Uudet tieteen huippuyksiköt valittu

Helsingin yliopiston Kumpulan kampuksen tiedekirjasto (kuva: flickr / Taneli Mielikäinen)
Helsingin yliopiston Kumpulan kampuksen tiedekirjasto (kuva: flickr / Taneli Mielikäinen)

Suomen Akatemia on valinnut uudet tutkimuksen huippuyksiköt vuosille 2018–2025.

Huippuyksikköohjelmaan vuosiksi 2018-2025 valittiin 12 yksikköä, joissa työskentelee tutkimusryhmiä yhteensä 12 yliopistosta tai tutkimuslaitoksesta. Uusissa huippuyksiköissä tutkitaan muun muassa avaruustiedettä ja tekniikkaa, pelikulttuureja, eurooppalaista oikeutta ja identiteettiä, kvanttiteknologiaa, ikääntymistä ja hoivaa sekä kasvainten genetiikkaa.

Suomen Akatemia sai tämänkertaiseen huippuyksikköhakuun yhteensä 179 aiehakemusta. Näistä kutsuttiin varsinaiselle kierrokselle 34 hakijaa. Hakemukset arvioitiin kansainvälisissä arviointipaneeleissa.

Lisäksi kansainväliset asiantuntijat haastattelivat toiselle kierrokselle kutsuttujen tutkimusryhmien edustajat Akatemiassa toteutetuissa tilaisuuksissa.

Huippuyksiköt valittiin uudistettuun huippuyksikköohjelmaan. Huippuyksikön rahoituskausi pitenee kuudesta vuodesta kahdeksaan, ja ensimmäisen nelivuotiskauden jälkeen yksikölle tehdään tieteellinen väliarviointi.

Arvioinnin tulokset ratkaisevat yksikön jatkorahoituksen tason eli rahoitus voi arvioinnin tulosten perusteella joko nousta, laskea tai päättyä kokonaan.

Uudistuksessa vahvistetaan isäntäorganisaatioiden roolia rahoituksessa. Ohjelmakauden pidentämisen ja isäntäorganisaatioiden roolin vahvistamisen uskotaan parantavan uusien huippuyksiköiden mahdollisuuksia tutkimuksellisen riskin ottamiseen.

”Uudistuksella tavoittelimme tutkimusyhteisöltä tieteellisesti rohkeita, uusia ideoita korkeatasoisiksi hankekokonaisuuksiksi, joissa tutkimusryhmät toimivat keskenään kiinteässä yhteistyössä toteuttaen yhteistä tutkimussuunnitelmaa", toteaa Suomen Akatemian hallituksen puheenjohtaja Heikki Ruskoaho.

"Tulosten perusteella näyttää siltä, että tässä onnistuttiin. Tutkijat ovat selvästi haastaneet itsensä ajattelemaan uudella tavalla, ja rahoitettaviksi valitut kokonaisuudet ovat tieteellisesti korkeatasoisia, tutkimusta uudistavia yksiköitä”.

Huippuyksiköt tekevät läpimurtotutkimusta ja edistävät tieteen uudistumista.

Tieteen uudistuminen voi toteutua uusien tutkimusaiheiden, menetelmien, lähestymistapojen tai uudenlaisten tutkimusryhmien yhdistelmien muodossa. Akatemia odottaa, että huippuyksiköiden tutkimuksella on myös tiedeyhteisön ulkopuolelle ulottuvaa vaikuttavuutta.

”Kysyimme jo hakemusvaiheessa tutkijoilta sitä, minkälaista vaikuttavuutta heidän tutkimuksellaan voisi olla perinteisen tieteellisen vaikuttavuuden lisäksi ja pyydämme jatkossa uusilta huippuyksiköiltä myös raportointia vaikuttavuuden toteutumisesta", Suomen Akatemian tutkimuksesta vastaava ylijohtaja Riitta Maijala kertoo. 

"Tavoitteena on näin innostaa valittuja huippututkimusyksiköitä aktiivisesti pohtimaan ja edistämään oman tutkimuksensa laajaa vaikuttavuutta”

Suomen Akatemian Tieteen tila 2016 -raportissa todetaan, että tieteellisen vaikuttavuuden lisäksi tutkimuksella voi olla tiedeyhteisön ulkopuolelle ulottuvaa vaikuttavuutta. Tutkimus voi toimia vaurauden ja hyvinvoinnin lähteenä, tukea käytäntöjen kehittämistä ja osaamisen kasvattamista, tarjota perusteltuja lähtökohtia päätöksenteolle tai rakentaa maailmankuvaa ja sivistystä.

Huippuyksikköohjelmaan valittiin vuoksiksi 2018–2025 seuraavat

Kasvaingenetiikan tutkimuksen huippuyksikkö
Aaltonen Lauri HY, Nykter Matti TAY, Pitkäniemi Janne Syöpärekisteri ja Taipale Jussi HY

Kokemuksen historian huippuyksikkö
Haapala Pertti TAY, Kivimäki Ville TAY, Markkola Pirjo TAY ja Toivo Raisa TAY

Kantasolumetabolian huippuyksikkö
Katajisto Pekka HY, Hietakangas Ville HY, Otonkoski Timo HY ja Tyynismaa Henna HY

Monikudosmallintamisen huippuyksikkö
Kellomäki Minna TTY, Aalto-Setälä Katriina TAY, Hyttinen Jari TTY, Kallio Pasi TTY, Miettinen Susanna TAY ja Narkilahti Susanna TAY

Ikääntymisen ja hoivan tutkimuksen huippuyksikkö
Kröger Teppo JY, Jylhä Marja TAY, Taipale Sakari JY ja Wrede Sirpa HY

Inversiomallinnuksen ja kuvantamisen huippuyksikkö
Lassas Matti HY, Haario Heikki LTY, Hannukainen Antti AALTO, Hyvönen Nuutti AALTO, Kaasalainen Mikko TTY, Kaipio Jari UEF, Kolehmainen Ville UEF, Pursiainen Sampsa TTY, Salo Mikko JY, Seppänen Aku UEF, Serov Valery OY, Siltanen Samuli HY, Tamminen Johanna IL, Tarvainen Tanja UEF ja Vauhkonen Marko UEF

Pelikulttuurien tutkimuksen huippuyksikkö
Mäyrä Frans TAY, Koskimaa Raine JY, Sotamaa Olli TAY ja Suominen Jaakko TY

Kestävän avaruustieteen ja -tekniikan huippuyksikkö
Palmroth Minna HY, Janhunen Pekka IL, Kilpua Emilia HY, Praks Jaan AALTO ja Vainio Rami TY

Kvanttiteknologian huippuyksikkö
Pekola Jukka AALTO, Ala-Nissilä Tapio AALTO, Flindt Christian AALTO, Hakonen Pertti AALTO, Hassel Juha VTT, Maniscalco Sabrina TY, Möttönen Mikko AALTO, Paraoanu Gheorghe-Sorin AALTO, Prunnila Mika VTT ja Sun Zhipei AALTO

Kompleksitautien genetiikan huippuyksikkö-Geneettisistä löydöksistä henkilökohtaiseen lääketieteeseen
Ripatti Samuli HY, Daly Mark HY, Groop Leif HY, Kaprio Jaakko HY, Palotie Aarno HY, Pirinen Matti HY ja Tuomi Tiinamaija HY

Muinaisen Lähi-idän imperiumit-huippuyksikkö
Svärd Saana HY, Lahelma Antti HY, Silverman Jason HY

Eurooppalaisen oikeuden, identiteetin ja historian tutkimuksen huippuyksikkö
Tuori Kaius HY, Slotte Pamela HY ja Toivanen Reetta HY 

HY = Helsingin yliopisto, TAY = Tampereen yliopisto, TTY = Tampereen teknillinen yliopisto, JY = Jyväskylän yliopisto, AALTO = Aalto-yliopisto, UEF = Itä-Suomen yliopisto, OY = Oulun yliopisto, LTY = Lappeenrannan teknillinen yliopisto, IL = Ilmatieteen laitos ja TY = Turun yliopisto

 

Juttu perustuu käytännössä suoraan Suomen akatemian tiedotteeseen. Otsikkokuvassa Helsingin yliopiston Kumpulan kampuksen tiedekirjasto (kuva: flickr / Taneli Mielikäinen)

Pernarutto uinuu ikiroudassa Toimitus Ma, 29/05/2017 - 20:37

Sulavasta ikiroudasta paljastuu uusia, tuntemattomia mikrobeja. Ne voivat olla vaaraksi meille, mutta suurempi uhka on niiden ilmastonmuutosta ruokkiva voima, sanoo tuore akatemiatutkija Jenni Hultman Yliopisto-lehden jutussa.

Joka kesä jäästä paljastuu uutisaihetta.

Viime suvena säikähdettiin Grönlannin jäänalisia ydinjätteitä ja Jamalin niemimaalla Siperiassa puhjennutta pernaruttoa. Tauti on vaatinut jo joidenkin ihmisten ja lukuisten porojen henget.

Pernaruttoitiöiden arvellaan ilmaantuneen 1940-luvulla kuolleen poron sulaneesta ruhosta. Jäiseen maahan on hankala kaivaa syvää kuoppaa.

Jäätyneessä, hapettomassa maaperässä uinuu runsaasti vanhoja mikrobeja, joista monen olemus ja ominaisuudet ovat vielä arvoitus.

Tämän huomasi myös mikrobiologian dosentti Jenni Hultman tutkiessaan muutama vuosi sitten Alaskan ikiroudasta kairattuja näytteitä. Hän löysi aiemmin tuntemattomien arkeonien DNA:ta ja viitteitä niiden aktiivisuudesta. Mikrobit olivat peräisin reilun kymmenen tuhannen vuoden takaa. 

"Ikiroudassa on paljon tieteelle uusia mikrobeja", sanoo Hultman. 

"Muutama vuosi sitten venäläistutkijat löysivät kymmeniä tuhansia vuosia vanhan tuntemattoman jättiläisviruksen Siperiasta."

Silti mikrobiologian tutkijaa kiinnostaa taudinaiheuttajia enemmän se, kuinka paljon sulavan ikiroudan mikrobit kiihdyttävät ilmastonmuutosta entisestään. 

"Sulavasta ikiroudasta voi syntyä olosuhteita, joissa mikrobit tuottavat erityisen paljon voimakkaita kasvihuonekaasuja, kuten metaania ja typpioksiduulia."

Jos ikirouta-alueelle syntyy märkiä soita, arktis alkaa tuottaa valtavasti kasvihuonekaasuja. Pohjoiseen ikiroutaan on sitoutunut enemmän hiiltä kuin koko maailman metsiin, ja arvioiden mukaan jopa 80 prosenttia alueen pintakerroksesta on vaarassa sulaa vuosisadan loppuun mennessä.

Ilmastonmuutosta ennakoiva tutkimustieto pohjoisista metsistä ja soista lämpenevässä maailmassa kaipaakin tuekseen Hultmanin ja hänen kollegoittensa analyysia ikiroudan tutuista ja tuntemattomista mikrobeista.

*

Yliopisto-lehden numerossa Y/06/16 ollut juttu on Mikko Pelttarin tekemä ja sitä on lievästi muokattu yllä olevassa tekstissä. Alkuperäinen teksti on julkaistu myös Helsingin yliopiston nettisivuilla.

Big data auttoi selvittämään rauduskoivun historiaa

Rauduskoivu. Kuva: Wikipedia / jordgubbe
Rauduskoivu. Kuva: Wikipedia / jordgubbe

Helsingin yliopiston tutkijat ovat selvittäneet koivun lajiutumishistoriaa perimästä kerätyllä big datalla tutkimusprojektissa, jossa määritettiin kaikkiaan 150 koivun perimät.

Big data on tuttu ilmaisu esimerkiksi yritysten asiakaskäyttäytymisanalyyseistä tai internetin sosiaalisten verkkojen mallinnuksesta, mutta suuria datamääriä syntyy myös biologian alalla genomien emäsparien lukemisessa eli sekvensoinnissa.

Genomisekvensoinnin halventuminen on mahdollistanut kokonaisten yksilöryhmien eli populaatioiden genomien määrittämisen. Tästä aineistosta voidaan populaatiogenomiikan menetelmiä käyttäen tutkia jälkiä, jotka lajin historia ja luonnonvalinta on evoluution aikana genomikokoelmaan jättänyt.

Suomalaistutkimus tästä julkaistiin 8. toukokuuta Nature Genetics-lehdessä.

Vastaavanlaista tutkimusta on aiemmin tehty lähinnä ihmisillä, joista on vuosien ajan kerätty laajaa genomikokoelmaa, mutta viimeaikainen teknologian kehitys on mahdollistanut tutkimuksen myös aivan uusille lajeille. 

Tutkijat keräsivät koivunäytteitä Irlannista, Norjasta ja neljästä eri paikasta Siperiasta sekä Suomesta kuudelta eri paikkakunnalta Lopen ja Kittilän väliltä. Kaikkiaan genomeja luettiin yli 700 gigaemäsparia, mikä tuotti yli 20 teratavua tiedostoja.

Perimien laskennallinen analyysi osoitti hyvin alhaisia yksilömääriä eli populaation pullonkauloja ajanjaksoina, jolloin maapallolla tapahtui suuria ilmastollisia muutoksia. Ensimmäinen ja voimakkain pullonkaula tapahtui aikana jolloin dinosaurukset kuolivat sukupuuttoon noin 66 miljoonaa vuotta sitten.

Tämän jälkeen pullonkauloja oli 34 miljoonaa, 14,5 miljoonaa ja noin 1 miljoona vuotta sitten. Viimeisimmän pullonkaulan jälkeen koivupopulaatio on kasvanut tasaisesti, eikä viime jääkausikaan ole siihen suuremmin vaikuttanut.

Jääkauden vaikutuksesta koivut jakautuivat Siperiassa kasvavaan Aasian kantaan ja Länsi-Euroopan kantaan, jotka myöhemmin mannerjään sulaessa ovat sekoittuneet Suomessa.

Rauduskoivun lisäksi projektissa sekvensoitiin kuusi muuta koivulajia, mukaan lukien hieskoivu ja vaivaiskoivu, sekä koivun lähisukulaiset harmaa- ja tervaleppä. Rauduskoivun ja hieskoivun erottaminen toisistaan osoittautui yllättävän vaikeaksi, sillä osa rauduskoivuksi luokitelluista puista osoittautuikin genomianalyyseissä hieskoivuiksi.

"Tämä vahvistaa kaksinkertaisen kromosomiston omaavan rauduskoivun ja nelinkertaisen kromosomiston omaavan hieskoivun välillä tapahtuneen ja todennäköisesti edelleenkin tapahtuvan geenien vaihtoa", kertoo tutkija Jarkko Salojärvi Helsingin yliopiston biotieteiden laitokselta bio- ja ympäristötieteellisestä tiedekunnasta

Luonnonvalinta on auttanut koivua pärjäämään kovissa oloissa

Populaatiohistorian lisäksi projektissa koostettiin referenssigenomi ja ennustettiin koivun geenit. Perimän analyysit paljastivat yli 900 lajiutumisen aikana luonnonvalinnan alla ollutta geeniä, jotka ovat muokanneet kansallispuustamme kylmänkestävän ja nopeakasvuisen pioneerilajin. Valinnan alla olevat geenit ovat avainasemassa koivun ilmiasun muodostamisessa, minkä takia näihin geeneihin kohdistuvan jalostustyön kautta voidaan kehittää koivulinjoja erilaisiin biotalouden sovelluksiin.

"Kun kandidaattigeenit on löydetty, on jalostaminen nopeata, sillä koivu on ainoa puulaji, jonka voi kasvuolosuhteita muokkaamalla saada kukkimaan alle yhden vuoden ikäisenä, mahdollistaen yhden risteytyssukupolven kasvattamisen vuoden aikana", kertoo professori Jaakko Kangasjärvi.

"Koivulinjalle tyypillinen ominaisuus voi olla jo yhdenkin geenin takana, sillä esimerkiksi kyynelkoivun genomin sekvensointi paljasti tynkäproteiinin LAZY-geenissä", sanoo puolestaan professori Yrjö Helariutta.

Kyynelkoivu, jota käytetään puutarhakasvina, on tunnettu riippuvista oksistaan. Mutaatio vastaavassa geenissä tuottaa maata pitkin kasvavan velton ilmiasun muun muassa maississa ja lituruohossa.

Tutkimuksen tekivät Helsingin yliopistosta tekniikan tohtori Jarkko Salojärvi, tekniikan tohtori Olli-Pekka Smolander, professori Jaakko Kangasjärvi, professori Yrjö Helariutta, tutkimusjohtaja Petri Auvinen sekä Buffalon yliopistosta Yhdysvalloista professori Victor Albert. Geeniennusteiden tarkistamiseen osallistui tutkijoita Helsingin yliopiston lisäksi Turun, Itä-Suomen, Oulun, Tarton ja Uumajan yliopistoista, sekä Luonnonvarakeskuksesta.

Artikkeli perustuu Helsingin yliopiston tiedotteeseen.

 

Aranda ja liidin tutkivat mm. vedenvaihtoa Selkämerellä

Liidin

Tutkimusalus Aranda on juuri nyt Selkämerellä noin 100 km itään Gävlestä. Tälle tuoreimmalle tutkimusmatkalleen alus lähti viime tiistaina ja sen mukana on uudenlainen tutkimusrobotti, niin sanottu liidin.

Arandan vuosi on tähän saakka ollut työn täyteinen, sillä alus on ollut matkalla lähes koko ajan. Nyt meneillään oleva tutkimusmatka on vuoden kahdeksas ja edessä on vielä neljä keikkaa ennen heinäkuun lopussa alkavaa isoa remonttia. Aranda on loppuvuoden telakalla, kun sitä parannellaan ja uudistetaan.

Mutta nyt laiva on kuitenkin siis täydessä toimessa. Parhaillaan käynnissä oleva tutkimusmatka on osa suurempaa Itämeren keskusaltaan ja Pohjanlahden välisen vedenvaihdon tutkimusta. Ilmatieteen laitoksen tutkijat kartoittavat matkalla eri vesimassojen jakautumista Itämeren keskusaltaan pohjoisosassa, Ahvenanmerellä ja Selkämeren eteläisellä puoliskolla.

Selkämerellä havaittu merkkejä happipitoisuuden pienenemisestä

Sekä Itämeren keskusaltaan, Ahvenanmeren ja Selkämeren välillä olevien matalien kynnysten yli Selkämerelle pääsee vain Itämeren keskusaltaan ylempien kerrosten vettä. Tämä vesimassa on suolaisempaa ja painavampaa kuin Selkämeren vedet ja se painuu Selkämeren syvänteiden pohjalle. 

Kynnysten mataluudesta johtuen keskusaltaan hapettomat, suolaisemmat ja raskaammat syvät vedet eivät pääse Selkämerelle. Selkämeren veden suolapitoisuus on näin pienempi kuin varsinaisen Itämeren, ja vesipatsaan kerrostuneisuus on heikompi. 

Pohjanläheinen happipitoisuus on Selkämerellä tähän asti ollut hyvä, koska happea pääsee pohjalle syksyn ja kevään pystysuoran sekoittumisen ansiosta. Viime vuosina on kuitenkin havaittu merkkejä happipitoisuuden pienenemistä Selkämeren syvien altaiden pohjan läheisessä vedessä.

Selkämeren tila on ollut siinä määrin hyvä, että suuri osa tutkimuksesta on viime vuosina keskittynyt pääaltaaseen ja Suomenlahteen. Jotta Selkämeren tilan muutoksia pystyttäisiin paremmin arvioimaan tulevaisuudessa ja pitämään se vähintään nykyisenä, on tärkeä ymmärtää, miten altaan virtausolosuhteet ja vesimassojen ominaisuudet muuttuvat ja mitkä asiat vaikuttavat veden vaihtoon pääaltaan ja Selkämeren välillä.

Uusi vedenalainen tutkimusrobotti mukana matkalla

"Matkan keskeiset tutkimusvälineet ovat ns. CTD-luotain, jolla mitataan meriveden lämpötilaa ja suolapitoisuutta tarkasti syvyyden funktiona ja vedenalainen liidin, jossa myös on CTD-laitteisto. Laivan ja liitimen CTD-luotaimiin on liitetty muitakin antureita, joilla voidaan mitata mm. happipitoisuutta", kertoo matkanjohtaja Laura Tuomi Ilmatieteen laitoksesta.

CTD-luotaimella (sanoista conductivity, temperature, and depth) mitataan meriveden lämpötilaa, suolapitoisuutta ja syvyyttä. Se lasketaan vinssillä tiedonsiirtokaapelin varassa mereen lähes jokaisella havaintopisteellä heti pisteelle saapumisen jälkeen.

Laitteeseen on mahdollista liittää useita erilaisia lisäantureita, jotka mittaavat esimerkiksi happipitoisuutta, levien määrää sekä valon vaimenemista merivedessä.

Yllä olevassa kuvassa on Arandan CTD-luotain Ilmatieteen laitoksen Twitter-syötteen kuvassa.

Liidin

Liidin on puolestaan kauko-ohjattu merentutkimusrobotti, millaisesta olemme kertoneet useampaankin kertaan aikaisemmin, mm. tässä jutussa ja videossa

Arandan matkan jälkeen liidin jää vielä muutamaksi viikoksi kartoittamaan omin nokkinensa Selkämeren eteläosien vesimassoja.

Matkalla huolletaan lisäksi viime vuoden keväällä meren pohjaan asennetut virtamittarit Selkämeren eteläosissa ja asennetaan matkan ajaksi virtamittari Itämeren pääaltaan ja Ahvenanmeren väliselle kynnykselle.

Näiden lisäksi huolletaan Selkämeren aaltopoiju ja laitetaan Argo-poiju Selkämerelle. Argo-poiju on vapaasti meressä ajelehtiva laite, joka mittaa lämpötilaa ja suolaisuutta.

Matkan alussa tehtiin myös vuosittaiset vertailumittaukset kaikkien Ilmatieteen laitoksen CTD-luotainten mittaustarkkuuden varmistamiseksi.

CTD-luotaimet ovat tärkeitä fysikaalisen merentutkimuksen mittalaitteita. Ne mittaavat meriveden lämpötilaa, sähkönjohtokykyä ja painetta laskeutuessaan pinnalta lähelle pohjaa. Näistä suureista voidaan kansainvälisesti sovituilla kaavoilla laskea monenlaisia muitakin merten ominaisuuksia kuvaavia suureita, kuten mm. veden suolaisuus ja tiheys.

Tutkimusretkikuntaan kuuluu Ilmatieteen laitoksen, Suomen ympäristökeskuksen, Ruotsista SMHI:n ja Virosta Tallinnan teknisen yliopiston merentutkimuslaitoksen (MSI) henkilökuntaa.

LHC hyrähti taas käyntiin – takana kuukausia kestänyt massiivinen kaapelirumba

Maailman suurimman hiukkaskiihdyttimen jokatalvinen lepohetki päättyi juuri ennen vappua. Nyt Euroopan hiukkastutkimuskeskus CERNin LHC jatkaa aineen salaisuuksien tonkimista.

Hiukkassuihkujen pyörittäminen kiihdyttimen sisällä vaatii varsin paljon sähköenergiaa, joten Euroopan hiukkastutkimuskeskuksessa on ollut jo pitkään tapana keskeyttää atomien murskaaminen aina talvisaikaan, jolloin sähkö kalliimpaa kuin kesällä ja jolloin energiaa kaivataan enemmänkin lämmittämiseen. 

Talvi onkin siksi hyvä hetki laittaa systeemit stoppiin ja tehdä kiihdyttimelle sekä sen mittalaitteille huoltotoimia.

Tällä kerralla viime joulukuussa alkanut talviseisokki kesti 17 viikkoa ja se päättyi tarkalleen 29. huhtikuuta, jolloin hiukkassuihkut kiersivät jälleen LHC:n sisällä.

Talviseisokki oli tällä kerralla hieman normaalia pitempi, koska yksi kokonainen suprajohtava magneetti vaihdettiin, hiukkassuihkun LHC-kiihdyttimeen tuottavan laitteiston toimintaa parannettiin ja lisäksi laitteistossa olevia kaapeleita setvittiin sekä ylimääräisiä poistettiin. 

Tämä johtorumba ei ollut mikään yllätys: kerroimme siitä jo viime vuoden tammikuussa, kun edellisen seisokin aikaan huomattiin, että laitteistoja vuosien varrella parannettaessa oli vanhoja, tarpeettomiksi käyneitä kaapeleita jätetty paikalleen.

Jälkikäteen ajateltuna tämä insinöörille tyypillinen laiskuus koitui ongelmaksi, koska kaapelit vievät tilaa ja toimimattomat sekä tarpeelliset johdot ovat menneet sekaisin. 

Kyse ei ollut ihan pikkuasiasta, sillä kaapeleita oli kaikkiaan noin 9000 ja jokainen niistä on noin 50 metriä pitkä. Ne kiemurtelivat kiihdyttimen rakenteissa ja tunneleissa maan pinnalla olevista rakennuksista kallioon tehdyissä luolastoissa oleviin kiihdyttimiin. Nyt suurin osa näistä on saatu siivottua.

Korjausten ja parannusten jälkeen LHC on jälleen hieman aiempaa parempi.

Erityisesti sen hiukkassuihkujen "kirkkaus" on nyt parempi, mikä tarkoittaa sitä, että havaintolaitteissa tapahtuu enemmän hiukkastörmäyksiä ja siten tuloksena on enemmän havaintoja.

Lisäksi tarkoituksena on saada LHC toimimaan vieläkin suuremmalla hyötysuhteella. Viime vuonna kiihdyttimessä oli tasainen, hyvä tutkimuskäyttöön sopiva hiukkassuihku noin 49 % ajasta, mikä oli olennaisesti parempi kuin aikaisempi noin 35 %. Nyt tämän luvun odotetaan kasvavan edelleen, mikä tarkoittaa osaltaan myös lisää hyviä havaintoja ja siten mahdollisesti kiinnostavia tutkimustuloksia.

Käynnistäminen – kuten sammuttaminenkaan – ei käy noin vain nappia painamalla.

LHC on suuri systeemien systeemi, useiden eri toisiinsa liittyneiden laitteistojen ja pienempien kiihdytinten verkko, jonka saaminen käyntiin vie noin kuukauden päivät.

"Se on kuin orkesteri, missä kaiken täytyy toimia yhdessä ja samanaikaisesti. Kun jokainen sen osana oleva kiihdytin on päällä ja toimii normaalisti, alamme syöttää hiukkassuihkua pienemmästä kiihdytinrenkaasta yhä isompaan ja lopulta LHC:n suureen renkaaseen."

Nyt muutaman viikon ajan laitteiston toimintaa tarkkaillaan ja hienosäädetään. Hiukkastiheyttä lisätään vähitellen ja lopulta toukokuun puolivälissä alkaa LHC jälleen tehdä kunnolla tiedettä.

Ja sen jälkeen se pyöriikin ympäri vuorokauden aina ensi joulukuuhun saakka.

Kaaosmatemaatikolle kasapäin eurorahaa

Antti Kupiainen
Antti Kupiainen

Kvanttikenttiä ja todennäköisyysteoriaa tutkiva Antti Kupiainen on saanut Euroopan tutkimusrahastolta tutkimusryhmälleen mittavan rahoituksen. Ryhmä soveltaa teoreettisessa fysiikassa kehitettyjä menetelmiä stokastisten ilmiöiden matemaattisiin malleihin.

Tiedetuubi esitteli Kupiaisen ja hänen tutkimustaan syksyllä tällä videolla.

Kuten Kupiainen selittää videolla, ovat hänen tutkimusaiheinaan monet luonnossakin nähtävät kaottiset ilmiöt, kuten esimerkiksi virtaavan veden turbulenssi ja salamaniskut.

Yksinkertaisilta ja kauniilta näyttävät ilmiöt ovat itse asiassa hyvin monimutkaisia.

”Kaiken teoria” selittämässsä satunnaista

Kvanttikenttäteoria syntyi viime vuosisadan puolivälissä kuvaamaan alkeishiukkasten vuorovaikutuksia. Se on nykyisin hiukkasfysiikassa käytettävä “kaiken teoria”, joka kuvaa esimerkiksi elektroneja, kvarkkeja ja fotoneita.

Sittemmin kvanttikenttäteoriasta on tullut työkalu mitä erilaisimpien monimutkaisten ilmiöiden tutkimiseen; sellaisia ovat aineiden olomuodon muutokset tai nesteiden ja kaasujen turbulenssi.  

Luonnon monimutkaisilla ilmiöillä on kaksi tärkeää yhteistä piirrettä.

"Ne ovat universaaleja, ja ne toistuvat samankaltaisina kaikissa mittakaavoissa", Kupiainen sanoo.

"Esimerkiksi turbulenssin lait ovat samat vedelle, ilmalle ja elohopealle."

Näiden kahden ominaisuuden selittämiseksi kehitettiin renormalisaatioteoria, joka kuvaa matemaattisesti sitä, miten systeemin lainalaisuudet muuttuvat, kun siirrymme mittakaavasta toiseen.

"Renormalisaatio on ERC-projektini keskeinen matemaattinen työkalu", toteaa Kupiainen.

Lainalaisuudet muuttuvat kun mittakaava muuttuu

Kupiainen soveltaa renormalisaatioteoriaa epälineaaristen osittaisdifferentiaaliyhtälöiden tutkimiseen.

Tällaiset yhtälöt kuvaavat hyvin erilaisia luonnonilmiöitä: lämmön johtumista, nesteen liikettä väliaineessa, aineiden välisten rajapintojen dynamiikkaa ja erilaisia kasvuprosesseja.

Näissä ilmiöissä on yksi olennainen piirre. Niiden stokastisuus. Siis satunnaisuus.

"Luonnolliset systeemit ovat harvoin eristettyjä, vaan niiden ympäristö vaikuttaa niihin satunnaisella tavalla: niissä esiintyy kohinaa. Toisaalta epälineaaristen systeemien dynamiikka on kaoottista, ja niiden lainalaisuudet ovat usein tilastollisia."

"Yleinen teoria näille stokastisille yhtälöille on vielä kartoittamatta, ja tässä kvanttikenttäteorian renormalisaatioteoria on avuksi."

Kvanttikenttäteorian menetelmillä voi tutkia myös satunnaista geometriaa. Siinä pyritään luokittelemaan satunnaisia käyriä, pintoja ja muita geometrisia rakenteita.

"Luonnossa esiintyvät geometriset rakenteet kuten pilvet, kuohuvan kosken pyörteet tai salamaniskut ovat hyvin erilaisia kuin klassisen geometrian kuvaamat suorat viivat, ympyrät ja pallot", jatkaa Kupiainen.

"Vaikka yksittäiset pilvet ovat kaikki erilaisia, ne saattavat kuitenkin tilastollisesti olla samanlaisia."

Tilastollisesti luonnon rakenteissa esiintyy usein kauniita symmetrioita, vaikka yksittäiset rakenteet voivat olla täysin epäsymmetrisiä. Nämä rakenteet ovat usein myös tilastollisesti samanlaisia eri mittakaavoissa, janiiden tilastolliset ominaisuudet ovat universaaleja.

Eurooppalainen rahoitus 5 vuodeksi

Nyt myönnetty Euroopan tutkimusrahaston (ERC:n) 2,5 miljoonan euron rahoitus antaa akatemiaprofessorille riittävät resurssit tutkia juuri sitä, mitä hän eniten haluaa.

Rahoituksen saamisella on myös toinen puoli:

"Koska se on erittäin kilpailtu, siihen liittyy tietty karisma tai maine. Kokemukseni aiemmalta ERC Advanced Grant -kaudeltani on, että maine auttoi hyvien postdoc-tutkijoiden rekrytoinnissa."

Artikkeli perustuu Helsingin yliopiston tiedotteeseen.

Video: Näin tornado syntyy

Video: Näin tornado syntyy

Yhdysvaltain keskiosien laajoilla tasangoilla on usein huimia pyörremyrskyjä, tornadoja, jotka saavat aikaan paljon tuhoa ja joita myrskybongarit tulevat katsomaan kautta maailman.

18.03.2017

Keskimäärin maahan asti ylettyviä tornadoja havaitaan vuodessa noin 1200 ja viime aikoina ilmastonmuutoksen myötä ne ovat tulleet yleisemmiksi sekä voimakkaammiksi.

Vuonna 2011 oli Oklahomassa oli muutamia erityisen voimakkaita pyörremyrskyjä, jotka ovat nyt heränneet uudelleen henkiin tietokoneiden simulaatioissa.

Wisconsin–Madisonin yliopiston Sääsatelliittitutkimuskeskuksen (Meteorological Satellite Studies, CIMSS) tutkija Leigh Orf on onnistunut jäljittelemään hyvin luonnollisesti supertietokoneilla todella tapahtuneen tornadon syntyä ja kehitystä, ja tulos on paitsi kiinnostava, niin myös visuaalisesti upea.

Tutkimuksella on myös löyhä yhteys Suomeen: Wisconsin–Madisonin sääosaston suuri nimi oli vuosikymmenien ajan 1950-luvun lopulta alkaen Verner Suomi, toisen polven amerikansuomalainen, joka keksi käyttää ensimmäisenä satelliiteja sääilmiöiden havaitsemiseen. Hänen mukaansa on nimetty Nasan NPP Suomi -satelliitti.

Tarkemmin Verner Suomesta voi lukea Suomi 100 -satelliitin sivuilta.

Uudet Akateemikot nimetty: kasvifysiologi, aerosoliguru ja filosofi

Markku Kulmala

Akatemiaprofessori Eva-Mari Aro, akatemiaprofessori Markku Kulmala ja emeritusprofessori Ilkka Niiniluoto ovat uusia tieteen akateemikoita.

Tasavallan presidentti Sauli Niinistö myönsi heille akateemikon arvonimen presidentin esittelyssä tänään.

Uudet akateemikot vastaanottavat arvonimensä torstaina 16.3. Helsingissä pidettävässä juhlatilaisuudessa. Tieteen akateemikon arvonimi voi olla samanaikaisesti kuudellatoista erittäin ansioituneella suomalaisella tieteentekijällä.

Kasvimolekyylibiologisen tutkimuksen pioneeri

Akatemiaprofessori Eva-Mari Aro (s.1950) on toiminut Turun yliopiston kasvifysiologian professorina vuodesta 1998 alkaen.

Hänen erityisalanaan on kasvimolekyylibiologinen tutkimus. Aro on luonut uuden fotosynteesitutkimuksen vahvuusalueen Suomen tieteeseen. Samalla hänen johtamastaan laboratoriosta on kehittynyt yksi kansainvälisesti arvostetuimmista fotosynteesitutkimuksen keskuksista.

Viime vuosina Aron ryhmä on selvittänyt, miten fotosynteesikoneisto saadaan valjastettua tuottamaan ihmisille hyödyllisiä yhdisteitä kestävän kehityksen periaatteella. Tutkimuksessa synteettistä biologiaa sovelletaan kemikaalien ja energian tehokkaaseen tuottamiseen yhteyttävien organismien, lähinnä syanobakteerien, avulla.

Tutkimuksessa syanobakteereja ei valjasteta biomassan tuottamiseen kuten yleensä levien bioenergiatutkimuksissa, vaan niistä muokataan ”eläviä” tehtaita, joissa solut toimivat katalyytteinä ja erittävät soluistaan energiarikkaita kemikaaleja kuten esimerkiksi aurinkopolttoaineita. Alan tutkimuksen toivotaan johtavan käytännön läpimurtoon, joka mahdollistaisi luopumisen fossiilisista polttoaineista.

Eva-Mari Aron mielestä tutkimuksen yhteiskunnallinen merkitys kasvaa kovalla vauhdilla.

”Tutkimus on perusedellytys niin erilaisten sovellusten keksimiseksi ja tuottamiseksi kuin poliittisen päätöksenteonkin tueksi. Tutkittuun tietoon perustuva neuvonanto käy entistä tärkeämmäksi hauraaksi ja pieneksi osoittautuneella planeetallamme. Oma vastuuntuntoni tässä asiassa heräsi kymmenisen vuotta sitten, mutta toivon, että nuoremmat ikäpolvet ovat valveutuneempia.”

Akatemiaprofessorina Eva-Mari Aro on toiminut nykyisen, vuoteen 2018 jatkuvan kautensa lisäksi vuosina 1998-2008. Aro johti vuosina 2008-2013 Suomen Akatemian Integroidun fotosynteesi- ja metaboliittitutkimuksen huippuyksikköä, ja parhaillaan hän johtaa Primaarituottajien molekyylibiologian huippuyksikköä (2014-2019). 

Eva-Mari Aro on saanut useita kansainvälisiä kunnianosoituksia ja palkintoja ja hänellä on lukuisia kansallisia ja kansainvälisiä luottamustehtäviä.

Hän toimii monissa EU:n tutkimusverkostoissa, niin tieteellisissä kuin tiedepoliittisissakin ja kuuluu useiden isojen tiedepalkintojen kansainvälisiin valintapaneeleihin. Parhaillaan hän on varapresidentti Euroopan Akatemioiden yhteiselimessä (EASAC), joka tuottaa tutkittuun tietoon perustuvia raportteja EU:n komission ja parlamentin päätöksentekoa varten aihepiireinä ympäristö, energia ja biotieteet yleisesti. Vuoden professoriksi Eva-Mari Aro valittiin vuonna 2013.

Markku Kulmala

Ekosysteemien ja ilmakehän vuorovaikutuksia tutkivan tieteenalan uranuurtaja

Akatemiaprofessori Markku Kulmala (s. 1958) on maailman johtava ilmakehän aerosolien fysiikan ja kemian tutkija.

Kulmalan alan kansainvälisessä eturivissä tekemä tutkimus on lisännyt merkittävästi ymmärrystä ilmastonmuutokseen vaikuttavista mekanismeista, mikä luo mahdollisuuksia ilmastonmuutoksen hillitsemiseen ja muutoksen vaikutusten vähentämiseen. Kulmala on yksi ekosysteemien ja ilmakehän vuorovaikutuksia tutkivan uuden tieteenalan perustajista. Varsinkin hänen integroiva lähestymistapansa on muuttanut tutkimusympäristöä ja -asetelmia merkittävästi.

Kulmalan tutkimusryhmä selvittää ihmistoiminnan ja luonnollisten prosessien vaikutusta ilmastoon ja ilman laatuun. Ilmanlaadun ja ilmaston väliset vuorovaikutukset ovat moninaisia ja monimutkaisia. Saasteinen ilma voi muuttaa paikallista ja jopa globaalia ilmastoa ja ilmasto vaikuttaa monella tavalla ilmanlaatuun. Tutkimuksella on merkittävät ympäristölliset, sosiaaliset ja taloudelliset vaikutukset.

”Ilmaston ja ympäristönmuutoksen monimutkaisten keskinäisten riippuvuuksien ja vuorovaikutusten ratkaisemiseen tarvitaan monipuolista kokeellista ja teoreettista työtä sekä jatkuvia mittauksia. Vain näin saadaan riittävästi faktoja, joita voidaan käyttää päätöksenteon tueksi esimerkiksi sellaisissa haasteissa kuin Kiinan ilmanlaadun ratkaisemisessa.”

Markku Kulmala on työskennellyt Helsingin yliopiston fysiikan professorina vuodesta 1996 lähtien. Parhaillaan hän on akatemiaprofessori. Hän oli akatemiaprofessorina myös vuosina 2004-2009 ja 2011-2015. Kulmala on julkaissut yli 900 tieteellistä alkuperäisartikkelia.

Hänen ohjauksessaan on valmistunut 67 tohtoria. Kulmalan julkaisuihin on viitattu ainakin 35 000 kertaa, ja hän on maailman viitatuin geotieteiden tutkija. Vuoden professoriksi Kulmala valittiin vuonna 2012.

”Minua kiehtoo tutkimustyössä uuden löytäminen ja rajojen ylittäminen. On mielenkiintoista pohtia uusia asioita, yhtälöitä ja syy-yhteyksiä ja lopulta ymmärtää niitä”, Kulmala kuvailee.

Kulmala on johtanut Suomen Akatemian huippuyksikköä Ilmakehän koostumuksen ja ilmaston muutoksen fysiikka, kemia ja biologia vuosina 2002-2007 ja Ilmakehän koostumuksen ja ilmaston muutoksen fysiikka, kemia, biologia ja meteorologia vuosina 2008-2013.

Parhaillaan hän johtaa Ilmakehäntutkimuksen huippuyksikköä - molekyyleistä ja biologisista prosesseista globaaliin ilmastotutkimukseen (2014-2019). Arvostetun Euroopan tutkimusneuvoston ERC:n viisivuotisen Advanced Grant -rahoituksen Kulmala sai vuonna 2008.

Markku Kulmala on ollut keskeisessä roolissa myös kansainvälisten tutkimusinfrastruktuurien kehittäjänä ja merkittävän havaintoverkoston perustajana. Useita vuosia kestäneet jatkuvat mittaukset Suomen SMEAR-kenttäasemilla ovat lisänneet Kulmalan johtamien tutkimusyksiköiden kansainvälistä painoarvoa.

Tämä näkyy esimerkiksi kasvihuonekaasujen havaintojärjestelmän (ICOS) -tutkimusinfrastruktuurin päämajan ja koordinaatiovastuun saamisessa Suomeen sekä aerosolin, pilvien ja hivenkaasujen eurooppalaisen infrastruktuurin (ACTRIS) koordinaatiovastuun saamisena Suomeen.

Kulmalan uudet aloitteet Global SMEAR, Pan Eurasian Experiment sekä osallistuminen Kiinan ilmanlaadun ratkaisemiseen ja Silk Road -hankkeisiin lisäävät oleellisesti suomalaisen tutkimuksen näkyvyyttä ja kansainvälistä vaikuttavuutta.

”Odotan, että meillä on merkittävä panos Kiinan ilmanlaadun kohentamisessa. Uskon, että kansainväliset mittausverkot monipuolistuvat ja antavat laadullista tietoa erilaisista ilmastoon vaikuttavista takaisinkytkennöistä”, Markku Kulmala sanoo.

Tieteenfilosofi ja merkittävä tiedevaikuttaja 

Emeritusprofessori Ilkka Niiniluoto (s. 1946) on tehnyt erittäin merkittävän uran tiedeyhteisössä ja yliopistomaailmassa. Filosofina hän on kirjoittanut laajasti tieteen luonteesta ja tieteellisestä ajattelusta. Samalla hän on koko uransa ajan ollut aktiivinen ja monipuolinen yhteiskunnallinen vaikuttaja ja keskustelija.

Hän on aktiivisesti osallistunut yliopistojen uudistamiseen ja yliopistoista käytävään keskusteluun. Erinomaisena esimerkkinä tästä on Niiniluodon kokoomateos Dynaaminen sivistysyliopisto: sata puhetta ja kirjoitusta vuosilta 1987-2010. Niiniluodon vankkumattoman analyyttinen ote hankaliinkin asioihin on tehnyt hänestä erittäin arvostetun tiedevaikuttajan.

Tieteenfilosofina Niiniluodon kiinnostuksen kohteena on ollut muun muassa tieteellisen tiedon edistyminen: kun kaksi teoriaa kuvaa samaa ilmiötä eri tavoin, niin millä perusteilla voidaan sanoa, että toinen on oikeampi kuin toinen?

Tämä teoksessa Truthlikeness (1987) kehitelty totuudenkaltaisuuden käsite on tieteen kannalta erittäin merkittävä. Tieteellisen realismin merkitystä hän on puolestaan nostanut esiin laajasti siteeratussa kirjassaan Critical Scientific Realism (1999). Hän on julkaissut 200 tieteellistä alkuperäisartikkelia ja kirjoittanut tai toimittanut lukuisia kirjoja.

Niiniluoto pitää tieteentekijöiden roolia keskeisenä, kun yhteiskunnassa haetaan ratkaisuja ajankohtaisiin kansainvälisiin haasteisiin kuten globaaliin monikulttuurisuuteen, digitalisaatioon ja ilmaston lämpenemiseen.

”Kriittistä tieteellistä ajattelua tarvitaan jatkuvasti uudistamaan sivistyksen tietopohjaa ja siihen perustuvaa osaamista. Emme saa alistua demokratiaa rapauttavaan totuudenjälkeiseen aikaan, vaan tieteen on ylläpidettävä totuuden ja oikeudenmukaisuuden kunnioitusta.”

Suomen nousu ja menestys kansakuntana on Niiniluodon mukaan perustunut juuri tieteeseen ja yliopistojen tarjoamaan tutkimuspohjaiseen koulutukseen.

”Jo 1800-luvulta lähtien Suomesta on koulutuksen ja tutkimuksen avulla rakennettu sivistysvaltiota, jolla on oma kieli, historia ja kulttuuri. Itsenäisestä Suomesta on kehitetty demokraattinen oikeusvaltio, turvallinen hyvinvointiyhteiskunta ja dynaaminen tietoyhteiskunta. Kaikissa näissä vaiheissa avoin kansainvälinen vuorovaikutus on ollut avainasemassa”, Niiniluoto korostaa.

Hänestä Suomen tulevaisuudesta voidaan pitää huolta näiden vahvuuksien varassa, kun samalla varmistetaan keskusteluyhteys politiikan ja talouden päätöksentekijöihin kaikille tieteille, jotka arvioivat kriittisesti maailman monimutkaista tilaa ja toiminnan vaihtoehtoja.

”Päätöksentekijät on myös vakuutettava siitä, että tiede on monin tavoin arvokasta ja hyödyllistä, joten tieteelliseen sivistykseen kannattaa sijoittaa. Suomessa toimivilla tieteenharjoittajilla on erinomaiset kansainväliset yhteydet ja verkostot. Kovassa kilpailussa tieteen tason ylläpitäminen ja läpimurtojen saavuttaminen edellyttävät kuitenkin riittäviä voimavaroja.”

Ilkka Niiniluoto oli Helsingin yliopiston matematiikan apulaisprofessori 1973-77, teoreettisen filosofian professori vuosina 1977-2014, vararehtori 1998–2003, rehtori 2003-2008 ja kansleri 2008-2013. Hän toimi puheenjohtajana Suomen Filosofisessa Yhdistyksessä 1975-2015 ja Tieteellisten Seurain Valtuuskunnassa 2000-2014. Niiniluoto on lukuisien kansallisten ja kansainvälisten tieteellisten seurojen jäsen ja on uransa aikana toiminut monissa merkittävissä kansainvälisissä ja kansallisissa luottamustehtävissä.

Juttu perustuu Suomen akatemian tiedotteeseen.

Video: Katso tämä erinomainen animaatio, jos ajan ja avaruuden luonne ihmetyttää

Video: Katso tämä erinomainen animaatio, jos ajan ja avaruuden luonne ihmetyttää

Eurooppalainen hiukkastutkimuskeskus CERN ja TED-Ed ovat tuottaneet pienen sarjan aivan erinomaisia fysiikan perusasioita esitteleviä videoita.

17.02.2017

Tässä sarjan ensimmäisessä animaatiossa fyysikot Andrew Pontzen ja Tom Whyntie (Giant Animation Studiosin piirtäminä) kertovat aika-avaruudesta ja sen olemuksesta. 

Alla ovat sarjat loput osat, joista yhdessä kyse on valon nopeudesta ja toisessa nivotaan aina-avaruus sekä painovoima yhteen.

Videot sopivat erinomaisesti myös niille, jotka tietävät tai olettavat tietävänsä mistä oikein on kyse...

Tiedetuubi suosittelee!

Video: Näin tehdään mullistavaa grafeenia

Video: Näin tehdään mullistavaa grafeenia

Grafeeni on hiiltä, missä on toisiinsa hyvin tiukasti kiinnittyneitä hiiliatomeja vain yhden atomikerroksen paksuisena levynä. 

03.02.2017

Koska se on hyvin sähköä ja lämpöä johtavaa, läpäisee valoa ja on lisäksi kaikkein kestävin tunnettu aine, tutkitaan grafeenia tällä haavaa erittäin innokkaasti. 

Tiedetään, että siitä voidaan valmistaa erittäin ohuita ja läpinäkyviä kalvoja, jotka ovat kovempia kuin timantti, mutta samalla hyvin joustavia. Siitä voidaan tehdä suprajohteita, valmistaa hyvin nopeita transistoreja, parantaa akkujen varauskapasiteettia ja kaiken lisäksi se on bioyhteensopivaa – siitä siis voitaisiin kehittää vaikkapa liittimiä hermojen ja elektroniikan välille.

 

Jo nyt grafeenia käytetään hiilikuidun joukossa sitä vahvistamassa huippuluokan urheiluvälineissä, esimerkiksi tennismailoissa ja kilpapyörien rungoissa.

Ongelmana on kuitenkin se, että grafeenin valmistus on hyvin hankalaa. 

Nyt sitä eristetään yleensä noesta tai grafiitista, mutta menetelmät ovat hankalia, eikä tuloksena saada kovin ohuita kerroksia.

Suomessa tutkimusta tehdään mm. Otaniemessä, Tampereen teknillisessä yliopistossa ja Itä-Suomen yliopistossa, mutta viime viikolla maailmanlaajuisesti otsikoihin nousivat kaksi ulkomaista yliopistoa, joissa on tehty pieniä läpimurtoja juuri tässä grafeenin valmistustekniikassa.

Videolla Yhdysvaltain Kansasin osavaltion yliopiston tutkijat näyttävät, miten hiilivetykaasulla  hapella ja sytytystulpalla voi tehdä grafeenia. 

Menetelmällä (mikä itse asiassa on räjäyttämistä) voi valmistaa milligrammojen sijaan grammoja grafeenia, ja se sopii kehittäjiensä mukana myös teolliseen tuotantoon, jolloin ainetta valmistetaan kilokaupalla jatkuvasti. 

Menetelmä on hyvä esimerkki siitä, että tutkimus ei aina mene suunnitellulla tavalla, vaan pieni leikkiminen on aina hyväksi. Alun perin tutkimusryhmä nimittäin kehitti hiilipitoisia aerosoligeelejä, ja grafeeni syntyi vahingossa.

Toinen uusi menetelmä tulee Australiasta: siinä käytetään yksinkertaisesti raaka-aineena soijaöljyä.

Australian kansallisen tieteellisteknisen tutkimusjärjestön CSIROn tutkijat kuumensivat öljyä, kunnes siinä olevat hiiliatomit alkavat muodostaa grafeenia. Sen jälkeen öljy viilennettiin nopeasti nikkelistä tehdyn levyn pinnalle, jolloin tuloksena oli neliön muotoinen, hyvin ohut grafeenilevy.

Tämäkin menetelmä soveltuu kehittäjiensä mukaan teolliseen tuotantoon.

Grafeenia tehdään