fysiikka

Fysiikan ja kemian Nobel-palkinnot 2014

Ke, 10/08/2014 - 13:46 By Markus Hotakainen

Eilen julkistettiin fysiikan Nobel, tänään oli vuorossa kemianpalkinto: arvostetut palkinnot annettiin Led-valolle ja fluoresenssimikroskopialle.

Fysiikan Nobel-palkinto meni kolmelle japanilaiselle, Isamu Akasakille, Hiroshi Amanolle ja Shuji Nakamuralle. Virallisen tiedotteen mukaan palkinto myönnettiin "tehokkaiden sinisten ledien keksimisestä, mikä on tehnyt mahdolliseksi kirkkaat ja energiaa säästävät valkoisen valon lähteet".

Kemian palkinto puolestaan meni kahdelle amerikkalaiselle, Eric Betzigille ja William Moernerille, sekä saksalaiselle Stefan Hellille. Palkinto myönnettiin "huipputarkan fluoresenssimikroskopian kehittämisestä".

Japanilaistutkijoiden keksintö on käytännössä tuttu meille kaikille. Ledejä käytetään nykyisin niin kotien ja julkisten tilojen valaisimissa, mainostauluissa, taskulampuissa kuin erilaisissa merkkivaloissakin.

Akasaki, Amano ja Nakamura kehittivät sinisen ledin 1990-luvun alussa. Punaisia ja vihreitä ledejä oli ollut olemassa jo vuosikymmeniä, mutta vasta sinisen ledin kehittäminen teki mahdolliseksi energiatehokkaan teknologian soveltamisen valaistukseen. Kolmella erivärisellä ledillä saadaan nimittäin aikaan valkoista valoa.

Led-valaisimien teho on suuri ja virrankulutus pieni. Tekniikka kehittyy kaiken aikaa, mutta jo nyt tehokkaimmat led-lamput vastaavat wattia kohti antavalta valoteholtaan 16 tavallista hehkulamppua ja lähes 70 loisteputkea. Keksintö on merkittävä myös ympäristön ja luonnonvarojen kannalta. Noin neljännes maailman sähkönkulutuksesta menee valaistukseen, joten led-lamppujen energiansäästö on merkittävä tekijä.

Myös niiden valmistus säästää raaka-aineita. Siinä missä tavallinen hehkulamppu kestää noin tuhat tuntia ja loisteputki noin 10 000 tuntia, ledien kesto on parhaimmillaan jopa 100 000 tuntia. Vähäinen tehontarve mahdollistaa lisäksi valaistuksen kehittämisen seuduilla, joilla ei ole kunnollista tai lainkaan sähköverkkoa: led-lamppuihin voi tuottaa tarvittavan määrän sähköä yksinkertaisilla aurinkopaneeleilla.

Kemian Nobel-palkinnon saanut tutkimus liittyy sekin valoon. Optisen mikroskoopin erotuskyvylle asettaa rajoituksen valon aallonpituus: sillä on mahdoton erottaa rakenteita, joiden koko on alle puolet käytetyn valon aallonpituudesta.

Eric Betzig, William Moerner ja Stefan Hell ratkaisivat ongelman tahoillaan kahdella eri tavalla. Hell kehitti vuonna 2000 STED-mikroskopian (Stimulated Emission Depletion). Siinä käytetään kahta lasersädettä, joista toinen saa ensin fluoresoivat molekyylit hohtamaan, ja toinen kumoaa niiden lähettämän säteilyn lukuunottamatta nanometriluokassa olevista rakenteista tulevaa valoa.

Betzigin ja Moernerin toisistaan riippumattomasti kehittämässä menetelmässä yksittäisiä fluoresoivia molekyylejä "sytytetään" ja "sammutetaan" vuoron perään, jolloin yhdistämällä niistä otetut kuvat saadaan aikaan huipputarkka näkymä tarkasteltavaan kohteeseen.

Tällaisen nanoskopian avulla pystytään tarkastelemaan esimerkiksi solujen toimintaa molekyylitasolla. Yhtenä sovelluksena on seurata Parkinsonin, Alzheimerin ja Huntingtonin tauteihin liittyvää proteiinien kertymistä hermosoluihin.

Lisätietoa Nobelin tämänvuotisista fysiikanpalkinnoista löytyy täältä ja kemianpalkinnoista täältä.

Tiedetuubi käynnillä Shuji Nakamuran laboratoriossa:

Matematiikkaa ja fysiikkaa Helsingissä

To, 06/26/2014 - 12:59 By Toimitus
Kupiainen ja kumppanit

Matemaattisen fysiikan supertähdet ovat parhaillaan koolla Helsingin yliopistolla Mathematics Meets Physics -konferenssissa, joka alkoi Helsingissä 24. kesäkuuta ja jatkuu viikon loppuun saakka. Tapahtuma on ensimmäinen Suomessa järjestetty suurimuotoinen matemaattisen fysiikan konferenssi ja se kerää koleaan kaupunkiin noin 150 matemaatikkoa.

Alan tähdistä paikalle on saapunut muiden muassa Alan Sokal New Yorkin yliopistosta (kuvassa oikealla) ja neljä Fieldsin mitalin saanutta tutkijaa: belgialainen Jean Bourgain, venäläinen Stanislav Smirnov sekä ranskalaiset Cédric Villani ja Wendelin Werner (kuvassa toinen vasemmalta). Joka neljäs vuosi jaettavat Fieldsin mitalit ovat matematiikan suurin arvonosoitus, joka rinnastetaan Nobelin palkintoon.

Fysiikasta inspiraationsa saanut matematiikka ruotii usein fysiikan perusongelmia, ja Helsingin-konferenssikin painottuu perustutkimukseen.

"On vaikea suoraan sanoa, koska matemaattisen fysiikan tutkimustulokset sovelletaan käytäntöön", kuvailee konferenssijärjestelyistä vastannut professori Eero Saksman (kuvassa toinen oikealta).

"Toisinaan ne voidaan ottaa nopeastikin käyttöön, mutta on todennäköisempää, että ne ovat taustana myöhemmille läpimurroille ‒ joko perustutkimuksessa tai sovelluksissa."

Isäntä on päivänsankari

Konferenssin aikana juhlitaan Kumpulan kampuksella työskentelevän akatemiaprofessori Antti Kupiaisen (kuvassa vasemmalla) 60-vuotispäivää.

Kupiaisen tutkimusalaa ovat erityisesti kaoottiset dynaamiset systeemit, osittaisdifferentiaaliyhtälöt ja tilastollinen mekaniikka. Hänen johtamassaan huippututkimusyksikössä tavoitellaan läpimurtoja muun muassa diffuusioon ja lämmönjohtavuuteen liityvissä kysymyksissä.

Syntymäpäiväsankarin maailmanmaine auttoi tuomaan poikkeuksellisen nimekkään vierailijajoukon Helsinkiin, Saksman uskoo.

Tilaisuus lumoutua

Konferenssiohjelma on rakennettu mahdollisimman suuren hyödyn ajatusta kunnioittaen: päivastoin kuin monissa konfrensseissa, on osallistujien mahdollista kuunnella tapahtuman jokainen puheenvuoro. Kahvi- ja lounastauot puolestaan ovat riittävän pitkiä hyviin vapaisiin keskusteluihin.

"Ihmisten tapaaminen ja kysymysten tekeminen on tärkeää", selittää Saksman. "Vuorovaikutus on kaiken ydin. Kun näkee hyvän esityksen, siitä melkein lumoutuu ja saa niin paljon vaikutteita omaan ajatteluun."

Juttu perustuu lähes suoraan Helsingin yliopiston verkkosivuilla olevaan artikkeliin Annos maailman parasta matematiikkaa Helsingissä, jonka on kirjoittanut Sirkku Saariaho. Kuvan on ottanut Veikko Somerpuro.

J-09 / Kynttilän kemiaa ja vähän fysiikkaakin

Su, 12/15/2013 - 14:24 By Markus Hotakainen

 

Kynttilät luovat joulutunnelmaa, mutta mitä hämyisän valon lähteessä oikein tapahtuu? Kynttilänliekki sulattaa parafiinia, steariinia tai mehiläisvahaa – tai niiden yhdistelmää – ja kapillaari-ilmiön ansiosta sitä imeytyy kynttilän sydämeen, josta se höyrystyy. Kaasumaisessa muodossa se palaa, jolloin muodostuu vettä ja hiilidioksidia. Palamiseen tarvittava ilma (tarkkaan ottaen happi) puolestaan imeytyy liekin sivuilta sen alaosaan ylöspäin kohoavan kuuman ilman tilalle. Samalla "korvausilma" viilentää kynttilän yläpäätä, jolloin se ei sula kokonaan, vaan sulan osan ympärillä säilyy kiinteä reuna.  

Kuvaan on merkitty paitsi liekin eri osien lämpötilat celsiusasteissa myös vyöhykkeet, joilla tapahtuu hieman eri ilmiöitä. Ykkösvyöhykkeellä eli liekin sisimmällä alueella parafiinin, steariinin ja/tai mehiläisvahan molekyylit hajoavat. Kakkos- ja kolmosvyöhykkeellä tapahtuu suurin osa varsinaisesta palamisesta, mutta enin osa valosta tulee liekin keskellä olevalta nelosvyöhykkeeltä. Seikkaperäinen kolmiosainen selvitys (englanniksi) kynttilän kemiasta löytyy ChemistryViews-sivustolta (osa 1, osa 2, osa 3).

Kuva: ChemistryViews

Päivän kuva 9.6.2013: Einsteinin ensimmäinen tärkeä artikkeli

Su, 06/09/2013 - 12:06 By Toimitus

Tänään vuonna 1905 myöhemmin tieteen superjulkkikseksi noussut Bernin patenttitoimiston virkailija Albert Einstein julkaisi kuuluisassa fyysikkojen julkaisusarjassa Annalen der Physik artikkelin, missä analysoitiin terävästi Max Planckin kvanttiteoriaa ja luotiin pohja suppealle suhteellisuusteorialle.

Vuosi 1905 oli Einsteinin elämässä tärkeä vuosi, jota kutsutaankin yleensä hänen ihmeiden vuodekseen, annus mirabilis 1905. Hän sai sen aikana valmiiksi paitsi tohtorinväitöskirjansa Zürichin teknillisellä yliopistolla niin myös julkaisi ajatuksiaan suppeasta suhteellisuusteoriasta ja valosähköisestä ilmiöstä, niin myös kehitti kuuluisan massan ja energian verrannollisuutta kuvaavan kaavansa E=mc². Nämä yksissään olisivat jo tehneet Einsteinista tunnetun ja tuoneet hänelle Nobel-palkinnon (jonka hän sai vuonna 1921).

Sateenkaaren tuolla puolen

Su, 03/03/2013 - 10:30 By Toimitus

Kesäisenä sadepäivänä pilvien jo hiljalleen hajaantuessa taivaalle voi leimahtaa upea sateenkaari. Silloin aurinko pilkahtaa pilvien raosta ja paistaa väistyvän sateen langettamiin pisaroihin. Sateenkaari näkyy aina vastakkaisella puolella taivasta kuin aurinko, koska valo heijastuu sadepisaroista takaisin tulosuuntaansa.

Pelkkä valon heijastuminen vesipisaroista ei kuitenkaan riitä selittämään sateenkaaren värejä, siihen vaaditaan myös valon taittumista. Kun auringonvalo taittuu ja heijastuu vesipisaroissa, valkoiselta näyttävä auringonvalo hajoaa – kirjaimellisesti – sateenkaaren väreihin. Punainen, oranssi, keltainen, vihreä, sininen, indigo ja violetti ovat väreinä sitä hehkuvampia ja kirkkaampia, mitä suurempia vesipisarat ovat.

Kun auringonvalo kulkee sadepisaran pinnan läpi, valon kulkusuuntaa muuttuu, koska se siirtyy harvemmasta aineesta tiheämpään: ilmasta veteen. Valo heijastuu kertaalleen pisaran sisäpinnasta ja kun se taas poistuu vesipisarasta, sen kulkusuunta muuttuu jälleen: tällä kertaa se siirtyy tiheämmästä aineesta harvempaan eli vedestä ilmaan.

Kahden taittumisen ja yhden heijastumisen seurauksena valon kulkusuunta muuttuu vesipisarassa aina saman verran, 42 astetta. Siksi sateenkaari näkyy taivaalla vastapäätä aurinkoa ja kaartuu ilmiötä ihailevan katsojan pään varjon ympärille 42 asteen etäisyydellä.

Valon kulkusuunta ei kuitenkaan muutu täsmälleen 42 astetta, sillä valon eri aallonpituudet eli värit taittuvat eri tavoin: punainen taittuu vähiten ja violetti eniten. Siksi punainen väri on sateenkaaren ulkoreunassa ja violetti sen sisäreunassa. Niiden välissä ovat muut värit eli oranssi, keltainen, vihreä ja sininen.

Usein kirkkaan sateenkaaren ulkopuolella näkyy toinen, hieman himmeämpi sivusateenkaari. Sen värit ovat samat kuin pääsateenkaaressa, mutta niiden järjestys on päinvastainen: ulkoreunalla on violetti ja sisäreunalla punainen. Sivusateenkaari on himmeämpi, koska sen synnyttävä valo heijastuu sadepisaran sisällä kahdesti. Jokaisessa heijastumisessa valoa menee hivenen haaskoon.

Sateenkaaren kirkkauden lisäksi ylimääräinen heijastus pisaran sisällä vaikuttaa myös kaaren kokoon. Valon kulkusuunta muuttuu kahden taittumisen ja kahden heijastumisen tuloksena noin 51 astetta, joten sivusateenkaari kaartuu katsojan pään varjon ympärille 51 asteen etäisyydellä. Siksi sivusateenkaari on aina pääsateenkaaren ulkopuolella. Pääsateenkaaren sisäreunalla näkyy toisinaan niin sanottuja interferenssikaaria, joita ei pidä sekoittaa sivusateenkaareen. Joskus useita kertoja toistuvat vihreän ja sinisen sävyt johtuvat valon aaltoliikkeestä: interferenssissä hieman eri vaiheissa olevat aallot vahvistavat tai heikentävät toisiaan.

Pää- ja sivusateenkaaren välissä on niin sanottu Aleksanterin tumma vyöhyke. Sen alueelta tulee katsojan suuntaan vähemmän valoa kuin pääsateenkaaren sisäpuolelta ja sivusateenkaaren ulkopuolelta. Nimensä vyöhyke on saanut Aleksanteri afrodisialaiselta, joka pohti sateenkaaren syntyä vuoden 200 tienoilla. Auringonvalon hajoamisen väreihin selitti Isaac Newton noin 1500 vuotta myöhemmin.

Sydänkesän keskipäivällä aurinko kohoaa eteläisessä Suomessa yli 53 asteen korkeudelle, joten silloin taivaalla ei voi näkyä sateenkaaria ollenkaan. Sekä pää- että sivusateenkaari jäävät taivaanrannan alapuolelle. Sen vuoksi sateenkaaria näkyykin eniten alku- ja loppukesästä.

Kun aurinko laskee alemmas, tulee ensin näkyviin sivusateenkaari – jos se on näkyäkseen – ja sitten myös pääsateenkaari. Toisinaan horisonttia viistävää sateenkaaren voimakkaan punaista yläreunaa ei välttämättä edes tunnista sateenkaareksi. Vasta kun kaari auringon hitaasti vajotessa kohoaa ylemmäs, tulee näkyviin myös muita värejä ja ilmiön tunnistaa sateenkaareksi. Aamupäivän puolella taivaanrantaa hipova sateenkaari tietysti vähitellen katoaa, kun auringon kipuaa yhä ylemmäs – edellyttäen, että sateenkaari pysyttelee taivaalla näkyvissä niin pitkään.

Vanhan kansanuskomuksen mukaan sateenkaaren päässä odottaa löytäjäänsä kulta-aarre. Sitä voi yrittää etsiä, mutta puuha voi osoittautua turhauttavaksi, koska sateenkaaren perään kiiruhtava aarteenetsijä joutuu huomaamaan, että sateenkaari pakenee samalla vauhdilla. Ehkä uskomus viittaa juuri tähän: kulta-aarteen löytäminen onnistuu yhtä helposti kuin sateenkaaren pään tavoittaminen.

Pääkuvan on ottanut davidyuweb ja se on julkaistu Creative Commons -lisenssillä Flickr-palvelussa.