3D-kuva ilmakehästä tulossa: Tällainen on MTG-S -satelliitti

3D-kuva ilmakehästä tulossa: Tällainen on MTG-S -satelliitti

Seuraava uuden sukupolven Meteosat laukaistaan matkaan kesällä. Nyt helmikuun 20. päivänä se esiteltiin tiedostusvälineille, ja olimme mukana.

28.02.2025

Julkaisimme tammikuussa varsin perusteellisen videon uusista Meteosat -sääsatelliiteista, ja tuossa videossakin mainittiin seuraava näistä satelliiteista: MTG-S eli Kolmannen Sukupolven Meteosatin Sondaajaversio. 

Sondaaja? Mitä se tarkoittaa? Miten se täydentää edellistä satelliittia? Miksi niitä tarvitaan kaksi? Tai ei vain kaksi, vaan kolme! Tällä videolla käydään Bremenissä, Saksassa, OHB-yhtiön puhdastilassa katsomassa tekeillä olevaa satelliittia ja jututetaan projektissa mukana olevia henkilöitä. 

Videossa on tarjolla myös suomenkielinen tekstitys.

Kiertoradalla tapahtuu kummia: hajoamisia ja putoamisia Jari Mäkinen Ti, 18/02/2025 - 19:58
Hypoteettisen satelliitin räjähdys Grok-tekoälyn piirtämänä
Hypoteettisen satelliitin räjähdys Grok-tekoälyn piirtämänä

Alas putoavia satelliitteja ja räjähdyksiä kiertoradalla. Nyt avaruudessa tapahtuu paljon, mutta näille on selitys. Tulevaisuudenkuva sen sijaan on huolestuttava.

Viime aikoina taivaalla on tapahtunut paljon muutakin kuin kaunis planeettojen asettuminen jonoon ja revontulinäytelmiä. SpaceX on hilannut uusia Starlink-satelliitteja avaruuteen häkellyttävällä tahdilla. 

Laukaisuita on ollut tähän mennessä 14 eli keskiarvona melkein kaksi viikossa. Lisäksi Falcon 9:t ovat vieneet taivaalle muita satelliitteja ja pari kuulaskeutujaakin, joten SpaceX:n tahti on ollut hurja.

Yhdessä laukaisussa on kyydissä 21 tai 23 Starlink-satelliittia. Näin ollen uusia satelliitteja jo noin 7000-satelliittiseen konstellaatioon on tullut tänä vuonna lähes 300.

Samaan aikaan yhtiö hilaa alas kiertoradalta vanhempia satelliittejaan, joissa on suunnitteluvirhe. Se saattaa saada satelliitin sammumaan, joten yhtiö tuo ne alas tuhoutumaan ilmakehässä niin kauan kuin satelliitit ovat vielä toimintakuntoisia.

SpaceX kertoi nyt helmikuun 12. päivä julkaisemassaan tiedotteessa, että satelliitit ovat ensimmäisiä ensimmäisen sukupolven satelliitteja. Ne laukaistiin avaruuteen vuosina 2019 ja 2020, eikä niitä varmaankaan kukaan jää kaipaamaan, sillä niissä ei ole kirkkautta vähentävää visiiriä ja uudet satelliitit ovat paljon kyvykkäämpiä kuin nämä metusalemit.

Satelliittien rataa pudotetaan vähitellen kuuden kuukauden aikana.

SpaceX:n mukaan Starlink-palvelut eivät kärsi tästä. Tiedote kertoo, että “SpaceX kykenee valmistamaan 55 satelliittia viikolla ja laukaisemaan niitä avaruuteen yli 200 kuukaudessa.”

Starlink-satelliitteja

Uuden sukupolven Starlink-satelliitteja juuri ennen niiden vapauttamista avaruuteen. Kuva: SpaceX.

 

Paitsi Starlink-satelliittien suuri määrä, niin myös hajonneiden satelliittien ja näiden alas ohjattavien satelliittien määrä saa jälleen ajattelemaan avaruuden lennonjohtosysteemiä. Lähiohitusten määrä on lisääntynyt ja törmäysriski kasvaa koko ajan.

Olisi hyvä, jos yhden yhtiön sijaan olisi kansainvälinen organisaatio, jonka tehtävänä olisi paitsi tarkkailla satelliittien ratoja, niin myös jakaa kiertoratoja ja koordinoida radalta toiselle siirtyviä ja alas pudotettavia satelliitteja.

Nykyisessä maailmantilanteessa tällaisen saaminen on kylläkin hankalaa.

Toinen riski, joka putoavista satelliiteista tulee, on niiden tippuminen asutuille alueille tai esimerkiksi lentokoneiden päälle. Starlink-satelliitit, kuten suurin osa muistakin satelliiteista, tuhoutuvat lähes kokonaan ilmakehän tulisessa syleilyssä, mutta eivät aina täysin: pieniä palasia satelliittien tukevatekoisimmista osista putoaa joskus alas Maan pinnalle saakka.

Kun satelliitteja putoaa nyt useammin ja useammin, muodostavat nämä pikku palaset yhä suuremman riskin. Usein lentoliikennettä varoitetaan jo putoavien satelliittien vaara-alueella, mutta ei läheskään aina.

BBC:n uutinen avaruusromun putoamisesta Puolaan

Juuri tämän jutun julkaisun jälkeen SpaceX:n Falcon 9 -raketin osia putosi Puolaan. Onneksi tämä hiilikuituinen tankki ei pudonnut lentokoneen päälle. Kuvakaappaus BBC:n sivuilta.

 

Pitkällä tähtäimellä tämä ei ole kestävää, vaan jossain vaiheessa avaruuteen täytyy perustaa jonkinlaisia kierrätyskeskuksia vanhentuneille satelliiteille. Toivottavasti Starshipit (ja muut isokokoiset, uudelleenkäytettävät raketit?) voisivat rahdata niitä sieltä alas hävitettäväksi.

No, tähän on vielä aikaa. Nyt tärkeintä on vähentää avaruusromun määrää tuomalla satelliitteja ja rakettien ylimpiä osia alas ilmakehässä tuhoutumaan heti, kun niitä ei tarvita.

Jos ne jäävät kiertämään Maata avaruusromuna, niin tuloksena voi olla myös yhden ison romunpalan lisäksi paljon pientä romua. Ajan myötä sammuneetkin satelliitit saattavat räjähtää, kun jatkuva lämpeneminen ja kylmeneminen sekä muut avaruudessa olemisen rasitukset vaikuttavat niihin.

Tässä puolen vuoden aikana on tapahtunut kolme tällaista suuren avaruusromun hajoamista palasiksi.

Ensimmäinen oli 6. syyskuuta 2024, kun Atlas V -raketin Centaur (raketin ylin vaihe) hajosi ainakin kymmeneen osaan. Raketti oli vienyt GOES-17 -satelliitin avaruuteen vuonna 2018 ja ylin vaihe oli jäänyt sen jälkeen hyvin soikealle radalle, jonka ylin piste oli 34 949 km ja alin 7622 km. Satelliitti suuntasi geostationaariradalle, ja siksi ylimmän vaiheen rata ylettyi melkein sinne.

Tällaiselle radalle menevät raketit eivät yleensä pysty tulemaan takaisin ilmakehään ja tuhoutumaan siinä, joten ne niin sanotusti passivoidaan. Polttoaineet päästetään ulos ja akkujen varaus puretaan. Systeemit sammutetaan siten, että rakettivaiheesta ei olisi haittaa myöhemmin.

Centaur

Centaur-rakettivaihe. Kuva: ULA.

 

Mutta Centaurien kanssa on ollut vaikeuksia aikaisemminkin. Samanlaisia tapauksia oli vuonna 2018 ja 2019, jolloin Centaurin passivointi ei ole nähtävästi onnistunut halutusti, ja ne ovat räjähtäneet. Toivottavasti Vulcan-raketeissa käytettävien uusien Centaur-rakettivaiheiden luotettavuus tässä suhteessa on parempi.

Toinenkin tapaus liittyy raketin ylimpään vaiheeseen. Blue Origin -yhtiön uusi New Glenn teki ensilentonsa tammikuun 16. päivänä, ja vaikka raketin ensimmäinen vaihe ei onnistunut palaamaan takaisin Atlantilla olleen lavetin päälle, sen toinen vaihe jatkoi suunnitellusti avaruuteen ja lentoa voi pitää onnistuneena. Jos mukana olisi ollut satelliitti, se olisi päässyt avaruuteen.

Satelliitin sijaan kyydissä oli Blue Ring -niminen laite, eräänlainen pieni avaruushinaaja, joka voi viedä siinä olevia satelliitteja oikeille radoilleen ja myöhemmin myös siirtää sekä huoltaa avaruudessa jo olevia satelliitteja. Tätä ei irrotettu rakettivaiheesta tällä kerralla, koska nyt testattiin lähinnä tietoliikennettä Blue Ringin ja lennonjohdon välillä.

Blue ringBlue Ring avaruudessa piirtäjän hahmottelemana. Tällä kerralla laitetta ei irrotettu raketin ylimmästä vaiheesta. Kuva: Blue Origin.

 

Laukaisun jälkeen ylin vaihe inaktivoitiin, mutta nähtävästi ei kunnolla, sillä helmikuun 10. päivänä se rähähti.

Vaihe oli myös varsin soikealla radalla maapallon ympärillä; korkein piste 19300 km ja matalin 2400 km. Se on sen verran kaukana, että palaset pysyvät avaruudessa harminamme tuhansia vuosia.

Ja näiden välissä, lokakuun 19. päivänä 2024 Intelsat 33E -tietoliikennesatelliitti hajosi palasiksi geostationaariradalla. Tuolla radalla, jolla yksi kierros ympäri maapallon kestää yhden vuorokauden ja siksi siellä olevat satelliitit näyttävät pysyvän paikallaan taivaalla, on paljon sää-, tietoliikenne ja muita satelliitteja, joten romun syntyminen sinne on varsin ikävää.

Kyseessä on Boeing-yhtiön rakentama satelliitti, jonka kanssa samanlainen Intelsat 29E koki myös kovia vuonna 2019. Se menetti asennonsäätökykynsä todennäköisesti työntövoimajärjestelmässä olleen vian vuoksi, ja nytkin kaikki viittaa siihen, että ratahallintaan tarkoitettu rakettimoottori ja siihen liittyvät systeemit olisivat saaneet aikaan uudemmankin Intelsatin hajoamisen osiin. Siis räjähdyksen.

Intelsat 33EPiirros Intelsat 33E -satelliitista. Kuva: Boeing.

Kokonaisuudessa parin satelliitin hajoaminen ei ole iso asia, sillä arvioiden mukaan maapalloa kiertää noin 29 000 avaruusromukappaletta, jotka ovat kooltaan yli 10 cm. Sentin tai yli olevia on noin 670 000 ja millimetriä suurempia yli 170 miljoonaa.

Nämä tapaukset vievät kuitenkin lähemmäksi tilannetta, missä romua tulee yhä lisää ja romunpalaset törmäilevät toisiinsa saaden mahdollisesti aikaan ikävän ketjureaktion. Niin sanotussa Kesslerin syndroomassa lähiavaruus muuttuisi niin vaaralliseksi, että sen käyttö ei onnistuisi enää turvallisesti.

Yksi uhka lisää tähän synkistelyn täyttämään aikaamme…

*

Otsikkokuvassa on Grok2-tekoälyn luoma kuva hypoteettisen satelliitin hajoamisesta avaruudessa.

Teksti on julkaistu myös Ursan blogina.

Juttuun on lisätty kuva ja tieto Puolaan keskiviikkona 19.2. pudonneesta avaruusromun palasesta.

Sodankylään ESAn satelliittien kalibrointi- ja validointikeskus Jari Mäkinen Pe, 07/02/2025 - 18:59
Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä
Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä

Euroopan avaruusjärjestö ESA perustaa yhdessä Ilmatieteen laitoksen kanssa Arktisen satelliittien kalibrointi- ja validointikeskuksen Sodankylään. Tällaista toimintaa on tehty Sodankylässä jo pitkään, mutta nyt toiminta saa virallisemman luonteen.

Jotta Maata havaitsevien satelliittien tuottamat kuvat ja keräämä tieto ovat luotettavia, täytyy satelliittimittauksia varmentaa Maan päällä tehtävillä mittauksilla. Esimerkiksi jos avaruudesta mitataan kosteutta tai hiilidioksidipitoisuutta, täytyy mittauksia näistä tehdä säännöllisesti myös alueella, jota satelliitti on tutkinut. 

Satelliittimittaukset kalibroidaan sitten paikan päällä tehtyjen mittausten kanssa.

Ilmatieteen laitos on tehnyt tällaisia mittauksia jo pitkään, ja näiden mittausten keskuspaikkana on yleensä toiminut Sodankylässä Tähtelän observatorioalueella sijaitseva Arktinen avaruuskeskus. Suomalaiset ovat osallistuneet myös mittauskampanjoihin muuallakin.

Tähtelässä sijaitsevat sekä Ilmatieteen laitos että Oulun yliopistoon kuuluva Sodankylän geofysikaalinen observatorio. Yhdessä nämä muodostavat varsin ainutlaatuisen tutkimuskeskittymän Lapissa.

SMOS-satelliitin maamittalaite

Sodankylässä Ilmatieteen laitoksen pihalla on mm. kosteutta mittaavan SMOS-satelliitin maatutkimuslaitteita. Tätä lokakuussa 2024 kuvattua tötteröä on käytetty jo 15 vuoden ajan. Kuva: Jari Mäkinen

 

Superkeskus Suomeen

Euroopan avaruusjärjestön Maan havainnointiohjelman ohjelmajohtokunta kokousti viime viikolla Saariselällä. Johtokuntaa johtaa tällä hetkellä Maanmittauslaitoksen apulaispääjohtaja Jarkko Koskinen.

Kokouksessa julkistettiin päätös perustaa Euroopan avaruusjärjestön ja Ilmatieteen laitoksen yhteistyönä Arktinen satelliittien kalibrointi- ja validointikeskus (Arctic-Boreal Earth Science, calibration and validation supersite).

”Keskus nostaa Suomen avaruustoiminnan vaikuttavuutta kansainvälisesti huomattavalla tavalla ja luo kasvun edellytyksiä suomalaiselle avaruustoiminnalle ja -teollisuudelle sekä parantaa tieteellisen tiedon tasoa", sanoo Ilmatieteen laitoksen pääjohtaja Petteri Taalas Ilmatieteen laitoksen tiedotteessa.

"Uudet satelliittimenetelmät yhdessä maanpintahavaintojen kanssa tarjoavat nykyistä merkittävästi tarkempaa tietoa hiilidioksidin ja metaanin lähteistä ja nieluista. Ilmatieteen laitos pyrkii olemaan maailman johtavia toimijoita alalla”, 

Hiilidioksidin ja metaanin lähteisiin ja nieluihin liittyy suurta epävarmuutta. Satelliittien ja tarkkojen maanpintahavaintojen avulla on mahdollista saada nykyistä huomattavasti parempaa tietoa näistä.

“Keskuksen sijainti korkeilla leveysasteilla, ja sitä ympäröivät boreaaliset metsät edustaen laajempaa ympäri napapiiriä ulottuvaa metsä- ja tundraekosysteemiä, tekevät siitä ihanteellisen paikan Maata kiertävien satelliittiemme keräämän datan käyttökelpoisuuden varmentamisessa", sanoo Simonetta Cheli, ESAn Maan havainnointi -ohjelmien johtaja.

"Uusi kalibrointi- ja validointikeskus parantaa satelliittipohjaisen tiedon laatua ja edistää uusien, arktiseen alueeseen liittyvien palveluiden ja sovellusten kehittämistä. Tämä ei ainoastaan hyödytä ESAa ja lisää ymmärrystämme metsä-tundra-ympäristöstä, vaan tarjoaa myös suomalaiselle teollisuudelle mahdollisuuksia kehittää ja testata uusia ympäristön mittalaitteita ja teknologioita."

Mittaustorni

Mittauksia tehdään myös mm. torneista ja lentokoneista. Tässä Ilmatieteen laitoksen tornissa on kaksi ESAn Elbara -radiometriä, toinen tornin huipulla ja toinen maanpinnan tasolla. Näillä mitataan sitä, miten pohjoinen havupuumetsä ja pehmeä maa (etenkin lumen sulamisen aikaan) vaikuttavat L-kaistan radiosignaalin voimakkuuteen. Kuva: Ilmatieteen laitos via ESA

ESAn Maan havainnointi -ohjelman mittauskampanjapäällikkö Malcolm Davidsonin mukaan ESA aikoo lisätä kykyään kalibroida ja validoida mikroaaltoalueella toimivia ja satelliittimittalaitteita hyperspektrihavaintoja tekeviä satelliitteja. 

"Tämän jo olemassa olevan keskuksen laajentaminen ns. superkeskukseksi vahvistaa sen kykyä osallistua tuleviin lukuisiin mittauskampanjoihin. Sellaisia ovat muun muassa Copernicus Anthropogenic Carbon Dioxide Monitoring, Copernicus Imaging Microwave Radiometer, Copernicus Hyperspectral Imaging Mission, Copernicus Polar Ice and Snow Topography Altimeter, Radar Observing System for Europe at L-band ja Earth Explorer FLEX -kampanjat."

ESA pyrkii lisäämään läsnäoloaan jäsenmaissansa, ja ns. Superkeskukset ovat uusi tapa tähän. Sodankylän keskuksen julkistus osuu hyvin Suomen ESA-jäsenyyden juhlavuoteen; Suomi liittyi ESAn täysjäseneksi 30 vuotta sitten.

ESAlla on jo Suomessa ESA BIC Finland -yrityskiihdyttämö ja vastaperustettu Phi-Lab Finland -innovaatiokeskus, jotka toimivat yhdessä Aalto-yliopiston kanssa.

Mittalaitteita Sodankylässä

Mittalaitteita Sodankylässä Arktisessa avaruuskeskuksessa. Kuva: Jari Mäkinen

Gaia tekee viimeiset havaintonsa tänään Jari Mäkinen Ke, 15/01/2025 - 14:44
Gaia
Gaia
Linnunradan tähdien ominaisliikkeet 400 000 vuoden aikana.
Gaian tulosten esittely infografiikassa
Gaian aurinkopaneelia ja valosuojaa avataan testimielessä.
Timo Prusti ESTECin kahvilassa

Taivasta vuodesta 2014 alkaen kartoittanut Euroopan avaruusjärjestön Gaia-teleskooppi tekee tänään 15. tammikuuta viimeiset havaintonsa ja siirtyy kevään kuluessa eläkkeelle. Se jättää jälkeensä valtavan määrän kiinnostavia havaintoja.

Hieman tummanpuhuvalta, suurelta syntymäpäiväkakulta tai hatulta näyttävä Gaia on jo nyt eräs tähtitieteen merkkipaaluja. Sen tehtävänä on ollut kartoittaa pikkutarkasti tähtitaivasta, ja sitä se onkin tehnyt uutterasti: se on skannannut kamerallaan 10,5 vuotta avaruutta ympärillämme ja sen keräämistä havainnoista on tehty jo neljä suurta tietokantaa.

Gaiassa on kaksi teleskooppia, jotka katsovat 106,5 asteen kulmassa eri suuntiin. Kun satelliitti pyörii akselinsa ympäri, teleskooppien kuvakentät skannaavat taivasta jatkuvasti, ja kun satelliitti kiertää Aurinkoa radallaan, se pystyy kartoittamaan koko taivaan tarkasti vuoden kuluessa.

Jo ensimmäisessä tietojulkistuksessa, Gaia DR1:ssä eli Gaia Data Releasessa syyskuussa 2016 oli 1,1 miljardia tähteä, joiden sijainnin lisäksi tähden kirkkaus oli mitattu, tarkistettu ja taulukoitu. Kahdesta miljoonasta tähdestä oli lisäksi parallaksit ja ominaisliikkeet.

Tietojen joukossa oli 3000 muuttuvaa tähteä ja niiden valokäyrät, sekä yli 2000 kohdetta oman galaksimme ulkopuolelta. Näiden avulla tähtitieteilijät pystyvät määrittämään paremmin missä oikein olemme maailmankaikkeudessa.

Toisessa tietojulkistuksessa, DR2:ssa, huhtikuussa 2018 oli mukana 22 kuukauden aikana tehdyt havainnot. Nyt kohteita oli enemmän, niiden kirkkausalue oli laajempi, ja tiedot olivat vielä tarkempia. Mukana oli myös titoja yli 14 000 kohteesta Aurinkokunnassa.

Linnunradan tähdien ominaisliikkeet 400 000 vuoden aikana.

Gaian tietojen avulla on voitu laskea muun muassa se, miten Linnunradan tähdet liikkuvat seuraavan 400 000 vuoden aikana. Kuva: ESA/Gaia

 

Kolmas datajulkistus vuonna 2022 oli vieläkin tarkempi, ja tulossa on vielä kaksi uutta, entistäkin tarkempaa, laajempaa ja parempaa tietokantaa. DR4 on tulossa vuonna 2026, ja ESA lupaa sen tietojen olevat 1,7 kertaa tarkempia kuin DR2:ssa.

Viimeinen datajulkistus tapahtuu näillä näkymin vuonna 2030, jolloin kaikki Gaian tekemät havainnot ovat mukana. Sen odotetaan olevan 1,4 kertaa tarkemman kuin DR4.

Kaikki havainnot laitetaan julkiseen tietokantaan, jolloin tähtitieteilijät – kuten myös muut astrometriasta kiinnostuneet – voivat käyttää Gaian keräämiä havaintoja.

Gaian tulosten esittely infografiikassa
Gaian aurinkopaneelia ja valosuojaa avataan testimielessä.

Gaian toiminta joudutaan nyt lopettamaan yksikertaisesti siksi, että sen asennonsäätöön käyttämänsä kaasu on loppumassa. 

Alun perin Gaian odotettiin toimivan vain viiden vuoden ajan, mutta lopulta se pinnisteli tupasti tuon.

Tänään 15. tammikuuta 2025 se tekee viimeiset havaintonsa, ja tämän jälkeen Gaialla ja sen mittalaitteilla tehdään testejä, joiden avulla Gaian keräämia tietoja voidaan kalibroida paremmin. Testien avulla myös tulevaisuuden kartoittajasatelliiteista saadaan parempia.

Helmikuussa Gaia ohjataan pois radaltaan L2-pisteen ympärillä Aurinkoa kiertävälle radalle, missä siitä ei ole haittaa maapallolle tai muille satelliiteille. 

Maalis-huhtikuussa sitten satelliitti niin sanotusti passivoidaan, eli se sammutetaan.

Kiitos, Gaia!

Timo Prusti ESTECin kahvilassa

Gaian tieteellinen johtaja Timo Prusti

Gaia-teleskoopin tiedepuoli on ollus suomalaisessa johdossa, sillä hanketta on ollut vetämässä Timo Prusti. 

Timo raportoi vuonna 2013 satelliitin valmisteluista laukaisuun ja laukaisusta tuolloin juuri perustetussa Tiedetuubissa useiden juttujen verran. Kaikki jutut ovat täällä; ne tehtiin yhteistyössä Euroopan avaruusjärjestön kanssa.

Tämän jutun kirjoittaja Jari Mäkinen on tehnyt myös useamman ohjelman Yleisradiolle Gaiasta. Tuorein niistä on tämä Tiedeykkönen vuodelta 2021. Timo kertoo siinä Gaiasta ja sen keräämistä tiedoista.

Katso Gaiaa taivaalla!

Pian alkavien testien aikana Gaian asento muuttuu siten, että se näkyy nykyistä paljon paremmin taivaalla. Täältä voi nähdä missä Gaia on taivaalla: https://gaiainthesky.obspm.fr

Satelliittien törmäys oli todella lähellä – kolarit kiertoradalla ovat suuri uhka

Satelliittien törmäys oli todella lähellä – kolarit kiertoradalla ovat suuri uhka

28. helmikuuta 2024, kaksi satelliittia oli vähällä törmätä toisiinsa. Venäläinen ja yhdysvaltalainen satelliitti ohittivat lopulta toisensa, mutta alle 20 metrin etäisyydeltä.

10.03.2024

Mitä tapahtui ja mitä olisi tapahtunut, jos satelliitit olisivat törmänneet? Miksi tällaiset tapaukset ovat suuri uhka avaruuden käyttämiselle? Jari Mäkinen selittää.

Suomalainen satelliitti putosi avaruudesta – miksi satelliitit syöksyvät ilmakehään?

Suomalainen satelliitti putosi avaruudesta – miksi satelliitit syöksyvät ilmakehään?

Suomalaisen, maailmanmaineeseen nousseen Iceye-yhtiön ensimmäinen satelliitti ICEYE-X1 putosi avaruudesta viime viikolla. Yhtiön satelliitit ovat pienikokoisia ja suorituskykyisiä tutkasatelliitteja, jotka ovat sittemmin mullistaneet alan – kiitos X1:n ja sen avulla testatun uuden tekniikan.

17.02.2024

Alkavalla viikolla (21.2.2024) putoaa avaruudesta huomattavasti suurempi tutkasatelliiti ERS-2, joka laukaistiin avaruuteen vuonna 1995.

Se ei ole toiminut sitten vuoden 2011, mutta sen avulla Euroopan avaruusjärjestö on testaamassa menetelmää, millä satelliitti ei jää vuosisadoiksi kiertämään Maata avaruusromuna.

Mistä avaruudesta putoaminen johtuu? Mitä silloin tapahtuu? Voisiko satelliitti pudota päähäsi?

Näistä enemmän tällä videolla.

Loppuvuoden satelliittilaukaisubakkanaali on meneillään Jari Mäkinen Pe, 14/12/2018 - 18:35

Kuten yleensä, satelliittien laukaisijat koettavat saada vuoden viimeiset raketit matkaan seuraavien viikkojen aikana. Ruuhka rakettirintamalla päättää ennätyksellisen vuoden 2018, jonka aikana tapahtui suhteessa ennätyksellisen vähän laukaisuonnettomuuksia.

Tähän mennessä tänä vuonna on tehty 105 kantorakettilaukaisua ympäri maailman; 36 Kiinasta, 30 Yhdysvalloista, 17 Venäjältä, 8 eurooppalaisin raketein Etelä-Amerikassa olevasta Kouroun avaruuskeskuksesta, kuusi Intiasta, kuusi Japanista ja lisäksi kaksi Uudesta Seelannista.

Vuoden loppuun on suunnitteilla vielä 12 lentoa, joista tosin osa varmasti lykkääntyy ensi vuoden puolelle. Joka tapauksessa laukaisuvalmiina ovat raketit Uudessa Seelannissa, Yhdysvalloissa, Kiinassa, Intiassa, Kouroun avaruuskeskuksessa ja Venäjällä.

Jo ilman näitä tulossa olevia laukaisuita on tästä vuodesta tulossa eräs aktiivisimmista avaruusvuosista. Vuonna 2017 laukaisuita oli 90 ja edeltävänä vuonna 85. Edellinen ennätys viime ajoilta on vuodelta 2014, jolloin tehtiin 92 laukaisua. Kylmän sodan aikaisia ennätyksiä ei kuitenkaan olla vielä rikkomassa, sillä vuosina 1964 – 1990 laukaisuita tehtiin vuodella yli sata, parhaimmillaan 139 (vuonna 1967).

Laukaistujen satelliittien määrässä viime vuodet ovat olleet kuitenkin kaikkien aikojen vilkkaimpia. Tänä vuonna tähän mennessä avaruuteen on laukaistu 511 satelliittia (joista neljä suomalaista) ja nähtävästi lopulta tähän tulee laskea ainakin 40 satelliittia lisää. Viime vuonna luku oli 513, sitä edeltävänä 308 ja vuonna 2015 335.

Suurin syy satelliittimäärän roimaan kasvuun ovat nanosatelliitit, sellaiset kuin Aalto-1, Suomi 100 ja Reaktor Hello World, sekä satelliittien kimppakyydit, jotka kuskaavat suuren määrän näitä kerralla avaruuteen. Ennätys tässä on intialaisilla, jotka laukaisivat 104 satelliitti yhdellä raketilla vuonna 2017. Lähivuosina tahdin oletetaan vain kiihtyvän – ja vähitellen satelliittien suuri määrä alkaa tuottaa harmaita hiuksia, sillä lähiavaruus on pian kuhisemassa pieniä, ohjauskyvyttömiä satelliitteja.

Suurin osa nanosatelliiteista putoaa parin vuoden päästä laukaisustaan luonnollisesti ilmakehään ja tuhoutuvat siinnä, mutta lähiaikoina niitä ollaan lähettämässä ylös paljon enemmän kuin niitä tulee sieltä alas.

Tänä vuonna on tapahtunut muutamia kiinnostavia asioita

Vuoden kiinnostavin tulokas on Rocket Lab -yhtiön pieni kantoraketti nimeltä Electron. Se on tarkoitettu pienten satelliittien laukaisuun ja esimerkiksi suomalaisen tutkasatelliittiyhtiö Iceyen seuraava satelliitti Iceye-X3 on näillä näkymin saamassa sellaisella kyydin avaruuteen ensi vuoden alussa.

Raketti on ensimmäinen rutiinikäyttöön tulleista pienistä raketeista. Vastaavia on kehitteillä muuallakin, sillä pienten satelliittien määrän lisääntyessä on juuri tällaisille laukaisuille paljon kysyntää. Isommilla kantoraketeilla nano- ja mikrosatelliitit ovat aina isompien satelliittien kyljessä olevia kyytiläisiä, jotka joutuvat usein odottelemaan ihan turhaan. Pienemmillä raketeilla operointi on suoraviivaisempaa ja ja kätevämpää.

Electron on tehnyt tänä vuonna jo kaksi lentoa ja kolmas laukaisu on vuorossa ihan lähipäivinä. Niitä lähetetään Uudessa Seelannissa olevalta laukaisualustalta, joten yllättäen uusiseelantilaisista on tullut avaruusvaltion asukkaita.

Isoille, perinteisille raketeille on luonnollisesti tulevaisuudessakin käyttöä ja kysyntää on myös nykyistä suuremmille raketeille. Kulunut vuosi näki myös yhden tällaisen ensilennon: SpaceX:n Falcon Heavy lensi ensimmäisen kerran tammikuussa ja sinkosi tällä koelennollaan näyttävästi Tesla Roadster -urheiluauton Aurinkoa kiertämään.

Tälle ikään kuin kolmesta Falcon 9 -raketista kootulle kantoraketille on tulossa vielä muutamia lentoja, mutta SpaceX on muuttanut viime aikoina suunnitelmiaan sen käytöstä siten, että vastaisuudessa suurin osa Heavylle aiotuista laukaisuista aiotaan tehdä tulossa olevalla BFR-raketilla. Siitä kuullaan varmasti paljon ensi vuonna, kun sen testaaminen alkaa.

Tänä vuonna tapahtui pitkästä aikaa ensimmäinen onnettomuus miehitetylle avaruusalukselle. Lokakuussa kohti avaruusasemaa laukaisu Sojuz joutui keskeyttämään lentonsa rakettiin tulleen vian vuoksi ja sen miehistö palasi turvallisesti, mutta epämukavasti takaisin alas laskuvarjolla vain lyhyen lennon jälkeen. Kyydissä olleet Nasan astronautti Nick Hague ja venäläinen kosmonautti Aleksei Ovchinin pääsevät koittamaan uudelleen lentoa ensi vuonna.

Tämän Sojuz-onnettomuuden lisäksi vuonna 2018 tapahtui (ainakin tähän mennessä) vain yksi muu laukaisuonnettomuus: kiinalaisen yksityisen LandSpace -yhtiön uusi pieni kantoraketti ZhuQue-1 epäonnistui koelennollaan lokakuussa ja sen kyydissä ollut Weilai 1 -satelliitti ei päässyt radalleen. Tästä raketista varmasti kuullaan vielä lisää.

Lisäksi tänä vuonna tapahtui harvinainen ja omituinen häiriö eurooppalaiselle Ariane 5:lle. Tammikuussa laukaisu raketti rynnisti ohjelmoinnissa tapahtuneen inhimillisen virheen vuoksi aivan toiselle radalle kuin suunniteltiin: SES-14/GOLD -tietoliikennesatelliitin piti mennä päiväntasaajan päälle geostarionaariradalle, mutta Ariane lähti viemään sitä radalle, jonka kallistuskulma päiväntasaajan suhteen oli 20,6°.

Lennolla tapahtunut toinen häiriö oli itse asiassa onnekas, sillä näin suuren ratamuutoksen olisi pitänyt käynnistää raketin automaattisen tuhoamisen, mutta näin ei käynyt. Sen sijaan satelliitti pääsi avaruuteen ja se onnistuttiin ohjaamaan lopulta oikealle paikalleen. Tähän kuitenkin kului paljon polttoainetta, minkä vuoksi satelliitin elinikä on paljon suunniteltua lyhyempi.

Video: Näin laitettiin Suomi 100 -satelliitti avaruuslaatikkoon

Video: Näin laitettiin Suomi 100 -satelliitti avaruuslaatikkoon

Olemme seuranneet Tiedetuubissa monenlaisten satelliittien tekemistä ja laukaisuvalmisteluita. Toiset satelliiteista ovat suuria, mutta osa on ollut myös kovin pieniä, mutta mikään ei ole ollut näin tiukka, pieni paketti huipputekniikkaa kuin on vain 10 cm kanttiinsa oleva Suomi 100 -satelliitti. Se on nyt menossa viimein kohti laukaisupaikkaa Yhdysvalloissa.


13.09.2018

Suomi 100 -satelliitti on viime vuonna olleen Suomen satavuotisjuhlan nimikkosatelliitti, joka oli tarkoitus laukaista Maata kiertämään juhlavuoden 2017 aikana. Vaikka satelliitti olikin valmis hyvissä ajoin, kyyti taivaalle tökki: intialaisen PSLV-raketin elokuussa tapahtunut onnettomuus sotki suunnitelmat ja lykkäsi laukaisua koko ajan eteenpäin tämänkin vuoden puolella. Niinpä kesällä Aalto-yliopisto ja laukaisuvälittäjä tutkivat mahdollisuuksia saada satelliitti nopeammin ja varmemmin matkaan.

Avuksi löydettiin SpaceX -yhtiön Falcon 9. Spaceflight Industries aikoo käyttää sellaista ainakin kerran vuodessa pikkusatelliittien kimppakyyteihin, ja ensimmäinen tällainen tapahtuu nyt marraskuussa. Suomi 100 -satelliitti sai paikan tältä lennolta.

Sen jälkeen, kun paikka varmistui kesällä, aloitettiin satelliitin valmistelu matkaan – taas kerran. Laukaisua suunniteltiin alun perin täksi syyskuuksi, mutta aikataulu on sittemmin taas kerran venynyt, mutta nyt tilanne on jo niin varma, että satelliitti pyydettiin toimittamaan eteenpäin 12. syyskuuta.

Ja niin Aallon satelliittitiimi teki viimeiset testit, pakkasi satelliitin ja lähti kohti Alankomaita 11. syyskuuta..

Tuolloin hanketta vetävä professori Esa Kallio heitti satelliitille hyvästit ja katsoi, miten kolmihenkinen ryhmä lähti satelliitti mukanaan kohti Hollantia. Kuljetus Alankomaihin tapahtui arkisesti ensin taksilla, sitten Finnairin vuorokoneella Amsterdamin lentoasemalle ja sieltä edelleen junalla Delftiin.


Satelliitin kuljetus nähtävästi on muodostunut jo rutiininomaiseksi toimeksi, sillä erikoislupien saaminen satelliitin kuljettamista varten kävi käden käänteessä: harvinaislaatuisen lastin tulemisesta lennolle sovittiin etukäteen niin lentoasemaa ylläpitävän Finavian kuin Finnairinkin kanssa. Kyseessä oli jo järjestyksessä neljäs Suomesta samalla tavalla hollantilaiselle Innovative Solutions in Space -laukaisuvälittäjälle viety satelliitti.

Aiemmat ovat olleet Aalto-yliopiston satelliitit Aalto-1 ja Aalto-2, ja kolmas oli Reaktor Space Labin Hello World.

Lentoaseman turvatarkastuksessa satelliitti läpivalaistaan periaatteessa normaalisti, mutta se pidetään suojaavan laatikon sisällä. Lentokoneessa satelliitti kulkee lattialla kuljetuslaatikossaan, paikoilleen kiinnitettynä.

Laatikkomaiseen laukaisusovittimeen mahtuu kaikkiaan 12 yhden Cubesat-standardin perusyksikön mukaista satelliittia, joskin tähän sovittimeen laitettiin kuusi yhden yksikön satelliittia sekä yksi satelliitti, joka on kooltaan kuusi yksikköä. Kolme satelliittia, jotka käyttävät yhden kolmen satelliitin osan, laitettiin paikoilleen samana päivänä.

Kaksi muuta satelliittia tulivat Jordaniasta ja Kazakstanista.

Ensin jokainen satelliitti tarkistettiin vielä kerran, sitten niiden yhteensopivuus keskenään varmistettiin, ja lopulta yksinkertaisesti satelliitit laitettiin yksitellen laukaisusovittimen sisään. Suomi 100 on kolmikon keskimmäisenä, mikä on oikein hyvä paikka.

Koska kaikki tehtiin huolellisesti ja koko ajan tarkistaen, kului satelliittien asentamiseen paikoilleen lähes koko työpäivä. Suomi 100 -satelliitti oli paikallaan noin klo 16 paikallista aikaa, jolloin tiimi heitti sille hyvästit. Nyt satelliitille ei enää voi tehdä mitään, vaan voimme vain toivoa parasta ja luottaa siihen, että laukaisuvälittäjä kuljettaa sen turvallisesti Yhdysvaltoihin ja SpaceX nostaa luotettavasti avaruuteen.

Päivän päätteeksi paikalla ollut nelikko, eli Arno Alho, Antti Kestilä, Petri Koskimaa ja Hollannissa mukaan joukkoon liittynyt Jari Mäkinen ottivat hyvin ansaitut oluset.

HUOM! Videota katsoessa kannattaa muistaa, että videota on nopeutettu ja siitä on leikattu odottelua pois välistä. Lisäksi kannattaa huomata, että laitteet eivät ole leluja, vaan toimivia, avaruuteen lentovalmiita satelliitteja!

*

Jari Mäkinen on Tiedetuubin päätoimittaja ja myös mukana Suomi 100 -satelliittihankkeessa. Hän on kirjoittanut tämän jutun, tehnyt videon ja ottanut kuvat alun perin Suomi 100 -satelliitin nettisivuille. Juttua on Tiedetuubia varten hieman muokattu.

Aeolus lähti tuulia tutkimaan

Aeolus lähti tuulia tutkimaan

Maapallon tuulia kartoittava satelliitti Aeolus laukaistiin onnistuneesti avaruuteen viime yönä klo 00.20 Suomen aikaa.

 

23.08.2018

Kouroun avaruuskeskuksesta lähetetty Vega-kantoraketti nosti 1360 kg massaltaan olleen Aeolus-satelliitin noin 320 kilometrin korkeudessa olevalle radalle maapallon ympärillä. Siellä satelliitti aloitti saman tien toimintansa ja oli yhteydessä ensin Etelämantereella Troll-tutkimusasemalla olevaan maa-asemaan klo 1.30 Suomen aikaa.

Nyt aluksi sen kaikki systeemit käydään läpi ja tuulien kartoittamisessa käytettävä laserlaitteisto käynnistetään vasta vähän ajan kuluttua.

Kiinteällä polttoaineella toimiva kevyt Vega nousi matkaan nopeasti ja suhahti vain muutamassa sekunnissa ylös taivaalle iltahämyisestä avaruuskeskuksesta. Kyseessä oli Vegan 12 lento; kaikki laukaisut tähän mennessä ovat sujuneet ongelmitta.

Aeolus on saanut nimensä Kreikan mytologian tuulten jumalalta ja se on viides Euroopan avaruusjärjestön niin sanotuista Earth Explorers -satelliiteista, jotka tutkivat eri maapallon ilmiöitä. Aiemmat ovat Maan painovoimakenttää mitannut, jo toimintansa lopettanut GOCE, Maan vesikiertoa ja merten suolaisuutta mittaava SMOS, jäätiköitä kartoittava CryoSat sekä Maan magneettikenttää mittaava Swarm.

Aeolus on suomalaisittain kiinnostava ennen kaikkea siksi, että sen lidar-laitteiston suuri 1,5 metriä halkaisijaltaan oleva peili on hiottu Tuorlan observatorion alueella Turun lähellä olevassa Opteon Oy:ssä. Satelliitin "sähkökaapin", aurinkopaneeleista eri systeemeille jakavan laitteiston, on tehnyt RUAG Space Finland Oy Tampereella; yhtiö valmisti myös signaalikäsittely-yksikön laserlaitteistoon.

Lisätietoja satelliitista ja sen tehtävästä on alla olevissa jutuissa.

Maapallo laserpommituksen kohteena

ICESat-2 avaruudessa
ICESat-2 avaruudessa

Ensi yönä Suomen aikaa laukaistaan avaruuteen Euroopan avaruusjärjestön Aeolus -tuulitutkimussatelliitti ja ensi kuussa lähtee kiertoradalle Nasan ICESat-2. Yhteistä molemmille laitteille on se, että ne tulevat sinkoamaan alas kohti maapalloa lasersäteitä.

Heti alkuun on parasta sanoa, että lasersäteet eivät ole niin voimakkaita, että niistä olisi meille haittaa.

Mutta heti perään kannattaa todeta, että esimerkiksi Aeoluksen lasereita on säädetty ihan tarkoituksella siten, että vahingossa suoraan kohti satelliittia katsoessa täällä Maan pinnalla ei siitä tulisi haittaa silmille. Ultraviolettilaser kun vaurioittaa helposti silmää, etenkin kun emme itse tunne lainkaan sitä, kun valo saa aikaan vaurioita silmässä. Niinpä laserien teho on laskettu juuri parhaaksi mahdolliseksi, mutta samalla kenties jopa "liian" turvalliseksi.

Aeolus ei kuitenkaan ole ainoa satelliitti, joka ampuu alas kohti Maata laservaloa.

Sellaisia on jo nyt, mutta Aeolus tulee olemaan aivan omassa luokassaan – kuten myös Nasan uusi ICESat-2 (Ice, Cloud and land Elevation Satellite-2). Se on periaatteeltaan hieman samanlainen kuin Euroopan avaruusjärjestön jo avaruudessa oleva Cryosat, paitsi että radioaaltojen sijaan se käyttää laseria korkeuden mittaamiseen.

Olennaista on juuri korkeuden mittaaminen: kun tarkka satelliitin ja pinnan välinen etäisyys tiedetään, voidaan laskea varsin yksinkertaisesti esimerkiksi jäätiköiden paksuuksia sekä tahtia, kuinka nopeasti paksuus muuttuu.

Kuten nimi antaa ymmärtää, voi satelliitti havaita myös pilviä, meren pinnan korkeutta sekä kiinteän maan pinnan korkeuksia. Tiedoilla on erittäin suoraa käyttöä mm. ilmastonmuutoksen seurannassa.

ICESat-2:n laserlaite ampuu kohti Maata 10 000 pulssia sekunnissa. Osa valosta heijastuu takaisin ja satelliitin herkkä kamera pystyy ottamaan valoa vastaan. Kun laite toimii tutkan tapaan, voidaan tuloksesta laskea satelliitin sijaintitietojen ja asennon mukaan tarkka korkeustieto.

Ylhäällä avaruudessa on jo nyt useita satelliitteja, jotka ovat käyttäneet tai käyttävät laseria joko tiedon siirtoon tai Maan tutkimiseen. Yksi niistä oli ensimmäinen ICESat-2 -satelliitti, joka toimi vuodesta 2003 vuoteen 2009. Sen työtä on jatkanut IceBridge, joka laukaistiin avaruuteen vuonna 2009 ja joka toimii edelleen. Uusi lasertutkakorkeusmittarisatelliitti on siis jatkoa tälle tutkimukselle.

Aeolus ei tule kiinnittämään niinkään huomiota korkeuksiin, vaan ilmakehässä olevien hiukkasten liikkeisiin maanpinnan ja 30 kilometrin korkeuden välissä. Hiukkasten liikkeiden avulla voidaan nimittäin katsoa miten tuuli puhaltaa eri korkeuksilla.

Kreikan mytologian tuulten jumalalta nimensä saanut Aeolus on varustettu Suomessa hiotulla 1,5-metrisellä peilillä.


Aeolus laukaistaan avaruuteen Vega-kantoraketilla Kouroun avaruuskeskuksesta ensi yönä, eli 23.8. klo 00.20 Suomen kesäaikaa – jos kaikki sujuu suunnitelman mukaan. Laukaisua voi katsoa suorana täällä: www.esa.int/Our_Activities/Observing_the_Earth/Aeolus/Watch_Aeolus_launch_live

ICESat-2 puolestaan lähetetään matkaan Delta II -kantoraketilla Kaliforniasta Vandenbergin lentotukikohdasta syyskuun 12. päivänä, siis noin kolmen viikon päästä.