”Yllättävän samalla tavalla”, toteaa Jukka Häkkinen, joka tutkii Helsingin yliopistossa visuaalista kognitiota eli näköaistiin perustuvaa havaitsemista.
Väriaistimuksen synty lähtee liikkeelle siitä, kun silmään päätynyt valo lankeaa mykiön ylösalaisin kääntämänä kuvana verkkokalvolle. Siinä tapahtuu värierottelu.
Useasta kerroksesta muodostuvassa verkkokalvossa on valoa aistivia soluja, sauvoja ja tappeja. Tappisoluja on kolmenlaisia ja ne ovat herkkiä eri aallonpituusalueilla.
Silmässä on noin kuusi miljoonaa tappisolua. Punaiselle herkkiä on noin 3,5 miljoonaa, viherherkkiä vajaat kaksi miljoonaa ja siniherkkiä runsaat puoli miljoonaa.
”Kukin solutyyppi aktivoituu tietyllä tavalla ja se kertoo, mistä väristä on kyse.”
Tappisolut reagoivat valon eri aallonpituuksiin, mutta se ei vielä riitä tuottamaan väriaistimusta. Aivojen pitää saada signaaleja, joita ne pystyvät käsittelemään.
”Tappisolujen aktivoitumisen jälkeen gangliosolut tekevät koodauksen.”
Voisi kuvitella, että nämä koodarit ovat valon kulkusuuntaan nähden tappisolujen jälkeen, mutta niin ei ole: gangliosolut ovat verkkokalvon etupinnalla.
Hermoverkko välittää punaiselle, vihreälle ja siniselle herkistä tappisoluista viestejä, jotka ”sytyttävät” tai ”sammuttavat” gangliosolujen väripareista jomman kumman. Tuloksena on signaali, joka sisältää tiedon havaitusta väristä.
Punavihreä ei ole väri
Koodaaminen tapahtuu vastavärien pohjalta. Väriparit muodostuvat punaisesta ja vihreästä sekä sinisestä ja keltaisesta. Kolmas koodauspari on musta ja valkoinen.
Gangliosoluissa syntyvät signaalit välittävät tiedon väristä joko-tai-periaatteella. Punainen tai vihreä, sininen tai keltainen.
”Niitä ei voi sekoittaa eli ei ole olemassa punavihreää tai sinikeltaista väriä.”
Värierottelun ja koodauksen tuloksena syntyneet signaalit kulkevat näköhermoa ja -juostetta pitkin aivojen takaosassa sijaitsevaan näkökeskukseen. Siellä tapahtuu signaalien prosessointi, jonka tuloksena näemme värejä. Emmekä pelkästään punaista, vihreää, sinistä ja keltaista, vaan laajan kirjon erilaisia sävyjä.
Verkkokalvolla olevien tappisolujen herkkyysalueissa on yksilöllisiä eroja eivätkä ne kaikilla reagoi samalla tavalla esimerkiksi punaiseen väriin.
Lisäksi tappisolujen määrä vaihtelee huomattavan paljon, mikä puolestaan vaikuttaa väriaistin tarkkuuteen.
”Sensoreissa on vaihtelua, mutta aivot kalibroivat ympäristöstä tekemämme värihavainnot näyttämään jokseenkin samanlaiselta katsojasta riippumatta.”
Punainen on punaista ja vihreä vihreää. Kiistelyä aiheutuu yksityiskohtaisemmasta tulkinnasta eli mikä on värin sävy. Onko suosikkimuki tai kulunut kesäpusakka sinivihreä, petroolinsininen vai turkoosi? Mielipiteitä voi olla yhtä monta kuin katsojiakin.
”Toisaalta siihen vaikuttaa harjaantuminen. Treenaamalla värisävyjen hahmottamista oppii näkemään pienetkin erot.”
Se ei silti takaa yksimielisyyttä. Vielä suurempaa yksilöllistä vaihtelua on nopeudessa: kuinka pikaisesti pystyy erottamaan värisävyjä toisistaan. Ja siihen taas vaikuttavat kulttuurierot.
Jos kielessä on siniselle ja vaaleansiniselle omat nimityksensä, ne kuuluvat väriaistimuksen kannalta eri kategorioihin, ja silloin sävyjen erottaminen käy sujuvammin.
Ei nimi väriä pahenna
Värien näkeminen ei siis ole pelkästään fysiologinen ja neurologinen prosessi, se on myös kulttuurisidonnainen ilmiö. Väreillä täytyy olla nimityksiä, jotta pystymme kommunikoimaan.
Värien havaitsemisen ohella oleellinen tekijä onkin niiden nimeäminen, ja siinä tulee esiin selviä eroja. Eri kulttuureissa värit nimetään eri tavoin ja värejä kuvaavia sanoja on myös erilainen määrä.
Joissakin kielissä esimerkiksi sinisellä ja vaaleansinisellä värillä on omat nimityksensä toisin kuin vaikkapa suomessa, missä käytetään paljon johdoksia: vaaleanvihreä, tummanpunainen, rikinkeltainen.
Toisaalta mekin kutsumme sinipunaista väriä violetiksi. Vähemmän toisistaan poikkeavien värisävyjen kohdalla näkemyserot kasvavat entisestään.
”Selkeiden värien raja-alueilla esiintyy paljon tällaista hajontaa. Siihen vaikuttaa varmasti oppiminen, mutta myös mielenkiinto värejä kohtaan.”
Kuvataiteista kiinnostuneet ja etenkin taidealaa opiskelevat omaksuvat helposti hyvin toisenlaisen väripaletin kuin värien kanssa vähemmän tekemisissä olevat.
Värien havaitsemista on kohtalaisen hankala tutkia, sillä toisen ihmisen silmän tai pikemminkin pään sisään on mahdoton päästä.
Väri- tai ylipäätään näköaistimus kun ei synny silmässä: se on vain instrumentti, joka kerää valon ja syöttää sen edelleen aivojen muodostamaan tietojenkäsittelyjärjestelmään.
Huimasti kehittyneillä aivokuvantamisen menetelmillä, eritoten toiminnallisella magneettikuvauksella, pystytään tutkimaan, mitä aivoissa tapahtuu, kun ihminen saa erilaisia aistiärsykkeitä.
Toistaiseksi ei vielä kyetä määrittämään, mitä väriä koehenkilö kulloinkin katselee, mutta se on jo hyvin tiedossa, mitkä aivojen alueet aktivoituvat, kun näköhavainto syntyy. Ja näkeekö koehenkilö värejä.
”Sekä tappi- että gangliosolujen toimintaa pystytään selvittämään jo yksittäisten solujen tasolla. Niihin voidaan kiinnittää elektrodeja, jotka välittävät tietoja siitä, miten solut reagoivat erilaisiin ärsykkeisiin ja millaisia signaaleja ne saavat aikaan.”
Tulokset ovat kuitenkin usein ristiriitaisia eikä läheskään kaikkea väri- tai ylipäätään näköaistimuksen synnystä vielä tiedetä.