Vaihda eurooppalaiseen tekoälyavustajaan: tässä tulee Le Chat

Mistral AI Le Chat -logot
Mistral AI Le Chat -logot

Pariisissa pidettiin 10.-11. helmikuuta tekoälyä koskeva suuri kokoontuminen Ranskan presidentti Emmanuel Macronin aloitteesta. Maailmanpoliittisesta tilanteesta johtuen tilaisuuden poliittinen taso kääntyi enemmän muuhun asiaan kuin tekoälyyn, mutta kulisseissa ja oheistapahtumissa käsiteltiin myös asiaa. Kuten uutta ranskalaisen Mistral AI:n kehittämää Le Chat -keskustelumallia, joka toimii myös suomeksi.

Jos internet ja matkapuhelimet olivat suuria mullistuksia 1900-luvun lopussa ja 2000-luvun alussa, niin tekoäly ja sen hyödyntäminen elämän eri alueilla ovat vähintään yhtä suuri mullistus lähiaikoina. 

Koska tekoälyllä on suuria vaikutuksia yhteiskuntiimme ja elämään joka puolella, päätti suureellisista aloitteistaan tunnettu Ranskan presidentti Emmanuel Macron järjestää suuren tekoälyä käsittelevän kokousten sarjan Pariisissa. IA Action Summit pidettiin nyt helmikuun 10. ja 11. päivinä.

Suuri määrä alan asiantuntijoita ja vaikuttajia kerääntyi keskustelemaan tekoälystä eri näkökulmista. 

Kirjoittaja oli mukana seuraamassa tapahtumaa ja keskittyi enemmänkin tekoälyn käyttöön sotilassovelluksissa, koska siellä tapahtuu suurta kehitystä ja sotilastekniikka on valitettavasti nykyisin erittäin ajankohtaista. Tähän palataan erillisessä jutussa lähipäivinä.

Tässä jutussa sen sijaan aiheena on uusi ranskalainen kielimalli Le Chat.

Luotettava kielimalli?

Tekoälyä ovat monenlaiset järjestelmät ja ohjelmistot, jotka pystyvät suorittamaan tehtäviä, jotka normaalisti vaatisivat ihmisen älykkyyttä. Esimerkiksi oppiminen, ongelmanratkaisu, päätöksenteko, kielen ymmärtäminen, kuvien tunnistaminen ja monimutkaiset analyysit ovat tällaisia.

Osa sovelluksista on rajattuja tehtäviä suorittavia algoritmeja, osa taas julkisuudessa paljon olleita kielimalleja, joiden kanssa voi keskustella. Ne pystyvät yhdistämään suuresta tietomäärästä vastauksia monenlaisiin kysymyksiin ja reagoivat käyttäjän kysymyksiin myös lähes tunteellisestikin.

Tällaisia ovat mm. GPT, DeepMind, Gemini, Grok ja DeepSeek.

Kielimallit eivät ole aivan samanlaisia, johtuen niiden "kouluttamisesta", niiden käytössä olevasta tiedosta ja tietoisesti kielimalliin ohjelmoiduista painotuksista. Esimerkiksi kiinalainen DeepSeek selvästi sensuroi Kiinan kannalta ikäviä asioita ja yhdysvaltalaisilla kielimalleilla on omia painotuksiaan – sekä ennen kaikkea nykyisessä tilanteessa poliittista painolastia.

Tähän saakka Eurooppa on ollut jälkijunassa, etenkin yleisesti käytettävien kielimallien kehityksessä. 

Eräitä johtavista ovat suomalainen Silo AI ja saksalainen Aleph Alpha, jotka ovat yhteistyössä ranskalaisen Mistral AI:n kanssa. 

Näiden tietotaitoa lieneekin mukana vast'ikään esitellyssä Le Chat -kielimallissa, joka on yleisön normaalisti käytettävissä ChatGBT:n ja Grokin tapaan.

Le Chat on sanaleikki, missä yhdistyvät ranskan sana "kissa" ja keskustelu (chat). 

Le Chat esittelee itsensä suomeksi

Le Chat onkin kiinnostava, koska se on eurooppalainen ja sitä voi käyttää myös suomeksi. Yllä on sen vastaus suomenkieliseen kysymykseen, ja vastaus kertoo myös Le Chatin suurimman heikkouden: se ei toistaiseksi louhi tietoa netistä, eikä ole selvillä aivan ajankohtaisimmista tapahtumista.

Sen sijaan yleisiä asioita ja ennen loppuvuotta 2023 olleita tapahtumia se tuntee erinomaisesti.

Erityistä Le Chatissa on sen nopeus; sen käyttämisen jälkeen Grok ja ChatGPT tuntuvat todellakin hitailta. Le Chat onkin suunniteltu tehokkaaksi, energiatehokkaaksi ja skaalautuvaksi.

Sitä kannattaa testata! Kuten muissakin kielimalleissa, tarjolla on ilmaisen version lisäksi tehokkaampi ja vastausmäärältään rajoittamaton Pro-versio.

Mistral AI:n perustivat Metan ja Googlen tekoälykehittäjinä kokemusta keränneet Arthur Mensch, Guillaume Lample ja Timothee Lacroix huhtikuussa 2023. Yhtiö käyttää - ainakin toistaiseksi - avointa lähdekoodia, vaikka tätä on arvosteltu sen haavoittuvuudesta.

Kesäkuussa 2024 Mistral AI keräsi rahoitusta 600 miljoonan euron edestä ja nyt sen arvoksi lasketaan noin 5,8 miljardia euroa. Se onkin Euroopan arvokkain tekoäly-startup.

Yhtiö on läheisessä yhteistyössä mm. Microsoftin ja Dassault Systèmesin kanssa. Mistralin kielimallia käytetään mm. Microsoftin Azure AI -alustalla ja Microsoft on hankkinut pienen osuuden yhtiöstä. Dassault Systèmes, ranskalainen ilmailu- ja avaruusalalla toimivan Dassaultin sisaryhtiö on keskittynyt teollisuudessa käytettäviin ohjelmistoihin, kuten CATIA CAD-ohjelmistoon, ja yhdistää Mistralin kielimalleja mm. virtuaalisiin kaksoisratkaisuihin ja pilvi-infrastruktuuriin.

Ei ihme, että Pariisin IA Summitissa Mistral AI nousi selvästi esiin ranskalaisena ja eurooppalaisena vaihtoehtona amerikkalaisille ja kiinalaisille tekoäly-yrityksille.

Huomio kääntyi politiikkaan

Mukana kokouksessa oli myös presidenttejä, pääministereitä ja muita valtiojohtajia. Myös Suomen pääministeri Petteri Orpo kutsuttiin mukaan. Hän sai myös kunnian puhua valtionpäiden tapaamisen päätösseremoniassa.

Orpo Pariisissa

Orpo osallistui kokouksen yhteydessä myös presidentti Macronin kutsusta EU-johtajien työillalliselle sekä valtioiden- ja hallitusten johtajien illalliselle. Mukana oli noin 25 valtionjohtajaa eri puolilta maailmaa, muun muassa Yhdysvaltain uusi varapresidentti James Vance.

Maailmanpolitiikan myllerryksistä johtuen heidän välillään puhuttiinkin enemmän muusta kuin tekoälystä. 

AI Action Summitin päätteeksi hyväksyttiin julistus, jossa myös Suomi on mukana. Julistus linjaa maakoalition yhteistyötä muun muassa ilmasto- ja ympäristökestävän tekoälyn edistämiseksi. 

Känny kiinni sunnuntaisin

Shut the phone up Sunday -logo
Shut the phone up Sunday -logo

Nokia-merkin alla matkapuhelimia myyvä HMD kertoo myyntinsä olevan huimassa kasvussa: "vanhanaikaisille" perusmatkapuhelimille on yhä enemmän kysyntää, ja etenkin nuoret haluavat niitä multimediaälypuhelinhärpäkkeiden sijaan.

Suomalainen Human Mobile Devices on yhtiö, joka on tuonut ammoisten Nokia-puhelimien näköiset- ja kaltaiset matkapuhelimet jälleen markkinoille. Yhtiä kertoo suuntaavansa katseensa henkilöihin, jotka tuntevat digitaalisen ylikuormituksen haitat ja pitävät tarkasti silmällä budjettiaan. Puhelimet tarjoavat mahdollisuuden olla saavutettavissa ja pitää lomaa älypuhelimien helposti tarjoavasta digiähkystä.

Kysyntää näille näyttää olevan, sillä HMD:n tuoreen tiedotteen mukaan näppäinpuhelimien myynti on kasvanut merkittävästi kahden viimeisen vuoden aikana eri puolilla maailmaa. HMD:n myynti on kasvanut kaksinumeroisen luvun verran jo kahtena  vuonna peräkkäin.

HMD:n Nokia-puhelimia

Tiedote kertoo, että kasvu on seurausta Yhdysvalloissa vuonna 2023 alkaneesta kulttuurisesta muutoksesta, jossa erityisesti Z-sukupolvi on alkanut peräänkuuluttaa yksinkertaisempia, häiriötekijöistä vapaita laitteita. 

TikTok-hashtag #bringbackfliphones on kerännyt jopa 61 miljoonaa katselukertaa, mikä korostaa kasvavaa tarvetta irrottautua älypuhelimista.

Nyt yhtiö on tuomassa myyntiin HMD BarbieTM -simpikkapuhelimen, joka perustuu vuonna 2023 esiteltyyn Nokia 2660 Flip -puhelimeen. Juuri värikkäät, yksinkertaiset simpukkapuhelimet näyttävät olevan hip ja pop.

HMD:n puhelimien suosio on selvä merkki siitä, että kuluttajat kaipaavat yksinkertaisempia puhelimia. 

Maailman myllerrykset ovat omiaan lisäämään kiinnostusta sulkea suuri osa uutisista ja notifikaatioista ulkopuolelle – ainakin osittain.

Yhtiö on nyt esitellyt (myynnin lisäys tietysti mielessään) "Shut the phone up Sundayn", eli "Sulje känny sunnuntaiksi" -kampanjan, joka nimensä mukaisesti ehdottaa jättämään älypuhelimet sivuun ainakin yhdeksi päiväksi. Kampanjaan liittyy myös alennuksia tuotteista.

Kun tiedetään, että jatkuva älypuhelimien käyttö syö huomaamatta ihmisen kognitiivista kapasiteettia ja vähentää keskittymiskykyä, Tiedetuubi suosittelee samaa.

Eksokomeettojen kavalkadi Markus Hotakainen Ti, 11/02/2025 - 21:02
Kuva: Luca Matra
Kuva: Luca Matra

Muita tähtiä kiertävien komeettojen eli eksokomeettojen havaitseminen on vielä vaikeampaa kuin eksoplaneettojen. Silti se on mahdollista.

Yksittäiset komeetat eivät kuitenkaan erotu kymmenien tai satojen valovuosien etäisyydeltä. Komeettojen kokoluokka on – ainakin Aurinkokunnassa – vain kilometrejä tai korkeintaan joitakin kymmeniä kilometrejä, ja useiden, jopa kymmenien tuhansien kilometrien läpimittaisten planeettojenkin tutkiminen on haastavaa.

CfA:n (Harvard & Smithsonian Center for Astrophysics) tähtitieteilijät ovat tehneet havaintoja kokonaisista komeettavyöhykkeistä, muita tähtiä ympäröivistä ainekiekoista, jotka koostuvat komeettamaisista kappaleista. 

Vastikään Astronomy & Astrophysics -tiedelehdessä julkaistussa artikkelissa on listattu kaikkiaan 74 suhteellisen läheistä tähteä, joiden ympärillä on ”komeettakiekko”.

Havainnot on tehty Havaijilla sijaitsevalla Submillimeter Array -radioteleskooppiverkostolla (SMA) ja Chilessä Atacaman autiomaahan levittäytyvällä ALMA-järjestelmällä (Atacama Large Millimeter/submillimeter Array).

Tutkimuksen kohteina olleet tähdet vaihtelevat iältään hyvin nuorista jokseenkin Auringon ikäisiin, miljardeja vuosia vanhoihin tähtiin. Ikähaitari antaa edustavan kuvan siitä, miten komeettavyöhykkeiden synty kytkeytyy planeettakuntien kehittymiseen.   

Radioalueella tehdyt havainnot kertovat, miten joidenkin kilometrien läpimittaisten toisiinsa törmäilevien kiven ja jään muodostamien kappaleiden keskinäiset kolarit levittävät ainetta tähden ympärille.

Myös Aurinkokunnan ulko-osissa on vastaavanlainen kiekko, joka tunnetaan Kuiperin vyöhykkeenä. Se ulottuu suunnilleen Neptunuksen radan tienoilta eli 30 tähtitieteellisen yksikön etäisyydeltä noin 50 tähtitieteellisen yksikön päähän Auringosta.

Vielä sitäkin kauempana on pallomainen Öpikin-Oortin pilvi, joka saattaa ulottua jopa 100 000 tähtitieteellisen yksikön etäisyydelle. Siitä ei ole suoria havaintoja, vaan oletus sen olemassaolosta perustuu komeettaratojen ominaisuuksiin. 

Tilastollisesti näyttää siltä, että samankaltaisia komeettavyöhykkeitä ja -pilviä löytyy vähintään joka viidennestä planeettajärjestelmästä. 

 

 

 

 

 

 

 

 

 

Fossiilit kävivät avaruudessa

Avaruudessa käynyt fossiili ja todistus lennosta
Avaruudessa käynyt fossiili ja todistus lennosta

Kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja ammoisen etanan kuori kävivät 105 kilometrin korkeudessa viime elokuussa tehdyllä New Shepard -aluksen avaruushyppäislennolla NS-26. 

Blue Originin New Shepard -raketti ja avaruusalus tekivät edellisen hyppäyslentonsa juuri ja juuri avaruuden puolelle 4. helmikuuta 2025. Kyseessä oli miehittämätön lento, jonka kyydissä oli tutkimuslaitteita.

Kolme lentoa aikaisemmin, elokuun 29. päivänä 2024, oli kyydissä kuitenkin jotain hyvin erikoislaatuista: fossiileita. 

Lennon miehistöön kuului paitsi 21-vuotias Pohjois-Carolinan yliopiston opiskelija Karsen Kitchen, nuorin virallisesti avaruuden puolella käynyt nainen, niin myös Floridan yliopiston proferssori Rob Ferl.

Ferl on geenitutkija, joka on selvitellyt pitkään kiihtyvyyden ja mikropainovoiman vaikutuksia kasveihin.

Hän on ollut Floridan yliopiston professori vuodesta 1980 ja toimii tällä hetkellä UF Astraeus Space Instituten johtajana. Vaikka hän on innokas lentäjä, Ferlillä on kova korkean paikan kammo. Kuten monille korkeanpaikankammoisille lentäjille, ei koneessa oleminen ja lentäminen ole lainkaan haastavaa, mutta varsin absurdit lentämiseen liittyvät asiat saattavat olla: Fern kertoo Floridan yliopiston tiedotteessa, että hänen avaruusmatkansa vaikein osa oli lyhyt kävely laukaisualustalta rakettiin parikymmentä metriä korkealla olevan rampin päällä.

"Olin huolissani siitä, että kävely ramppia pitkin kapseliin saisi minut hermostumaan, ja se oli aika lähellä", Ferl kertoo.

Miehistä laukaisualustalla

NS-26 -lennon osanottajat laukaisualustalla. Ramppi tästä avaruusalukseen oli samanlaista ritilää kuin tässä. Ferl on kuvassa takana keskellä. Kuva: Blue Origin.

 

Ferlillä oli avaruuslennolla näytteenottoputkia, jotka sisälsivät pieniä kasveja ja jotka oli kiinnitetty hänen pukunsa jalkoihinsa tarranauhalla. 

Laukaisun, huippukohdan ja laskeutumisen aikana hän painoi kunkin putken kiinnitettyjä mäntiä, jotka vapauttivat kiinnitysaineen, joka kemiallisesti jäädytti jokaisen kasvin solutasolla. Myöhemmin, kun hän oli palannut Maahan, hän analysoi erot kolmen ryhmän välillä. 

Ferl oli liittynyt mukaan lennolle virallisesti tätä tehtävää tekemään – ensimmäisenä Nasan tukemana tutkijana – mutta luonnollisesti hän oli itsekin innoissan kokemuksesta.

"Kuvittele olevasi merentutkija, joka ei ole koskaan ollut veneessä, tai joku, joka tutkii metsiä mutta ei ole koskaan koskenutkaan puuhun, tai paleontologi, joka ei ole koskaan löytänyt fossiilia. Olen ollut avaruusbiologi 25 vuotta. Nyt olen vihdoin ollut avaruudessa."

Omien näytteidensä lisäksi Ferl halusi jakaa matkansa muiden yliopiston tutkijoiden kanssa.

Siten mukaan pääsi myös kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja pleistoseenikauden jääkausia edeltäneellä ajalla eläneen petoetanan kuorta.

Fossiilit olivat peräisin Floridan luonnonhistoriallisesta museosta. Jon Bloch, selkärankaisten paleontologian kuraattori, ja Roger Portell, selkärangattomien paleontologian kokoelman johtaja valitsivan avaruuskeikalle päässeet fossiilit.

 

Fossiilien piti olla pieniä, mutta Bloch halusi myös jotain merkittävää, ainutlaatuista. Siksi hän rajasi valintansa  selkärankaisten paleontologian kokoelmassa olevien yli 1,5 miljoonan näytteen joukosta lyhyeen, mutta merkittävään vaiheeseen Maan historiassa. 

Paleoseenia seurannut eoseenin ensimmäinen vaihe noin 48 – 56 miljoonaa vuotta sitten oli noin 200 000 vuotta kestänyt globaalin lämpenemisen jakso, joka tunnetaan epätavallisen pienistä eläimistä.

"Se oli intensiivinen aika, joka vastaa sitä, mitä ennustamme nykyiselle ilmastonmuutokselle, paitsi että nyt lämpeneminen tapahtuu paljon nopeammin", hän sanoi.

Maailmanlaajuiset lämpötilat nousivat 5–8 celsiusastetta tämän pari sataa tuhatta vuotta kestäneen termisen häiriön aikana. Jopa 50 % meren mikro-organismeista kuoli sukupuuttoon, kun maailman valtameret happamoituivat. 

Maalla nisäkkäät selvisivät sukupuuttoaallosta vähemmillä menetyksillä, koska evoluutio muokkasi niistä pienempiä. Kun esine kutistuu, sen tilavuus pienenee enemmän kuin sen pinta-ala. Tämä helpottaa pienempien eläinten lämmön haihduttamista verrattuna suurempiin.

Jotkut lajit kutistuivat jopa 30 % alkuperäisestä koostaan eoseenin alkurykäyksen lämpömaksimin aikana. 

Maailman ensimmäinen kädellinen oli Teilhardina, joka olisi mahtunut nykyihmisen kädelle seisomaan. Palanen sellaista piipahti avaruudessa. Kuva: Florida Museum / Jeff Gage.

 

Bloch valitsi mukaan myös varhaisimman tunnetun hevosen Sifrhippus sandraen fossiilipalasen. Hevonen painoi todennäköisesti vain 8,5 kiloa, eli ponikin on siihen verrattuna jättiläinen. Kuva: Florida Museum / Jeff Gage.

 

Portell, joka on paleontologiksi päätynyt ravintolapäällikkö ja pankkiiri, otti hieman erilaisen lähestymistavan fossiilin valinnassa.

"Yritin ajatella jotain avaruuteen liittyvää, kuten tähtikuoria ja kuuetanoita", hän sanoi.

Portell päätyi 2,9 miljoonaa vuotta vanhaan kuuetanaan osittain tämän ryhmän oudon ja kiehtovan luonnonhistorian vuoksi.

 

Fossiileita on ollut aikaisemminkin avaruudessa: pieniä fossiileja lepakoista, useista dinosauruksista, crinoidista, hominidista ja trilobiitista on kiikutettu avaruuteen ja takaisin.

Kyseessä oli kuitenkin ensimmäinen kerta, kun fossiileita oli mukana tällaisella suborbitaalisella hyppäyslennolla juur avaruuden puolelle. Tieteellistä iloa tällaisesta ei ole, mutta muuta iloa sen edestäkin!

Juttu perustuu Museum of Floridan tiedotteeseen ja kuviin.

Loikkia lähiavaruuteen

Härän kohteita. Kuva: MH
Härän kohteita. Kuva: MH

Iltataivasta koristaa tällä hetkellä useita planeettoja, itse asiassa Merkuriusta lukuun ottamatta kaikki Venuksesta Neptunukseen. 

Jos tarkkoja ollaan, myös Merkurius on vastikään siirtynyt aamutaivaalta iltapuolelle, mutta se on vielä niin lähellä Aurinkoa, että sitä on mahdoton nähdä.

Planeetoista Jupiter ja Uranus ovat lähellä kahta avointa tähtijoukkoa, Hyadeja ja Plejadeja. Ne kuuluvat Härän tähdistöön, jossa myös Jupiter viipyilee kesäkuulle saakka. Uranus on niukasti Oinaan puolella, mutta sekin vaeltaa maaliskuun alussa Härkään, missä se pysyttelee aina elokuuhun 2032 saakka.

Yhdellä silmäyksellä voi tarkastella viittä yötaivaan kohdetta, jotka ovat hyvin erilaisilla etäisyyksillä. Tosin Uranuksen silmäily vaatii kiikarin, sillä se erottuu paljain silmin vain huippuhyvissä olosuhteissa. 

Viisikosta lähimpänä on Jupiter, jonka etäisyys Maasta on tällä hetkellä 699 500 000 kilometriä. Uranus on paljon kauempana, sillä kaukaiselle planeetalle on matkaa 2 915 800 000 kilometriä. 

Seuraava loikka on vielä huimempi. Härän tähdistön kirkkain tähti eli Aldebaran on noin 65 valovuoden etäisyydellä. Jos Jupiterin ja Uranuksen etäisyydet muunnetaan valovuosiksi, lukemat ovat 0,00007 ja 0,0003 valovuotta.

Aldebaran on siis yli 200 000 kertaa kauempana kuin Uranus ja melkein miljoona kertaa etäämpänä kuin Jupiter. 

Se ei kuitenkaan ole vielä mitään.  

Hyadien tähtijoukko on yli kaksi kertaa kauempana kuin Aldebaran eli 153 valovuoden etäisyydellä, ja Plejadit puolestaan melkein kolme kertaa kauempana kuin Hyadit. Matkaa joukkoon on 439 valovuotta.  

Jos Plejadien etäisyyttä vertaa Jupiterin etäisyyteen, tähtijoukko on yli kuusi miljoonaa kertaa jättiläisplaneettaa kauempana. 

Ja silloinkin ollaan vasta kosmisessa lähinaapurustossa. 

Uusi moottori sähkölentokoneisiin Jari Mäkinen Su, 09/02/2025 - 13:02
ENGINeUS-moottori
ENGINeUS-moottori

Sähkölentokoneilla on kaksi haastetta: akkutekniikka ja moottori. Akut ovat edelleen varsin painavia suhteessa latauskapasiteettiin, ja ilmailukäyttöön hyväksyttyjä moottoreita on kovin vähän.

Euroopan lentoturvallisuusvirasto (EASA) on myöntänyt sertifikaatin ENGINeUS 100 -moottorille. Kyseessä on ensimmäinen Safran Electrical & Power -yhtiön uusista moottoreista, joita tullaan käyttämään sähkölentokoneissa. 

Moottorin ensimmäinen käyttäjä tulee olemaan Diamond Aircraft eDA40 -koneessaan. Kyseessä on DA40 -konetyypin sähköistetty versio, missä moottorin ja siihen liittyvien systeemien vaihtamisen lisäksi on rungon alle laitettu aerodynaamisesti muotoiltu akkupaketti.

eDA-40 lennossa

Diamond eDA40 koelennolla. Ulkoisesti koneen erottaa polttomoottorilla varustetusta koneesta kookkaasta akkupaketista rungon alapuolella. Kuva: Diamond Aircraft

 

ENGINeUS 100 on ensimmäinen Safran Electrical & Power -yhtiön ENGINeUS-sarjan moottoreista, joita tuottamaan yhtiö on rakentamassa neljä puoliautomatisoitua tuotantolinjaa Niortiin (Ranska) ja Pitstoneen (Iso-Britannia). Niissä valmistetaan yli 1 000 sähkömoottoria vuodessa vuodesta 2026 alkaen. 

Moottoria testattiin laboratorio-olosuhteissa yli 1 500 tuntia ja yli 100 lentotuntia todellisissa olosuhteissa lentokoneella. 

Safranille ja EASAlle kyseessä on tärkeä askel myös siksi, että moottorin sertifioinnin kuluessa on myös määritelty tulevaisuutta varten sähkömoottoreihin sekä niiden systeemeihin liittyvät erityiset lentokelpoisuussäännöt ja suunniteltu menetelmät moottorien arviointiin ja kelpuuttamiseen.

ENGINeUS 100 -sähkömoottori tuottaa maksimissaan 125 kW tehoa, ja sen paino-tehosuhde on 5 kW/kg. Ilmailussa juuri paino-tehosuhte on olennainen.

Moottoripakettiin kuuluu itse sähkömoottorin lisäksi sen virransyöttö- ja ohjausjärjestelmät, jotka on integroitu suoraan moottoriin. Laitteiston muoto ja ilmalla tapahtuva jäähdytys on suunniteltu siten, että sitä voidaan käyttää monissa erilaisissa koneissa ja laitteistolla voidaan myös korvata polttomoottoreita nykyisissä lentokoneissa.

ENGINeUS

Polttomoottoriin verrattuna sähkömoottori on yksinkertainen ja siinä on paljon vähemmän osia. Se on periaatteessa luotettavampi ja vaatii vähemmän huoltoa. Kuva: Safran Electrical & Power

 

Safranin mukaan moottori sopii hyvin ainoaksi moottoriksi pieniin yleisilmailukoneisiin, mutta myös sitä voidaan käyttää suuremmissa ns. hajautetun propulsion lentokoneissa. Euroopassa on useita 19-paikkaisia lentokonehankkeita, joissa on useampi sähkömoottori. 

Ranskalainen Aura Aero on julkistanut käyttävänsä Safranin moottoreita ERA-lähiliikennekoneessaan. Ruotsalainen Heart Aerospace puolestaan ei ole kertonut X1-koekoneessaan käyttämäänsä ja myöhemmässä ES-30-koneessaan olevaa moottoria.

Myös Bye Aerospace, CAE, Electra, TCab Tech ja VoltAero käyttävät koneissaan Safranin uutta moottoria.

ENGINeUS -moottoriperheen myöhemmät versiot voisivat sopia myös tuleviin suurempiin, jopa noin 150-paikkaisiin sähkölentokoneisiin.

Tähän saakka ainoa sähkölentokone markkinoilla on ollut Pipistrel Velis Electro, missä käytetään yhtiön omaa moottoria. Kone ja sen moottori saivat lentokelpoisuustodistuksen toukokuussa 2020. Kävimme koelentämässä koneen vuonna 2021 ja siitä on Tiedetuubissa video.

Siinä missä Velisissä on kaksi paikaa, on eDA40:ssa neljä. Se on Pipistreliin verrattuna suurempi ja pystyy lentämään pitemmälle tai kauemmin. Velis Electron moottoriteho on 57 kW ja eDA40:n ENGINeUS 100 -sähkömoottorin 125 kW. Pipistrelin akkukapasiteetti on 20 kWh, Diamond ei ole ilmoittanut lukua. Kummankin koneen tyypillinen latausaika on noin tunnin.

Pipistrel Velis Electro

Pipistrel Velis Electro latauksessa. Kuva: Jari Mäkinen

Sodankylään ESAn satelliittien kalibrointi- ja validointikeskus

Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä
Satelliittiantenni ja mittalaitteita Sodankylän Tähtelässä

Euroopan avaruusjärjestö ESA perustaa yhdessä Ilmatieteen laitoksen kanssa Arktisen satelliittien kalibrointi- ja validointikeskuksen Sodankylään. Tällaista toimintaa on tehty Sodankylässä jo pitkään, mutta nyt toiminta saa virallisemman luonteen.

Jotta Maata havaitsevien satelliittien tuottamat kuvat ja keräämä tieto ovat luotettavia, täytyy satelliittimittauksia varmentaa Maan päällä tehtävillä mittauksilla. Esimerkiksi jos avaruudesta mitataan kosteutta tai hiilidioksidipitoisuutta, täytyy mittauksia näistä tehdä säännöllisesti myös alueella, jota satelliitti on tutkinut. 

Satelliittimittaukset kalibroidaan sitten paikan päällä tehtyjen mittausten kanssa.

Ilmatieteen laitos on tehnyt tällaisia mittauksia jo pitkään, ja näiden mittausten keskuspaikkana on yleensä toiminut Sodankylässä Tähtelän observatorioalueella sijaitseva Arktinen avaruuskeskus. Suomalaiset ovat osallistuneet myös mittauskampanjoihin muuallakin.

Tähtelässä sijaitsevat sekä Ilmatieteen laitos että Oulun yliopistoon kuuluva Sodankylän geofysikaalinen observatorio. Yhdessä nämä muodostavat varsin ainutlaatuisen tutkimuskeskittymän Lapissa.

SMOS-satelliitin maamittalaite

Sodankylässä Ilmatieteen laitoksen pihalla on mm. kosteutta mittaavan SMOS-satelliitin maatutkimuslaitteita. Tätä lokakuussa 2024 kuvattua tötteröä on käytetty jo 15 vuoden ajan. Kuva: Jari Mäkinen

 

Superkeskus Suomeen

Euroopan avaruusjärjestön Maan havainnointiohjelman ohjelmajohtokunta kokousti viime viikolla Saariselällä. Johtokuntaa johtaa tällä hetkellä Maanmittauslaitoksen apulaispääjohtaja Jarkko Koskinen.

Kokouksessa julkistettiin päätös perustaa Euroopan avaruusjärjestön ja Ilmatieteen laitoksen yhteistyönä Arktinen satelliittien kalibrointi- ja validointikeskus (Arctic-Boreal Earth Science, calibration and validation supersite).

”Keskus nostaa Suomen avaruustoiminnan vaikuttavuutta kansainvälisesti huomattavalla tavalla ja luo kasvun edellytyksiä suomalaiselle avaruustoiminnalle ja -teollisuudelle sekä parantaa tieteellisen tiedon tasoa", sanoo Ilmatieteen laitoksen pääjohtaja Petteri Taalas Ilmatieteen laitoksen tiedotteessa.

"Uudet satelliittimenetelmät yhdessä maanpintahavaintojen kanssa tarjoavat nykyistä merkittävästi tarkempaa tietoa hiilidioksidin ja metaanin lähteistä ja nieluista. Ilmatieteen laitos pyrkii olemaan maailman johtavia toimijoita alalla”, 

Hiilidioksidin ja metaanin lähteisiin ja nieluihin liittyy suurta epävarmuutta. Satelliittien ja tarkkojen maanpintahavaintojen avulla on mahdollista saada nykyistä huomattavasti parempaa tietoa näistä.

“Keskuksen sijainti korkeilla leveysasteilla, ja sitä ympäröivät boreaaliset metsät edustaen laajempaa ympäri napapiiriä ulottuvaa metsä- ja tundraekosysteemiä, tekevät siitä ihanteellisen paikan Maata kiertävien satelliittiemme keräämän datan käyttökelpoisuuden varmentamisessa", sanoo Simonetta Cheli, ESAn Maan havainnointi -ohjelmien johtaja.

"Uusi kalibrointi- ja validointikeskus parantaa satelliittipohjaisen tiedon laatua ja edistää uusien, arktiseen alueeseen liittyvien palveluiden ja sovellusten kehittämistä. Tämä ei ainoastaan hyödytä ESAa ja lisää ymmärrystämme metsä-tundra-ympäristöstä, vaan tarjoaa myös suomalaiselle teollisuudelle mahdollisuuksia kehittää ja testata uusia ympäristön mittalaitteita ja teknologioita."

Mittaustorni

Mittauksia tehdään myös mm. torneista ja lentokoneista. Tässä Ilmatieteen laitoksen tornissa on kaksi ESAn Elbara -radiometriä, toinen tornin huipulla ja toinen maanpinnan tasolla. Näillä mitataan sitä, miten pohjoinen havupuumetsä ja pehmeä maa (etenkin lumen sulamisen aikaan) vaikuttavat L-kaistan radiosignaalin voimakkuuteen. Kuva: Ilmatieteen laitos via ESA

ESAn Maan havainnointi -ohjelman mittauskampanjapäällikkö Malcolm Davidsonin mukaan ESA aikoo lisätä kykyään kalibroida ja validoida mikroaaltoalueella toimivia ja satelliittimittalaitteita hyperspektrihavaintoja tekeviä satelliitteja. 

"Tämän jo olemassa olevan keskuksen laajentaminen ns. superkeskukseksi vahvistaa sen kykyä osallistua tuleviin lukuisiin mittauskampanjoihin. Sellaisia ovat muun muassa Copernicus Anthropogenic Carbon Dioxide Monitoring, Copernicus Imaging Microwave Radiometer, Copernicus Hyperspectral Imaging Mission, Copernicus Polar Ice and Snow Topography Altimeter, Radar Observing System for Europe at L-band ja Earth Explorer FLEX -kampanjat."

ESA pyrkii lisäämään läsnäoloaan jäsenmaissansa, ja ns. Superkeskukset ovat uusi tapa tähän. Sodankylän keskuksen julkistus osuu hyvin Suomen ESA-jäsenyyden juhlavuoteen; Suomi liittyi ESAn täysjäseneksi 30 vuotta sitten.

ESAlla on jo Suomessa ESA BIC Finland -yrityskiihdyttämö ja vastaperustettu Phi-Lab Finland -innovaatiokeskus, jotka toimivat yhdessä Aalto-yliopiston kanssa.

Mittalaitteita Sodankylässä

Mittalaitteita Sodankylässä Arktisessa avaruuskeskuksessa. Kuva: Jari Mäkinen

Pysyykö jääkuiden elämä piilossa?

Kuva: NASA/JPL-Caltech
Kuva: NASA/JPL-Caltech

Onko jättiläisplaneettojen jäisten kuiden valtamerissä syntynyt alkeellista elämää? Sitä ei tiedetä – ehkä koskaan.

Tuoreessa tiedeartikkelissa, joka julkaistiin Communications Earth and Environment -lehdessä, tarkastellaan Saturnuksen Enceladus-kuun jäisen kuoren alla vellovan vesimassan dynamiikkaa tai pikemminkin sen puutetta.

Mikäli meressä on elämää, sen täytyy saada energiansa kuun sisuksista tihkuvasta lämmöstä ja mineraaleista, sillä auringonvalo ei edes kajasta paksun jääkuoren läpi. Siksi elämää – jos sitä on – esiintyy hyvin syvällä, lähinnä meren pohjassa.  

Suunniteltaessa jäisille kuille suuntautuvia luotainlentoja on ajateltu, että robottikaira voisi porautua jään läpi, ottaa näytteitä vedestä ja palauttaa ne tutkittaviksi kiertolaisluotaimeen, ehkä jopa Maahan saakka.

Readingin yliopistossa tehdyn tutkimuksen mukaan se ei välttämättä anna vastausta kysymykseen elämän esiintymisestä. Tietokonemallinnusten perusteella Enceladuksen vesi nimittäin kerrostuu samaan tapaan kuin öljy ja vesi lasipurkissa. 

Hyiseen mereen saattaa muodostua tarkkarajaisia kerroksia, joiden läpi kulkeutuessaan pintaa kohti hyvin verkkaisesti nousevat pieneliöt ja muu orgaaninen aine voi hajota niin, ettei sitä enää pysty tunnistamaan elämän merkeiksi.    

”Elämästä kertovat kemialliset yhdisteet voivat jäädä näihin kerroksiin nalkkiin sadoiksi tai jopa sadoiksituhansiksi vuosiksi, kun niiden aiemmin arveltiin kohoavan pintakerroksiin kuukausien kuluessa”, tutkimusta johtanut Flynn Ames toteaa. 

Enceladuksen tapauksessa toivoa on herättänyt, että sen uumenista suihkuaa pinnan halkeamien kautta vettä ja jäähileitä avaruuteen. Näitä kylmiä suihkuja on jo tutkittu Cassini-luotaimella, joka kiersi Saturnusta vuosina 2004–2017. Nyt näyttää siltä, että näiden jäisten geysirien tutkimisesta ei ollut eikä olisi jatkossakaan elämän etsinnän kannalta ihmeempää hyötyä.

Asteroidi 2024 YR4 - tänne törmäys voisi osua ja tällainen se voisi olla Jarmo Korteniemi Ke, 05/02/2025 - 15:31
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan
Maapallo ja asteroidi Lutetia liitetty samaan kuvaan

Seuraamme asteroidi 2024 YR4:n havaitsemista ja sen mahdollista törmäysuhkaa. Tässä jutussa  on analyysi sen koosta, mahdollisesta törmäyspaikasta ja siitä, miten törmäys saattaisi tapahtua.

Aloitetaan asteroiditapauksen analysointi kokoarviolla.

Kaikkein todennäköisimmin 2024 YR4 on läpimitaltaan noin 55-metrinen. Kuvittele siis eteesi 15-kerroksisen talon korkuinen kivimurikka, joka peittää jalkapallokentän (100x60 m) puolikkaan.

Tuollaisen asteroidin massa on noin 2 miljoonaa tonnia. Se on toisin sanoen 250 kertaa massiivisempi kuin raskain Suomessa operoiva tavarajuna, 18 kertaa massiivisempi kuin Turussa rakennettu Oasis of the Seas -jättiristeilijä, tai kolmanneksen Kheopsin kuulusta pyramidista.

Lisäksi mitat voivat olla jonkin verran suurempia tai pienempiä. Halkaisijasta voidaan sanoa varmasti vain että asteroidi on 40–100 -metrinen. Sen massa taas on 0,3–33 miljoonaa tonnia, tiheydestä riippuen. Materiaali kun voi olla komeettojen tapaan hötyistä jäätä, kivimurskaa, umpikiveä, tai jopa tiivistä rauta-nikkeliseosta. Kaikkea tältä väliltä.

Eduskuntatalo

Kokoja on varsin vaikea hahmottaa, mutta Eduskuntatalo Helsingissä on hyvä vertailukohta: sen leveys pohjois-eteläsuunnassa on 78 m ja länsi-itäsuunnassa 55 m. Ristimitta on noin 95 m. Kuva: Jari Mäkinen
 

Kokoarvio perustuu asteroidin oletettavasti heijastaman valon määrään. 

Aurinkokunnassa tiedetään kuljeskelevan niin kirkkaita kuin tummempiakin pienkappaleita. Jos 2024 YR4:n pinta sattuu heijastamaan paljon valoa, sen läpimitta olisi hieman alle 50-metrinen, kun taas tummempana ja huonosti heijastavana kappaleena halkaisija voisi olla jopa sadan metrin luokkaa. 

Edellisessä jutussamme mainittu ESA:n arvio on maksimissaan 95 metriä, mutta muutamalla metrillä ei ole ison kuvan kannalta merkitystä.

Jahka asteroidin spektri saadaan mitattua tarkemmin, nähdään kuinka se heijastaa eri aallonpituuksia. Tuolloin pintamaterian laatua voidaan arvioida tarkemmin ja sen koostumus ja halkaisija voidaan lyödä lukkoon varsin tarkkaan. Mutta sen massa on yhä tuolloinkin epäselvä, sillä näistä tiedoista ei vielä pystytä sanomaan että onko ehkä kyse soraläjästä, yhtenäisestä kiinteästä kappaleesta, vai jostain näiden ääripäiden väliltä.

Asteroidi Ida

Asteroidi 243 Ida on tyypillinen aurinkokunnan pienkappale, joskin se on kertaluokkaa suurempi kuin 2024 YR4. Halkaisijaltaan Ida on 59,8 × 25,4 × 18,6 kilometriä. Galileo-luotain lensi sen ohi Marsin ja Jupiterin välissä vuonna 1994. Kuva: Nasa.

 

Törmäystapahtuma hetki hetkeltä

Kuvitellaan, että 2024 YR4 todella törmää. Mitä tuolloin tapahtuisi?

Todennäköisin törmäyshetki näyttää tällä hetkellä olevan 22.12.2032 klo 11:37 Suomen aikaa. Epävarmuutta on tosin muutaman tunnin verran, eli se voi sattua joskus välillä klo 08.09–15.05. 

Kunhan törmäysaika lasketaan sekunnilleen, selviää myös lopullinen törmäyspaikka. Nykytiedoilla voidaan sanoa vain, että törmäyspaikka on luultavasti jossain hieman päiväntasaajan pohjoispuolella: Etelä-Amerikassa, Afrikassa, Intiassa, tai niiden välisillä merialueilla.

55-metrinen asteroidi on riittävän suuri näkyäkseen ihan paljaalla silmälläkin ehkä puolisen tuntia ennen törmäystä taivaalla nopeasti liikkuvana valopisteenä. Sen voi kuitenkin erottaa vain yöpuolelta, sieltä mistä katsoen Aurinko sattuu valaisemaan kappaleesta riittävän suurta osaa. 

Päiväpuolella asujat eivät kiveä voi nähdä ennen sen tuloa ilmakehään.

Sekä asteroidin kiertonopeus Auringon ympäri että Maan painovoiman vaikutus siihen on saatu laskettua jo varsin tarkkaan. Törmäyksessä asteroidi tunkeutuu ilmakehään huimalla 17 kilometrin sekuntivauhdilla.

Helsingistä pääsisi Tampereelle tuolla vauhdilla 10 sekunnissa. Asteroidin koko ilmalento hoituu samassa ajassa. Ilmassa ehtii kuitenkin tapahtua hyvin paljon.

Ilma asteroidin edessä puristuu kasaan, ionisoituu ja alkaa hehkua, kuumentaen samalla murikan pintaakin ehkäpä noin millin syvyydeltä. Taivaalla näkyy nopeasti suureneva ja paikoin hehkuva pallo. Sen perässä leviää sankka savuvana.

Ilmakehä jarruttaa asteroidia rankasti, rasittaen sen rakennetta äärimmilleen. Siihen syntyy pieniä rakoja ja halkeamia, jotka repeytyvät lopulta auki. 

Noin 50 kilometrin korkeudella asteroidi alkaa hajota, mikä tosin näkyy maanpinnalle vain välähdyksinä ja savuvanan hetkellisiä laajentumina. Lopulta 5 – 6 kilometrin korkeudella asteroidi hajoaa lähes täydellisesti suuressa räjähdyksessä.

Tseljabinskin asteroidi

Noin 15 metriä halkaisijaltaan ollut meteori törmäsi Maahan Tšeljabinskin luona 15. helmikuuta 2013. Se räjähti noin 30–50 kilometrin korkeudessa. Kuva: via ESA.

 

Räjähdyksen tuloksena pintaan alkaa parin sekunnin päästä ropista meteoriitteja, luultavasti yhä muutaman kilometrin sekuntinopeudella. Mukana on kaikkea tomusta pesukoneen kokoisiin järkäleisiin. 

Kivien jysähtelyä maahan voi verrata vaikkapa rypälepommien keskityksen. Rytäkässä syntyy pieniä kraatterinpoikasia sinne sun tänne. Mutta tämä pommitus rajautuu kuitenkin pääosin asteroidin alkuperäiseen lentosuuntaan. Se ei suinkaan ole pahinta mitä on luvassa.

Tiedetuubin klubi Arizonan meteorikraatterilla

Arizonassa oleva Barringerin kraatteri on noin 1200 metriä leveä ja 170 metriä syvä. Sen synnytti Maahan osunut noin 50-metrinen nikkelirauta-asteroidi 50 000 vuotta sitten. Tiedetuubin Klubi vieraili paikalla vuonna 2017. Kirjoittaja on eturivissä neljäs vasemmalta. Kuva: Jari Mäkinen.

 

Paineaalto

Törmäyksen suurin haitta tulee suoraan ilmassa tapahtuneesta räjähdyksestä. Voimakkuudeltaan posaus on noin kahdeksaa megatonnia TNT:tä, vastaten suurta vetypommia. Siitä lähtevä paineaalto suuntautuu tasaisesti joka suuntaan, kaataen ja murskaten taloja, puita, siltoja – lähes kaikki maanpäälliset rakenteet. Äänen nopeudella etenevä paineaalto saavuttaa minuutissa 20 kilometrin etäisyyden.

Tämä nähtiin selvästi vuonna 2013 tapahtuneessa Tšeljabinskin meteoritörmäyksessä: paineaalto sai aikaan suuria vaurioita, kappaleiden putoaminen maahan ei.

Suoraan räjähdyksen alla olevasta pisteestä täytyy mennä noin viiden kilometrin päähän, jotta selviäminen olisi mahdollista muutoin kuin aivan ihmeen kaupalla. Todennäköistä se alkaa kuitenkin olla vasta 15 kilometrin päässä.

Merellä sattuessaan paineaalto puskee alleen jopa parikilometrisen kraatterin, joka kuitenkin oikenee nopeasti. Samalla syntyy ulospäin leviävä tsunamiaalto. Aivan kraatterin reunalla sen korkeus on useita kymmeniä metrejä, mutta jo 10 kilometrin päässä vain 2–4 metriä. 

Symmetrisyydestä ja veden edestakaisesta loiskahtelusta johtuen tsunamia ei 20 kilometrin etäisyydellä enää ehkä edes huomaa.

Nyt määritellyllä vaaravyöhykkeellä elää vähintään 200 miljoonaa ihmistä. 

Miljoonakaupunkeja alueella on hieman yli 30 kappaletta. Äärimmäisen ikävästi osuessaan asteroidi voisi tuhota hetkessä vaikkapa jonkin jättimäisen metropolin, kuten Bogotan (11 miljoonaa asukasta), Kalkutan (15 milj.), Lagosin (21 milj.), Mumbain (23 milj.) tai Dhakan (24 milj.).

Törmäysriskialue

Rajattu alue osoittaa tämänhetkisen törmäysriskin alueen, pohjalla on vuoden 2020 väestöntiheyskartta. Kuva: Daniel Bamberger / Duncan Smith (LuminoCity3D) / Jarmo Korteniemi.

 

Onneksi törmäys on hyvin epätodennäköinen, ja osuminen kaupunkiin on vielä hirmuisen paljon epätodennäköisempää.

Nämä vaikutukset on laskettu uumoillun kokoiselle 55-metriselle kiviasteroidille. Laskennallisesti moisia törmää Maahan keskimäärin tuhannen vuoden välein.

Hieman pienempi tai harvempaa materiaalia oleva asteroidi räjähtäisi korkeammalla ja pienemmällä voimakkuudella. Sen synnyttämä paineaalto ei yltäisi yhtä vahvana yhtä kauas, eikä tuhovaikutus olisi yhtä mittava. Kaupungin päälle osuessaan kuolonuhreilta ei luultavasti voitaisi kuitenkaan välttyä, jos alla olevia alueita ei evakuoitaisi ajoissa.

Suurempi (tai tiheämpi) murikka räjähtäisi joko alempana ilmassa, tai yltäisi maahan asti ja siirtäisi energiastaan aimo osan kiveen. Tuolloin pahin ongelma ei lähiympäristössä olisi paineaalto, vaan niskaan satava kiviaines.

Kaikeksi onneksi 2024 YR4 on riittävän pieni (ja törmäyshetki on vielä tarpeeksi kaukana) että törmäys voitaisiin nykytekniikalla välttää. Toimeen täytyisi kuitenkin ryhtyä pian sen jälkeen jos ja kun törmäys varmistuu.

Riittää, että sen vauhtia hidastetaan tai nopeutetaan vain hieman, jotta se ei ole Maan kanssa samassa pisteessä aivan tismalleen samaan aikaan. DART-luotain osoitti vuonna 2022, että suurempikin asteroidi liikahtaa riittävästi kun saa vain riittävän nopean töytäisyn raskaalla laitteella.

DARTin törmäys Dimorphosiin kuvattuna Etelä-Afrikassa olevalla Lesedi-teleskoopilla. Kuva: SAAO

 

Mitä aikaisemmin asteroidia päästään tuuppimaan, sitä helpommin sen sijaintiin Maan luona vuonna 2032 voisi vaikuttaa.

Toisaalta, jos törmäyspaikka olisi riittävän syrjäinen, asteroidin kannattaisi ehdottomasti antaa törmätä. Törmäysprosessia ja sen vaikutuksia olisi nimittäin tärkeätä päästä tutkimaan ihan todellisessa maailmassa – tämä kappale kun on tarpeeksi suuri, mutta ei kuitenkaan niin iso, että sillä olisi maailmanlaajuisia vaikutuksia.

Olisi hyvä päästä varmistamaan että simulaatiot antavat edes suurpiirteisesti oikeata tietoa.

Tarkasti ennustettu ja seurattu isohko törmäys olisi täysin ainutlaatuinen tapahtuma koko ihmiskunnan historiassa. Pääsisimme kerrankin näkemään Aurinkokunnan yleisimmän geologisen prosessin toimessa.

Peukut pystyyn!

-

Otsikkokuvassa on liitetty yhteen Apollo-astronauttien kuvaama maapallo ja Lutetia-asteroidi. Alkuperäiset kuvat: Nasa.

Kevät on tullut – Siitepölykausi on alkanut

Pähkinäpensaan norkkoja. Kuva: Annika Saarto
Pähkinäpensaan norkkoja. Kuva: Annika Saarto

Ensimmäiset pähkinäpensaat ovat aloittaneet kukintansa Suomen lounaisosissa. Vaikka juuri nyt pakkanen paukkuu koko maassa, on talvi ollut tavallista leudompi. Siksi siitepölykauden alku on usealla viikolla aikaisessa.

Turun yliopiston tiedote – Ilman siitepölymäärät ovat toistaiseksi hyvin pieniä ja keskittyvät pähkinäpensaan kukkivien kasvustojen läheisyyteen.

Pähkinäpensaan siitepölyä on kuitenkin kantautunut satunnaisesti laajemmalle alueelle Suomeen hyvin pieniä määriä maan rajojen eteläpuolelta jo usean viikon ajan.

Tällä hetkellä myös lepän siitepölyn kaukokulkeumat ovat eteläisten ilmavirtausten vallitessa mahdollisia. Suomessa lepän kukinnan ei odoteta alkavan vielä muutamaan viikkoon.

Siitepölykauden alkamisen myötä Turun yliopisto on aloittanut säännöllisen siitepölytiedotuksen.

Tilannepäivityksiä ja ennusteita tuleville päiville laaditaan kolmesti viikossa maanantaisin, keskiviikkoisin ja perjantaisin. 

Tiedotteet julkaistaan osoitteessa norkko.fi, minkä lisäksi tietoa siitepölytilanteesta jaetaan sosiaalisen median puolella Facebookissa ja BlueSkyssä.

"Siitepölykausi käynnistyy tänä vuonna poikkeuksellisen varhain", kertoo projektitutkija Sanna Pätsi Turun yliopiston siitepölytiedotuksesta.

"Aloitamme vuosittain säännöllisen tiedottamisen, kun kaukokulkeumia esiintyy päivittäin tai kun paikallinen pähkinäpensaan kukinta on alkanut. Tyypillisesti tämä hetki ajoittuu helmikuun jälkimmäiselle puoliskolle tai maaliskuun alkuun. Syy tämän vuoden aikaiseen aloitukseen löytyy Keski-Euroopan ja Suomen leudosta talvesta. Tilanne voi Suomessa kuitenkin vielä muuttua ja jo alkanut kukinta keskeytyä, jos sää muuttuu selvästi kylmemmäksi."

Säännöllinen siitepölytiedotus jatkuu noin syyskuun lopulle saakka.

Pähkinäpensaan ja lepän jälkeen on vuorossa koivu, jonka odotetaan kukkivan runsaammin kuin viime vuonna. Kesän kukkijoita ovat heinät ja pujo. Viimeisenä allergikkojen riesana on tuoksukki, jonka siitepölyä kulkeutuu Suomeen eteläisemmästä Euroopasta elokuulta syyskuulle ja joskus vielä lokakuussa.

Turun yliopisto seuraa siitepölytilannetta Suomessa kahdeksalla eri paikkakunnalla. Noin viidennes maamme väestöstä on allergisia siitepölylle.

Teksti on Turun yliopiston tiedote. Otsikkokuvassa on pähkinäpensaan norkkoja. Kuva: Annika Saarto.