaan muodostuu veden tiivistymistä estävä öljymäinen kalvo. Pienhiukkasissa tiedetään olevan huonosti veteen liukenevia orgaanisia yhdisteitä jotka voivat muodostaa tällaisia kalvoja kunhan pitoisuudet ovat riittävän suuria.

Ilmakehän pisaroiden kasvunopeuksista on erittäin vähän tietoa, mutta jos vastaavaa tapahtuisi merkittävissä määrin myös ilmakehän hiukkasissa, tämä pitäisi ottaa paremmin huomioon nykyisin käytössä olevissa pilvimalleissa. Pilvet muodostuvat vesihöyryn tiivistyessä ilmakehän pienhiukkasiin ja pisaroihin eli aerosoliin. Tiivistymisen vuoksi alkuperäisen aerosolin koko kasvaa nopeasti n. 100-kertaiseksi, jolloin niitä aletaan kutsua pilvipisaroiksi. Pisaroiden kasvunopeus vaikuttaa muodostuvan pilven ominaisuuksiin kuten pilvipisaroiden keskimääräiseen kokoon ja lukumäärään. Näillä taas on vaikutus pilven elinikään ja optisiin ominaisuuksiin, eli käytännössä kasvunopeudet ovat osa aerosolien epäsuoraa ilmastovaikutusta.

Tutkimuksen kokeellinen osa perustuu pilviydinlaskurimittauksiin, joita on suoritettu erilaisissa ympäristöissä Pohjois-Amerikassa ja Euroopassa käyttäen sekä kiinteitä mittausasemia että lentokoneita. Pilviydinlaskureissa ilmanäyte altistetaan suurelle ilmankosteudelle, jolloin näytteen hiukkasista alkaa muodostua pilvipisaroita. Mitattu pisaroiden koon vaihtelu kertoo suoraan mahdollisista muutoksista kasvunopeuksissa, mutta myös mittalaite ja olosuhteiden muutokset aiheuttavat vaihteluita. Tämän vuoksi kasvunopeuksien arvioimiseen käytettiin numeerista mallia, joka huomioi olosuhteet ja laitteen asetukset simuloidessaan pisaroiden kasvua laitteen sisällä.

Tutkimus tehtiin pääosin professori Athanasios Nenesin tutkimusryhmässä Georgia Institute of Technologyssä, Atlantassa Yhdysvalloissa, jossa Ilmatieteen laitoksen tutkija Tomi Raatikainen teki kahden vuoden ajan väitöksen jälkeistä tutkimusta. Tulokset on julkaistu arvostetun Proceedings of the National Academy of Science -lehden sähköisessä versiossa ennen lopullista julkaisua tulostetussa lehdessä.

Tämä teksti perustuu Ilmatieteen laitoksen tiedotteeseen.