Lockheed Martin, amerikkalainen ilmailu-, avaruus- ja sotilasteollisuusjätti, kertoi viime viikolla keksineensä tavan valmistaa pieniä, käteviä fuusioreaktoreita, jotka mullistaisivat energiantuotannon. Paitsi että fuusiovoiman saaminen arkikäyttöön olisi jo sinällään mullistavaa, myös se, että näin voitaisiin tehdä pienessä mittakaavassa, olisi melkeinpä suurempi edistysaskel. Silloinhan haave siitä, että sähköä tuotettaisiin edullisesti ja kätevästi siellä missä sitä tarvitaan, tulisi todeksi: laajoja sähkönsiirtoverkkoja ja suuria voimalaitoksia ei enää tarvittaisi lainkaan siinä määrin kuin nykyisin.
Valitettavasti vain uutiseen kannattaa suhtautua suurin varauksin. Kukaan ei missään ole vielä saanut fuusioreaktoria toimimaan siten, että reaktiosta saataisiin energiaa käyttöön. Vaikka Lockheed Martin julkaisi jo helmikuussa 2013 tietoja fuusiohankkeestaan ja viime viikon uutisointia edelsi yhtiön patenttihakemuksen julkaiseminen.
Monet muutkin henkilöt ja yhtiöt ajattelevat, että juuri tuollaisissa pienissä reaktoreissa voisi olla tulevaisuus. Hankkeita verhoaa kuitenkin salamyhkäyisyys: patentit suojaavat osaa keksinnöistä, mutta tuloksista ja tekeillä olevista uusista hankkeista ei juurikaan kerrota tarkemmin. Kenties näin mullistavista vempeleistä ei kannatakaan kertoa vielä yksityskohtia…etenkin kun sotilaat ovat sekaantuneet asiaan ja mukana on suuria kaupallisia intressejä.
Ensimmäisen kerran fuusioreaktiota koitettiin saada hallitusti syttymään laserilla vuonna 1984 Lawrence Livermoren kansallisessa laboratoriossa, Yhdysvalloissa, NOVA-nimisellä laitteistolla. Fuusioreaktio sinällään on pystytty tuottamaan hallitusti jo 1930 luvulta asti
Fuusio tulee kyllä - mutta milloin ja miten?
Nykyiset ydinvoimalat toimivat fissioperiaatteella, eli niissä raskaita atomiytimiä rikotaan kevyemmiksi, jolloin hitunen ainetta muuttuu energiaksi.
Fuusioreaktorissa puolestaan kevyet aineet törmäytetään yhteen raskaammiksi, jolloin saadaan myös energiaa, kun reaktiossa jää hieman ainetta (siis energiaa) ylitse. Aurinko tuottaa energiansa yhdistämällä vetyä heliumiksi, ja periaatteessa tämä reaktio on myös tavoitteena maanpäällisissä fuusioreaktoreissa. Tarkalleen ottaen aikomuksena on yhdistää deuteriumia ja tritiumia, vedyn raskaita isotooppeja, heliumiksi, ja energian lisäksi oheistuotteina on vain neutroneja.
Myös muita reaktiovaihtoehtoja on olemassa, kuten esimerkiksi deuterium ja Helium-3. Silloin tuloksena olisi alfahiukkasia ja protoneita.
Periaatteessa siis vaikkapa pallojen täyttämiseen sopivaa heliumia tuottava fuusiovoimala on saasteeton siinä missä fissiovoimalan jätökset ovat radioaktiivisia vuosituhansien ajan, ja siinä missä uraani on hankalasti saatavaa ainetta, on vetyä saatavissa kaikkialta missä on vettä.
Perinteinen fissiovoimala vaatii myös koko ajan paapomista, sillä jos sen reaktio pääsee villiksi, tuloksena on suuria ongelmia. Fuusiovoimalassa kaikki käyttöhäiriöt puolestaan johtaisivat siihen, että voimala vain sammuisi. Koska fuusioreaktiota täytyy pitää koko ajan yllä, se on erittäin turvallinen jopa perinteiseen hiilivoimalaan verrattuna.
Lisäksi fuusio tuottaa hurjasti energiaa. Verrattuna fissioon, kilosta fuusiopolttoainetta saa neljä kertaa enemmän energiaa, ja verrattuna hiileen luku on vielä huimempi: fuusio on 10 miljoonaa kertaa tehokkaampi energiantuotantotapa.
Fuusiovoima olisi siis puhdasta, tehokasta ja sitä riittäisi ylitse kaiken kuviteltavissa olevan tarpeemme.
Käytännössä kuva ei ole aivan näin ruusuinen, sillä fuusiovoimalan rakenteet muuttuvat neutronipommituksessa radioaktiivisiksi. Ongelmat ovat kuitenkin minimaalisia verrattuna fissiovoimaloiden riskeihin ja ongelmiin.
Suurempi ongelma on vielä se, että fuusiota ei ole saatu toimimaan. Parhaimmillaan hetken kestänyt toiminta on tuottanut teoreettisesti enemmän energiaa kuin sen käynnistäminen on vaatinut, mutta jatkuva, koko ajan energiaa tuottava voimalaitos on vielä haavetta vain.