Saksalainen mittaustötterökone kävi nuuskimassa Suomen ilmaa

HALO-lentokoneen mittauspuomi

Saksan Ilmailu- ja avaruuskeskuksen HALO-tutkimuslentokone lensi Suomen yllä 28. toukokuuta 2018 ja teki mm. hiilidioksidin ja metaanin mitauksia ensimmäistä kertaa Suomessa korkealle stratosfääriin asti.

Ilmakehässä olevia kasvihuonekaasuja mitataan monella eri tavalla. Yleisin on rutiininomaiset havainnot Maan pinnalta, mutta kaasuja kartoitetaan myös avaruudesta satelliiteilla. Näin niiden esiintymisestä saadaan nopeasti hyvin kattava kuva joka puolelta maapalloa.

Lisäksi kaasuja mitataan eri puolilla maapalloa lentokoneista ja ilmapalloista. Toisinaan nämä ilmassa ja avaruudessa tehtävät havainnot tehdään tarkoituksella samanaikaisesti, jotta satelliittihavaintojen laatua voidaan tarkkailla ja mittaustekniikkaa säätää mahdollisimman hyväksi.

Nyt toukokuun lopussa Suomessa tehdyt tutkimuslennot liittyivät kansainväliseen CoMet-mittauskampanjaan (Carbon Dioxide and Methane Mission).

Mittaukset tehtiin Saksan Ilmailu- ja avaruuskeskuksen HALO-tutkimuslentokoneella, joka on Gulfstream G 550 -liikesuihkukoneesta muokattu lentävä laboratorio. Nimi HALO tulee sanoista High Altitude and Long Range Research Aircraft, eli kone pystyy lentämään korkealla ja pitkään.

Suomen mittauslennoilla koneella noustiinkin noin 15 kilometrin korkeuteen, kun tyypillisesti täällä tehdyillä mittauslennoilla on oltu "vain" noin kahdeksassa kilometrissä.

Koska kone pystyy lentämään hyvin pitkiä lentoja, teki se lentonsa 28. toukokuuta Saksasta, Münchenistä, missä koneen sijoituspaikka on. Otsikkokuvassa kone on lentämässä Münchenin kuuluisan Allianz-areenan päällä ja sen nokasta eteenpäin sojottava mittauspuomi näkyy hyvin.

Kone lensi 8,5 tuntia ja kävi lennollaan Pohjois-Suomen yllä, missä se kävi tekemässä mittauksia eri korkeuksilla.

Lennon aikana mitattiin kahden tärkeimmän kasvihuonekaasun, hiilidioksidin ja metaanin, pitoisuuksia ilmakehän eri korkeuksilla uusia menetelmiä kokeillen. Erityisesti stratosfäärissä kasvihuonekaasujen pitoisuudet tunnetaan huonosti, ja mittauksia on haastavaa tehdä muilla tavoin.

Tämä erikoisvarusteltu liikesuihkukone on sisustukseltaan hieman askeettisempi kuin raharikkaiden bisnesjetit.

Ilmatieteen laitoksella Sodankylässä suoritettiin samaan aikaan useita eri tyyppisiä mittauksia: kasvihuonekaasujen pitoisuutta tutkittiin kaukomittauksin sekä säähavaintopallon avulla stratosfääriin nostetulla AirCore-keräysjärjestelmällä.

Tutkimuslennoilla saatiin uutta tietoa kasvihuonekaasujen jakaumasta ja vaihtelusta ilmakehän eri korkeuksilla Lapin päällä. Tulokset ovat tärkeitä metaanin ja hiilidioksidin lähteiden ja nielujen tutkimuksessa, jotta voidaan entistä paremmin ennakoida tulevaisuuden ilmastonmuutosta ja sen vaikutuksia.

Samaan aikaan tehtiin myös mittauksia avaruudesta Nasan OCO-2 -satelliitilla sekä Japanin avaruusjärjestön GOSAT-satelliitilla. Näin niiden kaukaa tekemiä havaintoja voidaan verrata tarkkoihin paikan päällä ilmakehässä tehtyihin mittauksiin, mikä auttaa varmistamaan satelliittihavaintojen laatua.

Mittauksia käytetään OCO-2:n ja GOSAT:in havaintojen kvalifioinnin lisäksi myös Euroopan avaruusjärjestön Sentinel-5P -satelliitissa olevan TROPOMI-havaintolaitteen sekä kiinalaisen TanSatin havaintojen laadunvalvontaan.

*

Teksti perustuu osittain Ilmatieteen laitoksen tiedotteeseen. Kuvat: DLR

Onni on uusi kupu

Metsähovin radioteleskoopin kupu. Kuva: Metsähovin radiotutkimusasema

Metsähovin radiotutkimusaseman maamerkki on suuren radioteleskoopin päällä oleva kupu. Nyt asema on saanut lähes miljoonan euron rahoituksen vanhan ja väsyneen kuvun uusimiseen.

Metsähovin radioteleskooppi on käytössä kellon ympäri vuoden jokaisena päivänä ja kupu suojaa sitä lumelta, tuulelta, sateelta ja auringon lämpösäteilyltä.

Valkoinen kupu on halkaisijaltaan noin 20 metriä ja se on radioaallonpituuksilla lähes näkymätön, joten teleskooppi pystyy tekemään havaintoja kuvun sisällä melkein kuin kupua ei olisikaan.

”Uusi kupu mahdollistaa tarkkojen mittausten tekemisen seuraavaksi 25 vuodeksi”, kertoo Metsähovin johtaja Joni Tammi Aalto-yliopiston tiedotteessa.

 

Radioteleskoopin suuntaus miljardien valovuosien päähän on niin tarkkaa, että pienetkin tuulenpuuskat häiritsisivät mittauksia. Myös Auringon lämpösäteily kuumentaisi herkkää vastaanotinta ja pahimmillaan jopa vaurioittaisi laitteistoa. Kuvun sisällä teleskooppi on jatkuvasti varjossa, jolloin sen voi suunnata kohti Aurinkoa huoletta, ja tämä mahdollistaa mm. Metsähovissa neljäkymmentä vuotta tehdyt aurinkohavainnot.

Talvella kuvun päälle satanut lumi sulatetaan lämmittämällä kuvun sisäilmaa kymmeniä asteita. Kuuma ilma nousee ylös ja sulattaa lumen, joka valuu vetenä alas maahan jättäen kuvun puhtaaksi.

Uutta kupua ei noin vain osteta kaupasta, sillä maailmassa on vain pari valmistajaa, jolta saadaan tarpeeksi laadukas kupu tilattua. Kupu pitää suunnitella siten, että sen muoto ei häiritse radiosignaalien kulkemista.

Tarkoitus on, että uusi kupu on käytössä ensi vuoden aikana.

*

Artikkeli on Aalto-yliopiston tiedote lähes sellaisenaan.

Kuuden kvarkin "tupla-baryoni" on teoriassa mahdollinen

Aineen perusosaset eli protonit ja neutronit rakentuvat kolmesta tiukkaan pakkautuneesta kvarkista. Uudella simulaatiolla on todettu, että yhdessä hiukkasessa voi olla jopa kuusi kvarkkia.

Tutkimus tehtiin kvanttiväridynamiikkaan perustavalla simulaatiolla, jota pyöritettiin maailman tehokkaimpiin lukeutuvassa K-supertietokoneessa. Asialla olivat japanilaisen RIKEN-tutkimuskeskuksen ja useiden yliopistojen tutkijat.

Kyseessä ei siis ole varsinainen löytö, koska kuudesta kvarkista muodostuvaa "dibaryonia" ei ole havaittu. Sellaisia saattaa kuitenkin esiintyä äärimmäisissä olosuhteissa kuten neutronitähtien sisuksissa tai saattoi esiintyä hyvin varhaisessa maailmankaikkeudessa pian alkuräjähdyksen jälkeen.

Periaatteessa yksi dibaryoni tunnetaan jo entuudestaan: deuteroni eli deuteriumin, raskaan vedyn ydin, joka rakentuu kahdesta baryonista, protonista ja neutronista. Siltä pohjalta tutkijat ovat pohtineet, voisiko vastaavanlaisia tuplahiukkasia olla muitakin.

Supertietokoneella tehdyn simulaation perusteella teoriassa on mahdollista, että kaksi Omega-baryonia, kolmen outokvarkin muodostamaa hiukkasta, voi klikkiytyä äärioudoksi dibaryoniksi. Samalla saatiin viitteitä siitä, miten se olisi kenties mahdollista havaita hyvin suurella energialla tapahtuvissa hiukkastörmäyksissä.

"Olimme hyvin onnekkaita päästessämme tekemään laskelmat K-tietokoneella. Sen avulla pystyttiin laskemaan nopeasti valtaisa määrä muuttujia. Silti meiltä vei lähes kolme vuotta saada valmiiksi di-Omegaa koskevat tuloksemme", toteaa Shinya Gongyo RIKEN-tutkimuskeskuksesta.

"Tutkimus auttaa meitä ymmärtämään outojen baryonien eli hyperonien välisiä vuorovaikutuksia ja tavallisen aineen muuttumista äärimmäisissä olosuhteissa kuten neutronitähdissä niin kutsutuksi hyperoniaineeksi, joka rakentuu protoneista, neutroneista ja outokvarkeista muodostuneista hyperoneista, ja edelleen ylös-, alas- ja outokvarkeista rakentuvaksi kvarkkiaineeksi", pohtii Tetsuo Hatsuda niin ikään RIKEN-keskuksesta.

Tutkimuksesta kerrottiin RIKEN-tutkimuskeskuksen uutissivuilla ja se on julkaistu Physical Review Letters -tiedelehdessä.

Kuva: Keiko Murano

Tähän ei pysty edes Ringo Starr – kvanttirumpu soi ja on soimatta yhtä aikaa

Brittiläis-australialaisen tutkijaryhmän tulokset saavat huippurumpalitkin kalpenemaan kateudesta. Valosta tehty rumpukapula saa mikroskooppisen instrumentin värähtelemään samaan aikaan kuin se ei värähtele.

Tutkimus ei kuitenkaan liity musiikkiin vaan pyrkimyksiin ymmärtää klassisen fysiikan ja kvanttimaailman hämmentävää rajaa.

Kvanttimekaniikassa esimerkiksi "kappaleilla" havaitaan samanaikaisesti sekä hiukkasten että aaltojen ominaisuuksia, mutta makromaailmassa moiset kummallisuudet katoavat. Miksi?

Ehkä siksi, että ne eivät sittenkään katoa tyystin. Tuoreessa tutkimuksessa on onnistuttu saamaan aikaan kvanttikäyttäytymistä esineessä, joka on mahdollista nähdä paljain silmin – jos kohta juuri ja juuri.

"Tällaisten järjestelmien avulla on todennäköisesti mahdollista kehittää uutta kvanttitehostettua tekniikkaa, kuten huipputarkkoja ilmaisimia ja uudenlaisia muuntajia", arvelee tutkimusta johtanut Michael Vanner Lontoon Imperial Collegesta.

"Jännittävää on, että tarkastelemalla, miten kvanttisuperpositio toimii suuremmassa mittakaavassa, voimme myös testata kvanttimekaniikan äärimmäisiä rajoja."

Kun rumpua lyö kapulalla, rumpukalvo alkaa värähdellä, jolloin syntyy korvin kuultava ääni. Kvanttimaailmassa rumpu voi värähdellä ja pysyä paikallaan samanaikaisesti. Käytännössä moisen ristiriitaiselta kuulostavan ilmiön toteuttaminen ei kuitenkaan ole helppoa.

"Jotta pienessä rummussamme saa aikaan kvanttivärähtelyjä, tarvitsemme erikoisen rumpukapulan", toteaa tutkimukseen osallistunut Martin Ringbauer Queenslandin yliopistosta Australiasta.

Kvanttirummutuksessa käytettiin hyväksi viime vuosina nopeasti kehittynyttä kvantti-optomekaniikkaa: "rumpukapulana" lasersäde. Se oli kuitenkin helpommin sanottu kuin tehty.

Ringbauerin mukaan kokeessa sovellettiin optisesta kvanttilaskennasta lainattua kikkaa. "Muokkasimme rumpukapulan ominaisuuksia tekemällä mittauksia yksittäisistä valohiukkasista eli fotoneista. Sillä pääsimme kehittämään mekaanista versiota Schrödingerin kissasta eli rumpua, joka samanaikaisesti värähtelee ja on liikkumatta."

Koejärjestelyä häiritsivät lämpöliikkeen korostamat klassisen fysiikan ilmiöt, joten jatkotutkimuksessa on tarkoitus alentaa lämpötila lähelle absoluuttista nollapistettä, jolloin kvanttimekaniikka muuttuu hallitsevaksi.

Perimmäisenä tavoitteena on selvittää mahdollisia kvanttimekaniikan ennestään tuntemattomia ominaisuuksia ja kehittää kenties teoria, joka yhdistää kvanttimaailman ja gravitaation.

Kvanttirummusta kerrottiin Lontoon Imperial Collegen uutissivuilla ja tutkimus on julkaistu New Journal of Physics -tiedelehdessä.

Kuva: Imperial College London

Superkuumaa vettä pikapikapikaa

Näillä helteillä uimavedet lämpenevät nopeasti, mutta tutkijat ovat kehittäneet menetelmän, jolla vesi saadaan kuumennettua 100 000 celsiusasteeseen 0,000000000000075 sekunnissa.

Vajaan pikosekunnin kymmenyksen kestävä pikakuumennus tehtiin tehokkaalla röntgenlaserilla. LCLS-laitteisto (Linac Coherent Light Source) löytyy Yhdysvaltain Kansallisesta kiihdytinlaboratoriosta. Tutkijat kohdistivat lyhyitä, mutta hyvin voimakkaita laserpulsseja vesisuihkuun.

"Yleensä kun vettä kuumennetaan esimerkiksi mikroaalloilla, molekyylit alkavat vain liikkua yhä nopeammin. Käyttämämme kuumennusmenetelmä oli tyystin toisenlainen", selittää tutkimusta johtanut Carl Caleman.

"Energinen röntgensäteily iski elektronit irti vesimolekyyleistä, jolloin varausten tasapaino rikkoutui. Atomien välillä alkoi yhtäkkiä vaikuttaa voimakas hylkimisvoima, mikä sai ne liikehtimään hyvin rajusti."

Alle 0,000000000000075 sekunnissa veden olomuoto muuttui nesteestä plasmaksi. Sen tiheys oli kuitenkin edelleen sama kuin nestemäisen veden, sillä atomit eivät ehtineet lyhyessä hetkessä liikkua juuri mihinkään.

"Aineen ominaisuudet ovat samankaltaisia kuin Auringon ja Jupiterin plasmalla, mutta sen tiheys on alhaisempi. Silti sen lämpötila on korkeampi kuin Maan ytimen", toteaa tutkimukseen osallistunut Olof Jönsson.

Mittausten tarkoituksena oli varmistaa simulaatioiden antamat tulokset. Sen lisäksi tutkimuksella on käytännön sovelluksia. Röntgenlasereita käytetään eri aineiden atomirakenteen tutkimiseen, mutta jos ne ovat nestemäisessä olomuodossa, ongelmana on rakenteen tuhoutuminen silmänräpäyksessä – samaan tapaan kuin nyt tehdyssä kokeessa. Tutkimuksen toivotaan antavan osviittaa, miten atomirakennetta voidaan tutkia tuhoamatta näytettä.   

Pikakuumennuksesta kerrottiin DESY-tutkimuskeskuksen (Deutsches Elektronen-Synchrotron) uutissivuilla ja tutkimus on ilmestynyt Proceedings of the National Academy of Sciences -tiedejulkaisussa (maksullinen).

Kuva: Carl Caleman, DESY/Uppsala University

Tutkijat puristivat antiainetta entistä pienempään tilaan

Vaikka aine ja antiaine tuhoavat kohdatessaan toisensa, ne voivat muodostaa "epäneutraalia" plasmaa, joka koostuu sekä hiukkasista että antihiukkasista. Sitä on opittu käsittelemään uudella tavalla.

Kansainvälinen tutkijaryhmä on CERNissä eli Euroopan hiukkasfysiikan tutkimuskeskuksessa onnistunut puristamaan antiprotonien ja elektronien muodostaman hiukkaspilven 0,34 millimetrin läpimittaiseksi eli kymmenesosaan alkuperäisestä.

Uudessa tekniikassa käytetään hyväksi vinhasti pyörivää "plasmalinkoa", jossa keskihakuvoima saa aikaan tarvittavan puristusvoiman. Magneettisen loukun sähkökenttiä muutetaan siten, että hiukkaspilven pyörimisnopeus kasvaa kasvamistaan.

Prosessin alkuvaiheessa loukussa olevien antiprotonien määrä on alle 0,1 prosenttia elektronien määrästä, mutta pyörimisnopeuden kasvaessa elektronien määrää vähennetään, jolloin hiukkaspilvi saadaan ahdettua pienempään tilaan.

Tavoitteena ei ole pelkkä ennätysten rikkominen, vaan antiaineen ominaisuuksien tarkempi tutkimus. Tutkijat pyrkivät mittaamaan ensimmäistä kertaa suoraan gravitaation vaikutuksen antiaineeseen. Antivedyn putoamiskiihtyvyys Maan vetovoimakentässä on tarkoitus määrittää yhden prosentin tarkkuudella.

Tutkimuksesta kerrottiin tiedekustantamo Springerin uutissivuilla ja se on julkaistu European Physical Journal -tiedelehdessä.

Kuva: Springer

Muinaiset egyptiläiset hautasivat hevosensa

Tombosista nykyisestä Pohjois-Sudanista tehty löytö kertoo, että hevoset olivat alueen muinaiselle kulttuurille tärkeämpiä kuin aiemmin on arveltu.

Michelle Buzonin johtamissa kaivauksissa osuttiin hautaan, josta paljastui hevonen. Löytö ajoitettiin muinaisen Egyptin kolmanteen välikauteen, joka oli 1050–728 ennen ajanlaskumme alkua.

Noin 3 000 vuoden takaisessa haudassa maannut hevonen oli mitä ilmeisimmin kiedottu käärinliinaan, sillä sen kavioissa oli jäänteitä kankaasta. Lisäksi eläin oli mitä ilmeisimmin aseteltu tiettyyn asentoon.

"On selvää, että hevonen oli haudattu tarkoituksella, mikä on todella kiehtovaa. Luustossa näkyvät muutokset ja pienet suitsista peräisin olevat raudankappaleet viittaavat siihen, että hevonen on mahdollisesti vetänyt rattaita. Emme ole löytäneet Tombosista mitään vastaavaa aikaisemmilla kaivauksilla. Eläinten jäännökset ovat siellä hyvin harvinaisia", Buzon toteaa.

Buzon on tehnyt kaivauksia yhdessä Stuart Tyson Smithin kanssa Tombosissa jo 18 vuoden ajan. Nyt tutkittu hevonen löytyi vuonna 2011.

Egyptiläiset valloittivat alueen noin 1 500 eaa. päästäkseen hyödyntämään Niilin kauppareittiä. Tombosista on löydetty runsaasti egyptiläistä esineistöä, kuten ruukkuja, erilaisia astioita, työkaluja ja koriste-esineitä.

"Hevosen löytyminen oli yllätys", kertoo kaivauksiin osallistunut Sarah Schrader. "Alkuun emme olleet varmoja, onko kyseeessä nykyhevonen. Saadessamme jäänteet vähä vähältä paremmin esiin aloimme löytää hevoseen liittyviä esineitä, kuten skarabeen, käärinliinan kappaleita ja rautaisia suitsien osia. Silloin huomasimme, kuinka merkittävä löytö on."

Hevosen ikä varmistettiin vielä hiili-14-ajoitusmenetelmällä.

"Hevosta oli kohdeltu hyvin, mikä on pääteltävissä sen saavuttamasta korkeasta iästä", Schrader sanoo. "Se oli myös tärkeä muinaisen Tombosin asukkaille, koska se oli haudattu – yleensä niin tehtiin vain ihmisille."

Hevosen merkityksestä kertoo myös se, että Afrikan varhaisimpiin rautalöytöihin kuuluva esineistö liittyy hevoseen. Hautapaikan löytyminen nimenomaan Tombosista puolestaan viittaa siihen, että paikka oli aikansa tärkeä keskus.

Tutkimus on julkaistu Antiquity-tiedelehdessä.

Kuva: Purduen yliopisto

Tutkijat saivat selville mikä erottaa nopeat ja hitaat kirjoittajat toisistaan

Kirjoittamista. Kuva: flickr / Chris Blakeley

168 000 koehenkilöä testasi kirjoitusvauhtinsa tutkijoiden kehittämällä verkkotestillä. Nopeimpia näppäilijöitä yhdisti mm. pianon soittamista muistuttava painallustekniikka. Voit tehdä myös itse testin!

Aalto-yliopiston ja Cambridgen yliopiston tutkimukseen osallistui vapaaehtoisia yli 200 eri maasta. Selvästi suurin osa, 68 prosenttia, oli Yhdysvalloista.

Enemmistö osallistujista oli nuoria ja rutinoituneita näppäimistön käyttäjiä, ja noin 70 prosenttia oli osallistunut kirjoitustekniikan kursseille.

Keskimäärin osallistujat kirjoittivat 52 englanninkielistä sanaa minuutissa. Hajonta oli kuitenkin erittäin suurta.

”Nopeimmat koehenkilöt ylsivät 120 sanaan minuutissa. Se on mahtava tulos, kun ottaa huomioon, että koe tehtiin kontrolloidusti ja satunnaislauseilla”, sanoo professori Antti Oulasvirta.

Nopeimmat kirjoittajat tekivät vähiten virheitä, mutta tutkijat havaitsivat datan perusteella myös toisen yhdistävän tekijän: pianon soittamista muistuttavan painallustekniikan, jossa kirjoittaja painaa seuraavaa näppäintä jo ennen, kuin nostaa sormen ylös edelliseltä.

Tekniikka on suosittu peliharrastajien keskuudessa, mutta tämä on ensimmäinen kerta, kun tutkimuksessa on havaittu sitä hyödynnettävän myös kirjoittamisessa.

”Nopeista kirjoittajista 40–70 prosenttia hyödynsi rolloveriksi kutsumaamme tekniikkaa riippumatta siitä, kirjoittivatko he kosketusnäytöllä vai fyysisellä näppäimistöllä. Rollover toimii vain tiheään toistuvilla kirjainyhdistelmillä ja edellyttää, että käyttäjä osaa kirjoittaa katsomatta sormiaan”, tohtorikoulutettava Anna Feit sanoo.

Nopeuteen ei tarvita kymmentä sormea – tai edes kirjoituskursseja

Suurin osa koneella kirjoittamista koskevasta tutkimuksesta on peräisin kirjoituskoneiden aikakaudelta. 70- ja 80-luvuilla ammattikirjoittajat ylsivät 60–90 sanaan minuutissa. Kirjoituskoneella tehdyt virheet olivat yleensä tuplalyöntejä tai kirjainten väliin jäämisiä, kun taas näppäimistöllä tai kosketusnäytöllä kirjoittaessa tyypillinen virhe on väärän kirjaimen painaminen. Nykyisin kirjoittajien tekniikoissa on myös enemmän vaihtelua.

“Nykyisillä näppäimistöillä painallukseen vaaditaan paljon vähemmän fyysistä voimaa kuin kirjoituskoneella kirjoittaessa. Siksi itseoppineet kirjoittajat voivat olla todella nopeita, vaikkeivat hyödyntäisi perinteistä kymmensormitekniikkaa”, Feit selittää.

Tutkijat havaitsivat myös, ettei kursseilla käyneiden ja itseoppineiden välillä ollut juurikaan eroja nopeudessa tai virheiden määrässä. Tulos vahvistaa aiemmat tutkimukset, joiden mukaan itseoppineet löytävät itselleen sopivimmat kirjoitustavat ja kursseja käyneet taas unohtavat osan oppimastaan.

Tutkimukseen osallistuneet vapaaehtoiset antoivat ennen testin tekemistä luvan anonyymiksi muutetun datan hyödyntämiseen.

”Tällaiset joukkoistamista hyödyntävät kokeet antavat meille tietoa ihmisen ja koneen vuorovaikutuksesta todella suuressa mittakaavassa ja ovat siksi välttämättömiä, kun mietitään tulevaisuuden käyttöliittymien suunnitteluperiaatteita”, sanoo professori Per Ola Kristensson Cambridgen yliopistosta.

Vaaka-akseli kuvaa minuutissa kirjoitettujen sanojen määrää, pystyakseli koehenkilöiden määrää. Kokeeseen osallistuneiden keskimääräinen kirjoitusnopeus oli 52 sanaa minuutissa. Suomen kielessä sanojen keskipituus on selvästi pidempi kuin englannissa, joten tulosta ei voida suoraan verrata suomen kielellä tehtyihin testeihin.

 

Näin kirjoitat nopeammin

Tohtorikoulutettava Anna Feit kertoo, miten kirjoittaminen onnistuu nopeammin:

  • Virheiden korjaaminen on hidasta, eli vältä niitä. Kirjoita heti oikein ja vähän – hitaammin  se on lopulta nopeampaa.
  • Opettele kirjoittamaan niin, ettei sinun tarvitse katsoa sormiisi. Motorinen järjestelmäsi oppii pian muodostamaan yleisimmistä kirjainyhdistelmistä nopeita ”trillejä”, mikä vauhdittaa kirjoittamista. Katseen pitäminen näytössä tekee myös virheiden korjaamisesta nopeampaa.
  • Harjoittele rolloveria. Käytä eri sormia kahdelle eri kirjaimelle sen sijaan, että liikuttaisit samaa sormea näppäinten välillä, ja paina seuraavan kirjaimen näppäintä jo ennen kuin nostat edellisen ylös.
  • Tee välillä kirjoittamistesti verkossa, se auttaa sinua seuraamaan edistymistäsi ja huomaamaan, missä sinulla on parantamisen varaa. Varmista, että testissä käytetään aina uusia lauseita – näin et harjoittele turhaan samoilla teksteillä.

Tutkimus tehtiin yhteistyössä TypingMaster.com:n kanssa.

Data on saatavissa tutkimuskäyttöön osoitteesta userinterfaces.aalto.fi/136Mkeystrokes/

Kirjoitusnopeutensa voi testata osoitteessa typingmaster.research.netlab.hut.fi/

*

Juttu on Aalto-yliopiston tiedote. Otsikkuva: flickr / Chris Blakeley.

Sattuuhan sitä paremmissakin (tiede)piireissä – osa 2

Halley ja kompassivariaatio

Tiede ei läheskään aina etene voitosta voittoon, orastavasta hypoteesista toimivaan teoriaan. Matkan varrella on mutkia ja umpikujia, eivätkä tutkijatkaan ole kuin ihmisiä erheineen ja harhoineen. Jotkut niistä ovat aika kummallisia.

Edmund Halley tunnetaan nimikkokomeetastaan, joka palaa Aurinkokunnan sisäosiin noin 76 vuoden välein. Halley tutki aiemmin näkyneiden komeettojen ratoja ja päätyi siihen, että vuosina 1531, 1607 ja 1682 näkyneet pyrstötähdet olivat yksi ja sama taivaankappale. Hän ennusti komeetan palaavan taas vuonna 1759, mutta ei ehtinyt nähdä ennustuksensa toteutuvan. Halleyn komeetasta muodostui kuitenkin pysyvä muistomerkki suurelle tiedemiehelle.

Kaikissa ennusteissaan ja ajatuksissaan Edmund Halley ei ollut oikeilla jäljillä. Parikymppisenä nuorukaisena hän matkasi Saint Helenan saarelle laatiakseen luettelon eteläisen taivaan tähdistä. Merimatkoilla Halley tarkkaili tuulia, ilmavirtauksia ja Maan magneettikenttää. Paikoin kompassilukemissa esiintyi outoja poikkeamia, jotka vaativat selitystä. Ja sellaisen Halley myös kehitti.

Maa oli hänen mukaansa rakentunut sisäkkäisistä pallonkuorista ja kullakin niistä on oma magneettikenttänsä. Pallonkuoret pyörivät erilaisilla nopeuksilla ja näistä pyörimisliikkeistä aiheutuvat uloimman kuoren pinnalla – eli merillä ja mantereilla – havaitut magneettiset häiriöt.

Pallonkuorien välissä on myös ilmakehä, josta vuotava kaasu aiheuttaa kaukana pohjoisessa leimuavat revontulet. Tutkiessaan Maan magneettikenttää Halley siis löysi selityksen revontulille, joiden myöhemmin on todettu olevan nimenomaan Maan magneettikenttään liittyvä ilmiö. Tosin Halleyn selitys oli virheellinen.

Parkesin radioteleskooppi

Selitystä vailla ovat edelleen "nopeat radiopurkaukset" (Fast Radio Burst eli FRB), jotka ovat askarruttaneet tähtitieteilijöitä jo vuosien ajan. Niitä on havaittu eri puolilla taivasta, ne ovat hyvin lyhyitä, vain millisekuntien mittaisia, mutta hyvin voimakkaita. Purkausten tutkiminen on hankalaa, koska ainoastaan yhdessä tapauksessa niiden on todettu toistuvan, muuten ne ovat olleet yksittäisiä "signaaleja".

Toistuva purkaus tunnetaan nimellä FRB 121102 ja sen lähde on saatu paikallistettua kolmen miljardin valovuoden etäisyydellä sijaitsevaan kääpiögalaksiin. Purkauksen syntymekanismista ei kuitenkaan ole varmaa tietoa. Kyseessä saattaa olla supermassiivinen musta aukko tai neutronitähti ja jompaan kumpaan liittyvät energiset ilmiöt.

Joissakin tapauksissa mystisten radiosignaalien lähde on löytynyt lähempää. Todella paljon lähempää.

Australiassa Parkesin observatoriossa pähkäiltiin 17 vuoden ajan kummallisia radiopurskeita, joita oli havaittu aika ajoin 1990-luvun lopulta lähtien. Niille annettiin nimeksi "peryton" ja jo vuonna 1998 niiden todettiin olevan hyvin paikallisia: lähde voisi olla korkeintaan viiden kilometrin etäisyydellä observatoriosta. Signaalit eivät siis tulleet lainkaan avaruudesta, vaan niiden täytyi olla peräisin jostain maanpäällisestä lähteestä. Hyvänä kandidaattina pidettiin ukkosmyrskyjen salamointia.

Todellisuudessa radiopurkaukset olivat lähtöisin observatoriosta itsestään, tarkemmin sanottuna sen mikroaaltouunista. Kun radioteleskooppiin asennettiin uusi vastaanotin, sillä havaittiin hyvin voimakkaita signaaleja 2,4 gigahertzin taajuudella – joka on sattumoisin mikroaaltouunissa ruokaa ja juomaa lämmittävän sähkömagneettisen säteilyn taajuus.

Mikroaaltouunit ovat toki eristettyjä, sillä niiden lähettämä säteily ei ole ihmiselle terveellistä. Hätäiset tähtitieteilijät tapasivat kuitenkin tempaista uunin luukun auki, kun se oli vielä päällä, joten sieltä ehti "vuotaa" lyhyt signaali ennen kuin laite sammui. Ja radioteleskoopin mittauksissa se näkyi pitkällistä päänvaivaa aiheuttaneena mystisenä "perytonina".

 

Gemini 12 -astronautit helikopterin luona

Takaisin avaruuteen ja miehitettyihin lentoihin. Yhdysvaltain avaruusohjelman kehittyessä kohti kuulentoja alettiin kaksipaikkaisilla Gemini-aluksilla tehdä pidempiä, jopa pariviikkoisia lentoja. Niiltä palanneet astronautit näyttivät karvanaamaisilta hampuuseilta, mikä ei tietenkään sopinut avaruussankareiden silkoiseen julkikuvaan.

Viimeistään kuulennoille oli saatava mukaan partakone, joka toimisi myös avaruudessa. Teknisesti asiassa ei ollut ihmeempää haastetta, sillä sähköllä toimivia parranajokoneita oli ollut markkinoilla jo pitkään. Ongelmana oli toimenpiteen sivutuote eli partakarvat. Painottomuudessa ne ajelehtisivat ympäri alusta, tukkisivat suodattimet ja aiheuttaisivat pahimmassa tapauksessa oikosulkuja sähkölaitteissa.

NASAssa alettiin kehittää partakoneeseen integroitavaa imuria, joka pitäisi huolen siitä, että ilmaan ei pääsisi mitään ylimääräistä tavaraa. Ratkaisu oli periaatteessa toimiva, mutta käytännössä imuria ei saatu millään ilveellä niin luotettavaksi, etteikö partakarvoja olisi aina päässyt karkuun. Hankkeeseen uponneesta rahamäärästä ei ole tarkkaa tietoa, mutta dollareita paloi vähintään kuusi-, ehkä seitsennumeroinen summa.

Eräänä aamuna yksi insinööreistä äkkäsi kylpyhuoneen peilin edessä partaa ajaessaan, että perinteinen partavaahdon ja -höylän yhdistelmähän voisi toimia myös avaruudessa…

Kuvat: Public Domain, NASA, John Sarkissian/CSIRO

Kvanttimekaniikka sanelee aineen uuden olomuodon

Kvanttimekaanisiin ilmiöihin liitetty topologinen järjestys näyttää olevan sovellettavissa myös klassisiin aineisiin.

"Keinotekoisen spin-jään" tietyissä olomuodoissa aine vaikuttaa olevan epäjärjestyksessä, mutta todellisuudessa se on järjestynyttä, mutta poikkeuksellisella tavalla, "topologisesti".

Vastikään löydetyn aineen olomuodon rakenne määrittyy pikemminkin kvanttimekaniikan kuin perinteisen termodynamiikan lakien mukaan.

"Tutkimuksemme osoittaa ensimmäisen kerran, että klassiset järjestelmät kuten keinotekoinen spin-jää voidaan suunnitella siten, että niissä on topologisesti järjestyneitä olomuotoja, joita on aiemmin löytynyt ainoastaan kvanttiolosuhteissa", toteaa teoriapuolta tutkinutta ryhmää Los Alamosin kansallisessa laboratoriossa johtanut Christiano Nisoli. Kokeet tehtiin Illinois’n yliopistossa Peter Schifferin johdolla.

Tuoreessa tutkimuksessa tarkasteltiin tietyntyyppisen keinotekoisen spin-jään, Shakti-spin-jään, geometriaa. Yleensä tällaisten aineiden jäljille päästään teoreettisesti, mutta tällä kertaa erikoiset ominaisuudet löydettiin kokeellisesti.

Tutkijoiden selvittäessä Shakti-spin-jään ominaisuuksia PEM-elektronimikroskoopilla (Photoemission Electron Microscopy) he huomasivat, että toisin kuin muut keinotekoiset spin-jäät, jotka asettuivat alimmalle energiatasolleen lämpötilan laskiessa, Shakti-versio pysytteli sitkeästi samalla energiatasolla. Jonkin ominaisuuden täytyi säilyä lämpötilan laskusta huolimatta.

"Systeemi jumittuu siten, ettei se pysty järjestymään uudelleen, vaikka laajamittaisen järjestäytymisen avulla se voisi siirtyä alemmalle energiatasolle", Schiffer selittää.

Kun aineen rakennetta tarkasteltiin spin-ominaisuuksia laajemmassa mittakaavassa ja keskityttiin niistä seuraaviin systeemin viritystiloihin, Nisoli onnistui kuvailemaan alhaisen energiatilan tavalla, jossa käytettiin hyväksi jo aiemmin kehitettyä kvanttimekaanista mallia. Silloin kokeen tuottama tieto varmisti topologisen varauksen säilymisen, mistä oli seurauksena viritystilan pitkä kesto.

"Se on mielestäni hyvin jännittävää, sillä yleensä teoreettisissa tarkasteluissa siirrytään klassisesta fysiikasta kvanttifysiikkaan. Topologisen järjestäytymisen kanssa on toisin", Nisoli pohtii.

Uudesta aineen olomuodosta kerrottiin Los Alamosin kansallisen laboratorion uutissivuilla ja tutkimus on ilmestynyt Nature Physics -tiedejulkaisussa.

Kuva: Los Alamos National Laboratory