Aidon ”Jäämiehen” salaisuus löytyy aivoista

Ke, 03/07/2018 - 08:21 By Markus Hotakainen

Etenkin suomalaisille on tuttu toinenkin Jäämies, mutta tässä tapauksessa ”Iceman” on hollantilainen seikkailija Wim Hof. Hän on saanut lempinimensä kyvystään selviytyä ennätyksellisen pitkiä aikoja alhaisissa lämpötiloissa.

Hof on esimerkiksi juossut maratonin Lapissa pelkissä shortseissa noin 20 asteen pakkasessa. Reilun 42 kilometrin taittamiseen kului aikaa lähes viisi ja puoli tuntia.

Omien sanojensa mukaan Hof pärjää paukkupakkasessa itse kehittelemällään metodilla, johon liittyy hengitysharjoituksia ja meditaatiota. Nyt tutkijat ovat päässeet tutkimaan tarkemmin kylmänkestävyyden syitä: ne löytyvät aivoista.

Waynen valtionyliopiston tutkijat Otto Muzik ja Vaibhav Diwadkar tarkkailivat kolmen päivän ajan Hofin aivoja toiminnallisella magneettikuvauksella ja hänen kehoaan positroniemissiotomografian avulla.

Tutkimuksen aikana Hofilla oli yllään erikoisvalmisteinen puku, jonka sisällä lämpötilaa voitiin säädellä jääkylmällä vedellä. Kun Hofin elimistöstä saatuja tuloksia verrattiin "tavallisiin" ihmisiin, erot olivat paitsi selviä myös hätkähdyttäviä.

Kehittämänsä metodin avulla Hof sai ihonsa lämpötilan pysymään lähes vakiona jäähdytyksestä huolimatta. PET-kuvaus paljasti syyksi sympaattisen hermoston toiminnassa tapahtuneet muutokset ja glukoosin kulutuksen kasvun kylkivälilihaksissa. Seurauksena on lämmön vapautuminen keuhkokudoksiin ja veren lämpiäminen keuhkojen hiussuonissa.

"Tahdonalainen ihon ja siten myös kehon lämpötilan säätely jopa hyvin kylmissä oloissa on epätavallista ja selittää todennäköisesti hänen vastustuskykynsä kylmyydelle", Muzik arvioi.

Aikaisempien tutkimusten perusteella oletuksena oli, että kylmyys aktivoisi Jäämiehen aivosaaren eli insulan etuosan, jossa sijaitsee ruumiinlämmön säätelykeskus. Yllättäen merkittävämpiä muutoksia näkyikin aivonesteviemärin läheisyydessä sijaitsevassa keskiaivojen harmaassa aivoaineessa (periaqueductal gray matter).

Tälle aivojen alueelle sijoittuu kivunhallinta, joka tapahtuu opioidien ja kannabinoidien avulla. Tutkijoiden otaksuma on, että Hof kykenee saamaan aikaan keskiaivoissa kivunlievitystä edistävän reaktion, joka vapauttaa mainittuja aineita. Ne paitsi lievittäisivät kipua aiheuttaisivat myös hyvänolontunnetta, mielialan kohenemista ja rauhoittumista.

Tutkijoiden mukaan Hofin metodin soveltaminen saattaa saada aikaan muutoksia autonomisissa aivotoiminnoissa. Jos se pitää paikkansa, siitä voisi olla apua esimerkiksi immuunijärjestelmään liittyvien sairauksien ja psykiatristen tilojen hoitamisessa.

"Ei ole mitenkään outoa ajatella, että tietynlaisella harjoituksella voisimme muokata fysiologiaamme. Tutkimuksemme tavoitteena on selvittää näiden muutosten taustalla olevat mekanismit objektiivisen ja tieteellisen analyysin keinoin, ja arvioida niiden merkitys lääketieteen kannalta", Muzik selostaa.

Jäämiehen poikkeuksellisesta aivotoiminnasta kerrottiin Waynen valtionyliopiston uutissivuilla ja tutkimus on julkaistu NeuroImage-tiedelehdessä (maksullinen).

Kuva: Wayne State University School of Medicine

Video: Nyt on hyvä aika tehdä jäätyneitä saippuakuplia!

Pakkasesta kannattaa nauttia! Voit tehdä vaikkapa jäätyneitä saippuakuplia.

 

Saippuakuplat ovat kivoja aina, mutta erityisen hauskoja todella kylmällä. Kuplat nimittäin jäätyvät nopeasti ja niiden pinnalla – ainakin vähän aikaa – näkyy upeita kiteitä.

Miten niitä voi tehdä? Yksinkertaisesti!

Tee ensin hyvää kuplantekovettä vaikkapa tällä reseptillä:

2 dl vettä
5 tl astianpesuainetta
1 tl sokeria
hieman hunajaa (tai tapettiliisteriä)

Jos nesteen haluaa tehdä oikein kunnolla, kannattaa vettä ensin lämmittää niin, että sokeri ja hunaja sulavat. Sitten lisätään astianpesuaine. Koska neste on vielä lämmitä, pitää odottaa kunnes se on viileää – mieluiten yön yli.

Puhalla sen jälkeen ulkona pakkasessa mahdollisimman suuria kuplia ja odota hetki, kun ne jäätyvät. Jäätyminen kannattaa kuvata kännykällä hyvässä valossa (ja postata vaikka Tiedetuubin Facebook-sivulla!).

Kun kupla on jäätynyt, siihen voi tehdä reikiä tai ottaa käteen, jolloin tunne on hauska, kun se sulaa saman tien käden lämmössä.

Talvipäivänseisauksen taikaa

Ke, 12/21/2016 - 09:42 By Jarmo Korteniemi
Kuva: Ville Oksanen

Vuodenaikojen kierto johtuu Maan akselin kaltevuudesta, ei etäisyydestä Aurinkoon. Olemme itse asiassa keskitalvella lähempänä Aurinkoa kuin kesällä.

Talvipäivänseisaus on tunnetusti vuoden lyhin päivä. Aurinko on nyt Kauriin kääntöpiirin yläpuolella, eli niin etelässä kuin mahdollista. Se porottaa suoraan yläpuolelta vuorokauden kuluessa Australiassa, Etelä-Afrikassa ja Chilessä.

Talvipäivänseisaus sattuu joka vuosittain 21.-22.12. välisenä aikana:

Vuosi Talvipäivänseisaus
2020 21.12. klo 12.02
2019 22.12. klo 06.19
2018 22.12. klo 00.23
2017 21.12. klo 18.28
2016 21.12. klo 12.44
2015 22.12. klo 06.48
2014 22.12. klo 01.03
2013 21.12. klo 19.11

Meillä Pohjolan perukoilla taas saadaan mahdollisimman vähän elintärkeää valoa. Ja sekin vähä saapuu pinnalle hyvin loivassa kulmassa, joten lämmitys- ja valaistusvaikutus on minimissään. On kaamoksen aika.

Maapallon valaistusolosuhteet talvipäivänseisauksen aikaan

Yllä Maan valaistusolosuhteet talvipäivänseisauksen aikaan. Puolen vuoden kuluttua Maa on siirtynyt Auringon toiselle puolelle (tässä kuvassa valo tulisi oikealta).

Maapallo pyörii akselinsa ympäri vuodesta toiseen erittäin vakaan hyrrän lailla. Vaikka planeetta kiertää samalla myös radallaan Auringon ympäri, "hyrrän tikun" suunta ei muutu. Sen Suomea lähinnä oleva pää (eli pohjoisnapa) osoittaa aina Pohjantähteen. Koska talvipäivänseisauksen aikaan Pohjantähti on hieman poispäin Auringosta, me täällä hyrrän yläosissa saamme vain vähän valoa. Vastapainoksi Australiassa on paraikaa menossa varsin lämmin kesä.

Planeetta kuitenkin jatkaa lähes lähes pyöreällä radallaan eteenpäin. Hyrrän akseli alkaa näennäisesti hivuttautua takaisin kohti Aurinkoa. Päivät pitenevät pohjolassa ja lyhenevät päiväntasaajan tuolla puolen. Neljännesvuoden kuluttua akseli osoittaa radan suuntaisesti, ja päivä ja yö ovat joka puolella planeettaa täsmälleen yhtä pitkät. Kolmen lisäkuukauden päästä on juhannus, ja pohjoisnapa osoittaa mahdollisimman lähelle Aurinkoa. Australialaisille on tullut talvi.

Nyt ollaan lähellä Aurinkoa

Maan akselin suunta ei itse asiassa ole täysin vakio. Tällä hetkellä pienenee 0,013 astetta sadassa vuodessa, kiitos muiden planeettojen rataa epätasapainoittavan vaikutuksen. Vuosituhansien aikana akselin kaltevuus vaihtelee edestakaisin 22 ja 24,5 asteen välillä. Hyrrän tikun suuntakin muuttuu hitaasti: Vajaan tuhannen vuoden kuluttua se osoittaa jo lähemmäs Kefeuksen tähtikuvion Alraita kuin Pohjantähteä.

Myös etäisyytemme Aurinkoon vaihtelee. Sillä ei kuitenkaan ole juuri vaikutusta vuodenaikoihin tai lämpötiloihin.

Keskitalvisin Maa on itse asiassa viitisen miljoonaa kilometriä lähempänä Aurinkoa kuin kesäisin. Tarkka aika lähimpään pisteeseen eli periheliin vaihtelee hieman, mutta sattuu aina tammikuun kolmannen päivän tienoille.

Aurinko siis lämmittää planeettaa enemmän talvemme aikaan kuin kesäisin. Akselin kaltevuus ja sitä kautta Auringon valon suunta vaikuttaa kuitenkin huomattavasti enemmän paikallisiin olosuhteisiin. Talvi täällä on, vaikka planeetta saakin enemmän energiaa.

Valomäärän eroja vuodenaikojen välillä voi ihastella vaikkapa allakin olevalta nopeutetulta videolta.

Juttu on alunperin julkaistu vuonna 2013, mutta se on ajankohtainen joka vuosi. Seisauksen päivämäärät on lisätty kullekin vuodelle erikseen.

Onko kylmä? Ei, itse asiassa vielä leutoa.

To, 01/07/2016 - 10:05 By Jari Mäkinen

Jos keli tuntuu tänään kylmältä, voi olla lämmittävää miettiä sitä, että maailmanennätys on −89,2 °C. Se mitattiin 21. heinäkuuta 1983.

Päivän kuvaTarkalleen ottaen pakkasennätys on maailman kylmin pinnalla mitattu lämpötila. Paikka, missä tämä ennätyspakkanen mitattiin, oli Neuvostoliiton Vostok-tutkimusasema Etelämantereella, joka komeilee tänään päivän kuvassa.

Vostok-asema sijaitsee noin 1300 kilometrin päässä etelänavalta Australian suuntaan, missä se on lähes 3500 metriä paksun jäätikön päällä – eli vaikka lämpötilamittaus siellä on tehty "maanpinnalla", on se käytännössä kuin korkean vuoren huipulla.

Ilmanpaine paikalla onkin matala, mikä yhdistettynä Etelämantereen talven (meidän kesämme) kaamokseen sekä pakkaseen tekee elämisestä ja työskentelystä siellä varsin vaativaa. Noin 12-henkinen miehistö pitää aseman asuttuna myös talviaikaan.

Vostok-asema on tullut tunnetuksi siitä, että se sijaitsee jäänalaisen Vostok-järven luona ja asemalta on porattu reikää järveen, jonka veden oletetaan olevan peräisin 25 miljoonan vuoden takaa; siellä saattaa olla siten mikrobielämää ja muita kiinnostavia muistoja kaukaa historiasta. Vuonna 2012 venäläiset porasivat pienen reiän järveen ja ottivat sieltä näytteitä, mutta todennäköisesti hieman hosuen ja laitteilla, jotka eivät olleet puhtaita. Näin näyte ei välttämättä ollut kunnollinen, ja mahdollisesti järvi pääsi "saastumaan" ainakin paikallisesti. Järvi on kooltaan 250 kilometriä pitkä ja noin 50 kilometriä leveä.

Muita ennätyspakkasia

Todennäköisesti kaikkein kylmin luontainen pintalämpötila maapallolla on ollut −93,2 °C elokuun 10. päivänä vuonna 2010.

Se mitattiin satelliitin avulla Etelämantereelta doomien* Argus ja Fuji välisellä harjanteella, ei kovinkaan kaukana etelänavasta. Teoreettisesti doomi A:n (ali Arguksen) tasankoalueella lämpötila voi laskea vieläkin alemmaksi, ainakin −95 °C:n tienoille.

Matalin normaalisti asutulla alueella mitattu lämpötila on −67,7 °C, joka saavutettiin helmikuussa 1933 Oimjakonissa, Siperiassa.

Alin Suomessa mitattu lämpötila on Kittilän Pokassa 28. tammikuuta 1999 rekisteröity -51,5 °C.

Tänään aamulla Kittilässä oli "vain" -34°C ja Suomen kylmin paikka oli Muonio, missä mittarissa komeili luku -38,9 °C.

Terveisiä Oimjakonista!

Kolme suomalaista harvinaisia haloilmiöitä etsinyttä harrastajaa Marko Riikonen, Jukka Ruoskanen ja Jarmo Moilanen viettivät kuukauden päivät helmikuussa 1997 itäisessä Siperiassa, Verhojanskin ja Tsherskin vuorijonojen saartamassa Oimjakonissa, mikä on kylmyytensä ansiosta eräs pahaita paikkoja maailmassa halojen kannalta.

He kertoivat matkastaan "Halot – taivaan arkkitehtuuria" -TV-dokumentissa aikanaan näin:

"No, se Oimjakon tuli loppujen lopuksi aika luonnollisesti matkakohteeksi", kertoo Marko Riikonen.

"Meillä oli kartalla aluksi Grönlanti ja Kanada, koska halusimme mennä mahdollisimman kylmään paikkaan. Ajatelimme sitten, että miksi emme sitten menisi kaikkein kylmimpään paikkaan, mihin meillä on resurssit mennä, eli Oimjakoniin, pohjoisen pallonpuoliskon kylmyyspisteeseen."

"Se on erittäin kylmä paikka", jatkaa Jukka Ruoskanen. "Siellä lämpötila voi laskea jopa -70 °C:n tuntumaan, koska kylä on laajassa vuorilaaksossa. Laakso on yli 20 km laaja, ja kun talvella sinne pakkautuu kylmä ilmamassa, joka ei pääse sieltä pois kun ei ole tuulta, niin kylmä pysyy siellä pitkään paikallaan."

Kolmikon tutkimusretki maailman kylmimpään asuttuun kylään toi mukanaan unohtumattomia elämyksiä. Esimerkiksi kovan pakkasen vuoksi vesiputket ovat jäässä, minkä vuoksi vesi tuodaan taloon säiliöautolla.

Muutekin elämä siperialaiskylässä – ja etenkin suomalaisten vuokraamassa mökissä – oli yksinkertaista, mutta kylmyys toi mukanaan myös haloja: komein oli eräänä yönä retkikunnan voimakkaan valonheittimen ylle kahtena himmeänä kaarena noussut harvinainen superparhelia, sivuaurinkojen kolmiulotteinen muunnos, josta tunnettiin aiemmin vain yksi havainto Etelämantereelta.

* Doomit ovat tasaisesta jäätikköpinnasta hieman ylös nousevia kumpareisia alueita, joiden alapuolella on tyypillisesti jäänalaisia vuoria. Doomi A:n tapauksessa siellä on Alppien kokoinen noin 2400 metriä korkea vuoristoalue, joka on nimetty venäläisen napatutkija Grigori Gamburtsevin mukaan.

Toinen pulahdus Vostok-järveen

To, 02/19/2015 - 02:22 By Jarmo Korteniemi

Venäläiset tutkijat ovat poranneet toisen reiän Vostok-järveen. Järvi sijaitsee lähes nelikilometrisen jääpeitteen alla Etelämantereella. Se on ollut eristyksissä ulkomaailmasta 15 miljoonan vuoden ajan.

Ensimmäinen kairaus Vostokin tehtiin vuonna 2012. Tutkijat ilmoittivat pian sen jälkeen löytäneensä saaduista näytteistä aiemmin tuntemattomien bakteerien perimää. Löytö kuitenkin kyseenalaistettiin, sillä näytteisiin oli sekoittunut kairauksessa käytettyjä nesteitä. Kaira oli nimittäin nostettu pois liian nopeasti, ja syntynyt alipaine loiskautti oitis suuren annoksen järvivettä kairaa vasten, saastuttaen näytteet.

Otsikkokuvassa oleva rakennelma on Vostok-tutkimusasemalla olevan poran poraustorni.

Järven pinta saavutettiin toisen kerran 25.1.2015. Ja nyt tutkijat osasivat olla varovaisempia. He uskovatkin saaneensa tällä kertaa näytteitä varmasti puhtaasta järvivedestä. He käyttivät vanhaa porausreikää aina 3400 metrin syvyyteen asti, mutta käänsivät sitten kairan eri suuntaan. Lopuksi kairaa nostettiin riittävän hitaasti. Näin vesi pääsi nousemaan rauhallisesti - kairan perässä - ja jäätyi pian paikalleen. Jäätynyt järvivesilieriö nostettiin lopuksi kairan avulla pinnalle.

Jäänalaisen järven pinta on porauskohdassa Vostok-aseman alla noin 3770 metrin syvyydessä. Tutkijat uumoilevat saavansa nyt saadut kiinnostavat vesinäytteet – yhteensä noin 40 litraa – analysoitavaksi toukokuussa.

Asiasta ovat kertoneet mm. New Scientist, RT ja Sputnik International (entinen RIA Novosti). Sputnikin sivulla on myös mainio grafiikka Vostok-asemasta, syvyyksissä olevasta järvestä ja sen poraamisesta.

Omituinen järvi

Vostok-tutkimusaseman kohdalla jään alla olevan järven olemassaoloa alettiin epäillä neuvostoliittolaisten tutkijoiden 1960-luvulla suorittamien seismisten mittausten perusteella.Yhdysvaltalais-brittiläis-tanskalainen tutkimusryhmä kartoitti sitä ilmasta 1970-luvulla, mutta vasta ESAn tutkasatelliitti ERS-1:n mittauksista vuonna 1996 saatiin selville miten suuri järvi oikein on: Vostok on ylivoimaisesti suurin lähes 150 tunnetusta jäätikönalaisesta järvestä, sillä sen pituus on noin 250 km ja leveys noin 50 km.

Järvi on voinut olla jääkannen alla jopa 25 miljoonaa vuotta, joskin sen arvellaan olleen kokonaan eristyksissä "vain" noin 15 miljoonan vuoden ajan. Järvi on todennäköisesti syntynyt siten, että jää on sulanut joko suuren itse aiheuttamansa paineen alla tai jäätikön alla olevan tulivuoritoiminnan vuoksi. Tiedetään, että Etelämantereella on vulkaanista aktiivisuutta, mutta järven pohjalta ei ole saatu tietoa siitä. 

Järven poikki kulkee harjanne, joka jakaa sen kahteen syvään osaan. Vuonna 2005 siitä löydettiin myös saari, ja satelliittimittausten perusteella voidaan päätellä, että sen pohjalla on sedimenttikerros. Järvessä on myös havaittu tapahtuvan 1–2 senttimetrin vuorovesivaihtelua.

On mahdollista, että ammoisen veden lisäksi järvessä on mikrobitasoista elämää. Siksi sitä tutkitaan hyvin varovasti, jotta porauksilla ei saastutettaisi vettä tai siellä olevaa elämää.

Alla ilmakuva Vostok-tutkimiusasemalta. Se on eräs kylmimmistä paikoista koko maapallolla.

Lumivyöryvaara hiihtolomien suosikkikohteissa

Su, 02/01/2015 - 12:33 By Jarmo Korteniemi

Ilmatieteen laitoksen mukaan Pohjois-Suomen tunturialueilla on nyt huomattava lumivyöryn vaara. Tämä pätee missä tahansa jyrkkien rinteiden lähellä

Päivitys 11.2.2015: Lumivyöryt muodostavat nyt todellisen vaaran pohjoisessa. Yksi ihminen on kuollut lumivyöryssä lähellä Kilpisjärveä Norjassa. Uhri, 30-vuotias mies, oli ilmoitettu kadonneeksi jo tiistaina. Suomesa asiasta kertoi ensimmäisenä Lapin Kansa. Yksityiskohtaisempi juttu norjaksi löytyy Norjan Yleisradion sivuilta.

Päivitys 10.2.2015: Lumivyöryvaara on nyt muutaman päivän ajan suuri lähes kaikilla seurannassa olevilla tuntureilla. Tarkista ajankohtainen tiedote Ilmatieteen laitoksen sivuilta.

Päivitys 1.2.2015: Koska lumivyöryvaara on jälleen ajankohtainen, on vuoden takainen juttukin jälleen ajankohtainen.

Alkuperäinen juttu (17.2.2014):

Luonnollisia (eli itsestään liikkeelle lähteviä) lumivyöryjä pidetään tällä hetkellä mahdollisina. Ihmisten aiheuttamat vyöryt taas ovat todennäköisiä. Vyöryt ovat vaaraksi kaikille, jotka oleskelevat suoraan rinteellä, niiden alla tai päällä.

Hiihtolomalla tuntureille suuntaavien kannattaa siis pitää varansa. Metsähallituksen Luontoon-sivuilla listataan millaisia asioita kannattaa nyt pitää silmällä. Esimerkiksi suojakeli tai vesisade voivat kasvattaa lumen massaa yli rinteen kantokyvyn. Harjanteiden päälle muodostuvia lumilippoja sietää myös varoa.

Lumivyöry lähtee yleensä liikkeelle joko lumirinteen yläosaan tulevasta halkeamasta, voimakkaasta ääniaallosta, tai lumimassan lisääntymisestä. Useimmiten lumivyöryjä sattuu Suomessa juuri alkuvuodesta, tammikuusta aina huhtikuulle saakka.

Mitä lumivyöry saa aikaan?

Mitä jyrkempi rinne on, sen helpommin siinä oleva lumi lähtee vyörymään. Lumivyöry on kuitenkin mahdollinen jo varsin loivassa, vain 15 asteen rinteessä. Ja kerran liikkeelle päästyään lumimassa kerää mukaansa lisää lunta ja vauhtia. Se voi kulkea pitkiä matkoja vielä tasaisellakin alustalla. Tästä oivana esimerkkinä alla näkyvällä videolla tietä pitkin mönkivä lumivyöry Etelä-Tirolista.

Lumivyöry voi liikkeelle lähtiessään olla pieni, mutta se kerää rinteestä lisää lunta mukaansa.

Lumivyöryjä on kolmea päätyyppiä. Kuivimmat ja samalla nopeimmat vyöryt lähtevät liikkeelle nopeasti kertyneessä irtolumessa, jolla ei ole ollut aikaa asettua ennen kriittisen massan saavuttamista. Vyöry etenee kiilamaisena leventyen huimaa vauhtia alaspäin. Loskavyöryt taas ovat märkiä ja hitaampia, kuitenkin merkittävästi juoksuvauhtia nopeampia. Korkean vesipitoisuuden takia ne ovat hyvin tuhoisia, ja voivat vetää mukaansa pinnalta myös kiviä ja maata.

Laattavyöryt syntyvät, kun kerrostuneen lumen jokin kerros pettää. Se (ja päällä oleva massa tietysti mukana) lähtee liukumaan alemman kerroksen pintaa pitkin. Laukeamisen syynä voi olla joko vettyminen, lisälumen sataminen, tai muuttunut lämpötila. Laattavyöryt ovat alusta lähtien leveitä, vaikkei liukuva kerros olekaan tyypillisesti kuin metrin paksuinen.

Vuosien 1950-51 vaihteessa Alpeilla koettiin "kauhun talvi", kun siellä sattui epätavallisten sääolojen vuoksi lähes 650 lumivyöryä kolmen kuukauden aikana. Metsiä kaatui, useita tuhansia rakennusta hajosi, ja yli 250 ihmistä menetti henkensä. Maailman tuhoisin lumivyöry sattui kuitenkin vuonna 1970 Perussa, kun voimakas maanjäristys romahdutti Huascarán-vuoren pohjoisrinnettä alas massiivisen jää- ja kivivyöryn, tappaen noin 20000 ihmistä ja tuhoten monia kyliä. Samalla vuorella oli kahdeksan vuotta aiemmin sattunut 4000 uhria vaatinut vyöry.

Lumivyöryt Suomessa

Suomessa havaitaan vuosittain muutamia lumivyöry, enimmillään parisenkymmentä. Niiden synty riippuu paitsi säästä, lumen paksuudesta ja laadusta, myös ihmisten toiminnasta. Usein havaitut lumivyöryt - ja etenkin onnettomuudet - ovat nimittäin tavalla tai toisella varomattomuuden aikaansaamia.

Vuonna 1998 lumilautailija kuoli vyöryssä Utsjoen Ailigas-tunturilla, laskettelija taas vuonna 2000 Rukan Konttaisella Kuusamossa. Vuoden 2013 lopulla yksi suomalainen sai surmansa Alpeilla sattuneessa vyöryssä.

Hoidetuissa ja tiukoiksi tampatuissa laskettelurinteissä lumivyöryjä sattuu aniharvoin, jos koskaan. Niistä tutut vaikeusasteiden värikoodaukset voivat kuitenkin olla hyödyksi arvioitaessa vyöryn riskejä hoitamattomilla, ns. off-piste -rinteillä. Lumivyöryille ovat nimittäin alttiina eritoten ns. mustat rinteet, mutta varsin varuillaan saa kuitenkin olla myös keskivaikeiden punaisten rinteiden lähellä. Helpot siniset ja vihreät rinteet taas ovat turvallisia - tietysti mikäli yläpuolella ei ole jyrkempää osuutta.

Värikoodi kertoo rinteen jyrkimmän kohdan kaltevuuden. Se voidaan kääntää suhdeluvuksi: Punaisessa rinteessä mennään vaakametriä kohden enintään 25 - 45 cm alaspäin, eli jyrkkyys on noin 16 - 25 astetta. Tämä voi kuulostaa kirjoitettuna varsin vähältä, mutta käytännössä kyse on jo varsin haastavasta rinteestä. Mustassa kaltevuus on vieläkin enemmän. Helpoissa sinisissä rinteissä mennään alas vaivaiset 15 - 25 cm metrillä.

Alla kolme opettavaista videota erilaisista (mutta silti niin samanlaisista) lumivyörykohtaamisista. Terve järki kertonee, ettei tuollainen edesvastuuton toiminta kannata.

Lumen monet muodot

Ma, 12/23/2013 - 15:49 By Jarmo Korteniemi
Ihmisiä lumitouhuissa.

Mitä jäähän liittyviä sanoja on? Mitä ne tarkoittavat? Mitä lumi on? Miten lumen kanssa pärjää?

Kielestämme löytyy kymmeniä lunta tai jäätä tarkoittavia tai niihin liittyvä sanoja. Jos murteet ja synonyymit lasketaan mukaan, määrä nousee helposti satoihin.

Esimerkiksi nattura on pulverimaista tuoretta pakkaslunta. Sitä sanotaan myös sokeri-, viti-, tuoksu- tai hötylumeksi. Kotimaisten kielten keskus listaa yksistään tälle lumityypille lähes sata synonyymiä. Etenkin murteissa samoilla sanoilla voi kuitenkin olla erilaisia vivahteita tai merkityksiä.

Kylmiä ilmiöitä

Ensimmäinen talven merkki on usein ohuen ohut jääkerros, riide tai riite, joka peittää vesilammikoita. Ennen varsinaisen lumen tuloa maassa voi nähdä roustetta. Sitä esiintyy lähinnä hienoilla hietamailla, kun ilma on pakkasen puolella. Kostean maan vesi nousee ylöspäin ja kiteytyy kylmässä ilmassa jääksi. Alta nouseva vesi nostaa kiteitä, ja prosessi toistuu. Näin syntyvät pienet vieri vieressä olevat jääneulaset näyttävät parhaimmillaan lähes pörheältä homekasvustolta. Ilmiön voi huomata myös sopivasti hengittävien lahoavien oksien ja kantojen päällä. (Rousteelle löytyy myös toinen, onomatopoeettisempi merkitys: jalkojen alla rusahteleva rosoinen epätasainen jää, esimerkiksi vaikkapa jäätynyt sohjo. Eli siis samankaltaista kuin rösöjää tai röpelö.)

Kuura ja huurre sotketaan usein toisiinsa. Kumpikin on valkeaa jääkidepeitettä puiden tai rakennusten pinnoilla. Kuura kuitenkin syntyy ilman vesihöyryn härmistyessä, eli jäätyessä suoraan kaasumaisesta olotilasta. Huurretta taas tulee, kun ilman alijäähtyneet vesipisarat kiteytyvät kylmälle pinnalle. Kuuraa esiintyy joka paikassa, huurre taas on yleisempää pohjoisen kylmällä vaaraseudulla.

Sankan matalan pilven tuoma huurre voi helposti kertyä tykkymuodostumia. Sama tapahtuu märän nuoskalumen paakkuuntuessa oksille tai vaikkapa puhelinlangoille. Etelä-Suomessa tykyksi on paikoin alettu kutsua kaikkea oksille kertyvää lunta – ilmeisesti postikorttimaisemien toivossa. Sanan todellinen merkitys viittaa kuitenkin vaarallisen raskaaseen lumilastiin. Se voi katkoa puita tai romahduttaa kattojakin.

Lumisadetta voidaan kutsua tuiskuksi, pyryksi tai nopeana jopa ryöpyksi. Taivaalta voi tulla joko isoja lopakoita, räntää tai hienonhienoa siidettä. Maassa lumen vesimäärä vaihtelee vuotoksesta sohjoon ja takkalasta vesihyhmään. Mätälumi tai ypyli taas on sohjoa.

Lisää helposti pureksittavaa lumisanastoa löytyy muunmuassa Lumen Sanakirjasta , Lumitieto-kisan lehtisestä ja Wikipediasta.

Lumituiskusta kinoksiin

Pilvien vesi ei suinkaan vain odottele maahanpääsyä alijäähtyneenä. Se alkaa useimmiten jäätyä suoraan ilmassa pienhiukkasten ympärille. Kun kiteet kasvavat riittävän suuriksi, pilveä ympäröivä konvektio ei enää pidättele niitä taivaalla. Ne leijuvat alas lumisateena.

Lumi on siis jäätä. Hyvin kuohkeaa jäätä, jossa on ainakin aluksi isoja, kuusisakaraisia ja hyvin hauraita kiteitä. Isot kiteet ovat kaikki ainutlaatuisia.

Lumessa on myös paljon ilmaa. Juuri liikkumaan pääsemättömän ilman vuoksi lumi on hyvä lämpöeriste. Se myös heijastaa lämpöä erittäin hyvin takaisin. Tämän tietävät sekä igluja tekevät inuiitit että kiepissä öllöttelevät riekotkin.

Ajan kanssa lumikinoksetkin muuttuvat. Aiemmassa jutussa kerroimme, kuinka Antarktiksen 90 asteen pakkanen onnistuu kutistamaan lumikinoksia niin, että niihin syntyy rakoilua. "Lämpö laajentaa, kylmä kutistaa" pätee siis myös silloin, kun valmiiksi kylmää jäähdytetään vielä lisää.

Katot romahdusvaarassa

Aika ajoin kertynyt lumikuorma onnistuu romahduttamaan kattoja. Rakennusmääräysten mukaan rakenteiden pitäisi kestää 140-240 kilon lumilasti neliömetrillä, asuinseudusta riippuen.

Paksujen nietosten pohjalla oleva lumi painuu tiiviimmäksi. Hiutaleet ja kiteet murskaantuvat, ja niiden sakaroiden väliin jäänyt ilma poistuu. Aineen tiheys kasvaa. Jäätiköt syntyvät juuri näin - siis mikäli jää ei ehdi sulaa pois kesän aikana, ennen uuden lumikerroksen satamista.

Keväisin lumikuorman lapiointi tuntuu entistä raskaammalta. Se johtuu kuitenkin vain tiivistyneestä ja sulavettä täynnä olevasta rakenteesta, eikä siitä että lumeen olisi tullut jotain uutta aurinkoisen ilman takia. Ilmasta tiivistyy lumikinoksiin tyypillisesti vain pari kiloa lisävettä neliömetriä kohden.

Lumikinosten massa lisääntyy radikaalisti vasta vesisateella. Lumen rakosiin mahtuu vettä noin viisi tilavuusprosenttia. Yksi kuutiometri lunta voi siis pitää sisällään 50 kiloa nestemäistä vettä – lumen oman painon lisäksi tietysti.

Lumesta ei haihdu massaa pois suoraan ilmaan kuin vain muutama prosentti. Käytännössä kaikki lumi sulaa ja virtaa pois. Matkalla alempien kiteiden välitse vesi voi toki jäätyä uudelleen.

Lisätietoa lumen kanssa pärjäämiseen löytyy sekä Ympäristökeskuksen että Ilmatieteen laitoksen sivuilta: - Ympäristökeskuksen lumisivut - Lumitilanne - Lumivyöryennusteet tunturialueille.

Kaaviokuva erilaisten lumien ja jäiden tiheyksistä.

* Firn on vuoden vanhaa ja uudelleen kiteytynyttä lunta, lähes jäätikköjäätä. Sitä syntyy kovassa paineessa yli 15 metrin syvyydessä.

Mikä onkaan maapallon kylmin paikka?

Ke, 12/11/2013 - 10:42 By Jarmo Korteniemi
Kuva: Flickr / Lauri Rantala

Kun Suomessa mitataan uusi "tämän talven kylmin lämpötila", se saa aina paljon palstatilaa. Yleensä kovimmat lämpötilapohjat huitelevat noin -40 asteen tietämillä. Mutta eihän se ole vielä mitään.

NASA julkisti vastikään huiman uutisen maapallon kylmimmästä paikasta: Se sijaitsee Itä-Antarktiksen korkeimpien harjanteiden välisessä notkelmassa.

Kylmyysarvot alkoivat kiinnostamaan tutkijoita, kun he katselivat alueen lumidyynejä. Lumipeite oli paikoin rakoillut oudosti. Äärimmäinen kylmyys oli ilmeisesti kutistanut kinoksia (samaan tyyliin kuin muta rakoilee kuivuessaan). Satelliittimittaukset osoittivatkin pakkasen olleen ainakin hetkellisesti käsittämättömät -93,2 astetta Celsiusta.

Huima kylmyys johtui monen tekijän summasta. Alue on yli neljän kilometrin korkeudella, aivan keskellä napajäätikköä, ja ilmiö tapahtui ankarimman talven aikaan. Kirkkaana tähtiyönä lumipeite säteilee vähääkin lämpöään tehokkaasti pois. Ilma alueen päällä viilenee ja tihenee. Harjanteen päällä oleva ilmamassa valuu raskaana mäkeä alas ja päätyy notkelmaan. Prosessi toistuu notkossa, ja pitkään seisova ilma viilenee aina vain enemmän. Kaamoksen aikana Aurinkokaan ei nouse häiritsemään prosessia.

Antarktiksen lumilakeutta.

Vai onko sittenkään?

Virallisesti mittausta ei voida hyväksyä, vaikka se onkin tarkka ja varma. Viralliset säämittaukset nimittäin tehdään vain standardilaitteilla, ja aina 1,25–2 metrin korkeudelta maanpinnasta. Satelliittidataa ei voi standardoida.

Satelliitti ei mittaa kohteen lämpötilaa, vaan siitä tulevaa säteilyä. Kapeilla aallonpituuskaistoilla pystytään tarkentamaan joko suoraan lumen- tai maanpinnasta tulevaan säteilyyn, tai vähän tuunaamalla skannaamaan yllä olevan ilmamassan lämpöprofiilia. Tämä data sitten käännetään matemaattisesti lämpötilaksi.

Tuloksiin vaikuttavat kuitenkin monet asiat. Ilman pienhiukkaset, tuulet, vesihöyryn määrä ja kaasun koostumus. Ikinä ei voi tietää tarkalleen miltä korkeudelta mittaustulos on peräisin. Satelliittimittauksilla ei vain kyetä samaan systemaattiseen tarkkuuteen kuin mittauspisteillä.

Maapallon kylmyysennätys on siis virallisesti yhä vuonna 1983 mitattu Antarktiksen Vostok-aseman 89,2 pakkasastetta. Se on sitten kokonaan toinen juttu, onko tällä parin asteen erolla oikeasti mitään väliä.

Paukkupakkasia Suomessa

Suomen virallinen pakkasennätys on -51,5°C. Huima pakkanen mitattiin Kittilän Pokassa tammikuussa 1999.

Urbaani (tai oikeastaan maaseutu-)legenda kyllä kertoo, että ainakin Sallan Naruskassa on joskus ollut pari astetta tuota kylmempää. Oli miten oli, mikään mittauspiste ei varmasti ikinä ole se kaikkein kylmin paikka. Kilometrin päässä voi jo olla pari astetta lisää. Arvioidaan siis liberaalisti, että Suomessa voi pakkasta olla enimmillään 53–54 astetta.

Suomi on Golf-virrasta huolimatta Pohjolan kylmimpiä paikkoja. Mannerilmastosta alkaa jo vaikuttaa meillä. Venäjältä, etenkin Uralin tuolta puolen, löytyy tunnetusti kuitenkin paljon kylmempääkin. Kaikista planeetan pysyvästi asutetuista paikoista äärimmäisintä on ollut Verhojanskissa. Lähes -70 astetta. Se on paljon.

Pysäköintiä Siperiassa. Kuva: Flickr / Tatiana Bulyonkova

Pakkanen puree mutta tuuli palelluttaa

Kova pakkanen tuo mukanaan paljon ongelmia, oltiin sitten Kittilässä tai Verhojanskissa. Niihin täytyy sopeutua.

Kylmissä oloissa selviämiseksi tärkeintä on lämpimänä pysyminen. Kaiken A ja O on kerrospukeutuminen. Lakki myös – pään kautta nimittäin haihtuu eniten kehon lämpöä. Paljaan ihon pitäminen alttiina kylmälle voi aiheuttaa paleltumia kovalla pakkasella jo parissa minuutissa.

Kova tuuli saa ilman tuntumaan kylmemmältä hyvin yksinkertaisesta syystä: Se siirtää lämpöä iholta pois nopeampaa. Purevuusvaikutus 15 asteen pakkasella on varsin mitättömälläkin tuulella 5–10 astetta.

Kylmän perusfysiikkaa

Ongelmat eivät rajoitu oman itsen lämpimänä pitämiseen

Auton sähköjärjestelmä kärsii kylmästä. Akun sähköä tuottavat reaktioit hidastuvat ja niiden tuottama energia pienenee. Vieläpä samalla, kun moottoreiden jähmeät öljyt tarvitsisivat käynnistyksessä enemmän pontta.

Yön yli kiristyvässä pakkasessa seisoneella autolla voi olla ikävä kulkea vaikka se hurahtaisi käyntiinkin. Rengaspaineet ovat vähentyneet jopa 10 % jos pakkanen on lisääntynyt 10 asteella. Kaasun tarvitsema tila pienenee lämpötilan mukana. Renkaat painuvat lyttyyn, ja kumit menettävät pakkasessa kimmoisuuttaan. Renkaat muuttuvatkin kovalla pakkasella helposti kantikkaiksi. Ajo on pomppivaa.

Termi ”paukkupakkanen” tulee siitä, että seinät, katto, tai vaikkapa lähistön puut kutistuvat hieman kylmetessään. Rakenteet elävät: paukahdus tulee mikrorakojen syntyessä. Lämpenemisen myötä kolot täyttyvät entiselleen. No harm done.

Myös ilmasta rakoihin tiivistynyt kosteus aiheuttaa saman: vesi jäätyy ja levittää mikrorakoja lisää. Huonosti lämpöeristetyt vesiputket halkeilevat myös helposti. Kumpaankin on sama syy: vesi laajenee jäätyessään.

Suurin osa aineista kutistuu ja tihentyy kylmetessään. Neliasteiseksi asti vesi toimii kuten muutkin, mutta sitten sen käytös muuttuu. Veden jäähtyessä lisää sen molekyylit alkavat järjestäytyä. Kiteytyminen jääksi sinetöidään lopulta tilaavievien kuusikulmaisten vetysidosten kera. Jää vie kuitenkin 9 % enemmän tilaa kuin vesi.  Siksi jää kelluu ja kivet halkeilevat veden jäätyessä sen rakoihin.

Kylmyysennätyksiä läheltä ja kaukaa

Alue? Lämpötila Tarkempi mittauspiste Milloin?
Suomi -51,5°C Pokka, Kittilä 28.1.1999
Ruotsi -53,0°C Malgovik 13.12.1941
Norja -51,4°C Karasjok 1.1.1886
Huippuvuoret -46,3°C Longyearbyen 3/1986
Islanti -37,9°C Grímsstaðir 22.1.1918
Tanska -31,2°C Thisted 8.1.1982
Eurooppa -58,1°C Ust-Shchugor, Venäjä 31.12.1978
Euraasia -68°C Verkhojansk, Venäjä 7.2.1892
Maapallo -89,2°C Vostok-asema, Antarktis 21.7.1983
(Maapallo, epävirallinen) -93,2°C Itä-Antarktiksen keskiosa 10.8.2010

Lähteitä ja lisätietoa:

Suomen lämpötilaennätyksiä (Ilmatieteen laitos)
Maailman lämpötilaennätyksiä (World Meteorological Organization)
Kylmin paikka planeetalla (NASAn uutinen)

 

Sammakko-lasolia suonissa

Ma, 08/26/2013 - 15:18 By Markus Hotakainen

Pohjois-Amerikassa asustava metsäsammakko (Rana sylvatica) on tunnettu kyvystään selviytyä hengissä kylmissä oloissa, niin kylmissä, että yli 60 prosenttia niiden elimistössä olevasta vedestä voi jäätyä. Nyt pakkaskestävyyden arvoituksen ratkaisussa on otettu iso askel eteenpäin.

Jo ennestään tiedettiin, että metsäsammakoiden veressä on “kryoprotektantteja” eli tutummin jäänestoaineita kuten glukoosia, glyserolia ja ureaa, jotka alentavat veren jäätymispistettä. Se riittää pitämään sammakot hengissä muutamassa pakkasasteessa. Alaskassa laji joutuu kuitenkin kärvistelemään jopa –30 celsiusasteen lämpötiloissa.

Kaksi Miamin yliopiston tutkijaa, Jon Costanzo ja Richard Lee, lähti ratkomaan arvoitusta luomalla laboratorioonsa keinotekoisen arktisen talven. He lyhensivät vähitellen valoisaa aikaa ja alensivat lämpötilaa, kunnes se oli vain muutaman asteen plussan puolella. Sammakot vaipuivat talvihorrokseen.

Sitten tutkijakaksikko laski lämpötilaa reilusti nollan alapuolelle. Osa sammakoista vietti kaksitoista viikkoa –4 celsiusasteessa, ja osa kahden viikon ajan –16 asteessa. Kun lämpötilaa taas nostettiin, sammakot heräsivät “henkiin” yllättävän nopeasti. Muutaman asteen pakkasessa uinuneet eläimet olivat tolpillaan parissa päivässä.

Vertailun vuoksi testissä oli mukana myös Ohiosta tuotuja lajitovereita, joiden toipuminen vei päiväkausia pidempään. Alaskalaisilla sammakoilla oli selvästi jokin ylimääräinen temppu takataskussaan.

Tutkijat totesivat, että Alaskan metsäsammakoiden maksa kasvoi talven ajaksi hyvin suureksi. Se muodosti melkein neljänneksen, peräti 22 prosenttia, sammakon massasta, kun ohiolaisilla lajitovereilla prosenttiosuus oli noin kahdeksan.

Alaskassa asustavien metsäsammakoiden arvellaan käyttävän kehonsa rasvakudoksia ja lihasproteiinia tuottaakseen glykogeenia, jonka turvin maksasolut voivat lämpötilan laskiessa kasvattaa veren glukoosipitoisuutta – ja siten sammakon pakkasensietokykyä.

Tutkijat totesivat myös sammakoiden veren ureapitoisuuden kasvavan talven varalle noin kymmenkertaiseksi. Yhdessä kasvaneen glukoosin määrän kanssa se selittää suurimman osa alaskalaisten sammakoiden kylmänkestosta, mutta osa jää vielä lopullista selitystä vaille.

Tutkimus julkaistaan The Journal of Experimental Biology -lehden syyskuun numerossa.

Video jäätyneen sammakon sulamisesta löytyy Miamin yliopiston sivuilta.

Sammakkokuva: Brian Gratwicke

Hidas kevät

La, 03/16/2013 - 10:00 By Toimitus

Tuntuuko siltä, että kevättä kohti mennään, mutta korkeintaan etanan vauhtia? Vaikutelma ei ole ollenkaan väärä, sillä Ilmatieteen laitoksen tiedotteen mukaan yöt ovat viime aikoina olleet paikoin harvinaisen kylmiä.

Maaliskuun alkupuoli on ollut keskimäärin runsaat viisi astetta tavanomaista kylmempi. Edellisen kerran maaliskuun alku oli yhtä kylmä vuonna 2006.

Kevätpäiväntasauksen molemmin puolin päivä pitenee nopeasti – Etelä-Suomessa noin viisi minuuttia ja pohjoisimmassa Lapissa kymmenisen minuuttia päivässä – ja yhä ylemmäs kipuava aurinko alkaa jo lämmittää, mutta yöt ovat olleet viime aikoina harvinaisen kylmiä. Pakkasennätyksiä ei ole rikottu, mutta mittarit ovat näyttäneet kuluvan talven alimpia lämpötiloja. 

Taivalkosken kirkonkylällä mitattiin keskiviikon 13.3. vastaisena yönä –38,2 astetta, mikä on toistaiseksi kuluvan talven alin lämpötila Suomessa. Perjantain vastaisen yön alin lämpötila oli Utsjoen Kevojärven asemalla mitattu –38,0 astetta.

Maan eteläosissa viime öiden alin lukema on ollut Vihdin Maasojan asemalla torstain vastaisena yönä mitattu –29,6 astetta. Sitä kylmempiä lukemia mitattiin maan eteläosissa aiemmin tammikuun loppupuolella.

Viime päivien kaltaisia kylmiä lämpötiloja ei havaita läheskään joka vuosi enää maaliskuun puolivälissä, mutta ne eivät ole myöskään poikkeuksellisia vuodenaikaan nähden. Vastaavanlaisia maaliskuisia pakkaslukemia havaittiin useita kertoja 1960–1980-luvuilla. 

Esimerkiksi Kittilän Pokassa mitattiin 12.3.1981 lämpötilaksi –42,8 astetta. Alin Suomessa maaliskuussa mitattu lämpötila on Sallan Tuntsan asemalla 1.3.1971 mitattu –44,3 astetta. Siihen on onneksi vielä matkaa.

Maaliskuun säätilastot: http://ilmatieteenlaitos.fi/maaliskuu