kuu

Tällaisia ovat ensimmäiset kuvat Kuun kääntöpuolen pinnalta

To, 01/03/2019 - 09:59 By Jari Mäkinen

Kiinalainen Chang'e-4 -luotain laskeutui onnistuneesti viime yönä Kuun pinnalle. Laskeutumispaikka on Kuun maapallolle näkymättömällä puolella, minne aikaisemmin ei ole laskeuduttu lainkaan. Kyseessä on paitsi teknisesti vaativa saavutus, niin myös osoitus kiinalaisen avaruustekniikan ja -osaamisen korkeasta nykytasosta.

Laskeutuminen tapahtui hieman eilen arveltua myöhemmin, klo 10.26 Pekingin aikaa, eli 4.26 Suomen aikaa.

Kiinalaiseen tapaan laskeutumista ei seurattu reaaliajassa julkisesti, vaan tiedot laskeutumisajasta perustuivat pitkälti huhuihin ja Kuun ympäriltä muualta maailmassa havaituista radioviesteistä. Virallisen Kiinan täydellinen hiljaisuus oletetun laskeutumisajan jälkeen anoi jo aihetta epäillä laskeutumisen menneen mönkään, mutta lopulta Kuun pinnalta näytettiin ensimmäisiä kuvia.

Alustavien tietojen mukaan laskeutumispaikka on lähes täsmälleen suunnitellussa paikassa Kuun kääntöpuolen eteläosassa Von Kármán -kraatterissa.

Nyt julki on myös osittain lennonjohdossa laskeutumisen aikana kuvattu video:

Kuu kääntää aina saman puolensa Maahan, koska sen pyöriminen on lukittunut vuorovesivoimien vuoksi Maahan. Aurinko siis paistaa myös Kuun toiselle puolelle aivan samaan tapaan kuin tälle toiselle puolelle, mutta Maa ei koskaan ole sieltä näkyvissä. Suurin hankaluus Chang'e-4:n operoinnissa onkin tämä suoran radiolinkin puute. Siksi kiinalaiset lähettivät Kuun toiselle puolelle pienen tiedonvälityssatelliitin, joka toimii linkkinä laskeutujan ja lennonjohdon välillä.

Piirros näyttää laskeutujan, sen pienen kulkijan ja taivaalla olevan linkkisatelliitin.

Tämä Queqiao -niminen laite pysyy jotakuinkin paikallaan Kuun toisella puolella, koska se kiertää siellä niin sanottua Lagrangen pistettä; ne ovat avaruudessa olevia kohtia, joissa kahden toisiaan kiertävän massapisteen vetovoimat sekä keskipakoisvoima kumoavat toisensa niin, että kolmas, pieni massa voi pysytellä niissä paikoillaan suhteessa kahteen muuhun kappaleeseen.

Maan ja Kuun tapauksessa tällainen on kätevästi noin 61 000 kilometrin päässä Kuun takapuolella, jolloin sitä sopivasti kiertävä luotain voi olla käytännössä koko ajan näkyvissä Maasta, ja samalla se pystyy näkemään lähes koko Kuun kääntöpuolen.

Kuun pintaa laskeutumisjalan vieressä. Kuva: CNSA

Kuun pintaa laskeutumisjalan vieressä. Kuva: CNSA

Mukana kulkija ja kovasti tutkimuslaitteita

Tapahtumat etenevät nyt varsin nopeasti laskeutumisen jälkeen. Laskeutujan mukana oleva pieni kulkija rullaa pian alas Kuun pinnalle ja itse laskeutuja alkaa kartoittaa ympäristöään sekä sondaamaan allaan olevaa pintaa.

Se pystyy tutkimaan radioaaltojen avulla myös syvemmältä Kuun rakennetta. Chang'e-4:n mittalaitteiden tekemiseen ovat osallistuneet Kiinan lisäksi tutkimuslaitokset Saksasta, Ruotsista, Alankomaista ja Saudi Arabiasta.

Otsikkokuvassa on maisemaa laskeutujan ympärillä ja kokonaisuudessaan tämä kuva on tällainen. Kuva: CNSA

Aurinko paistaa nyt laskeutumisalueella lähes kahden Maan viikon ajan, ennen kuin seuraava pariviikkoinen Kuun yö alkaa. Kiina yrittää tehdä mahdollisimman paljon tänä aikana, koska yöllä lämpötila laskee olennaisesti ja se saattaa koitua laskeutujan sekä sen kulkijan kohtaloksi – vaikka ne on suunniteltu kestämään yöllisen kylmyyden ja toimimaan vähintään kuukausien ajan.

Video: Näin kiinalainen Chang'e-4 -laskeutuja jysähtää Kuun kääntöpuolelle ensi yönä

Kiihkeä aika avaruustutkimuksessa jatkuu: nyt esiin tulee Kiina, jonka Chang'e-4 -luotain laskeutuu pieni kuukulkija ja silkkitoukkasiirtokunta mukanaan Kuun Maahan näkymättömälle puolelle kolmen tienoilla ensi yönä 2. tammikuuta Suomen aikaa.

 

Chang'e-4 laukaistiin matkaan Xichangista, Kiinasta, joulukuun 7. päivänä. Sen on tarkoitus laskeutua Kuuhun nyt yöllä klo 2:30 – 3:00 Suomen aikaa, eli noin klo 9 (tai hieman ennen) aamulla Pekingin ajan mukaan.

Kyseessä on merkittävä tapaus paitsi siksi, että kuulaskeutumiset ovat edelleen hyvin harvinaisia, niin myös siksi, että kyseessä on ensimmäinen Kuun "kääntöpuolelle" tehtävä laskeutuminen. Kuu kääntää aina saman puolensa kohti Maata, joten sen Maahan näkymättömältä puolelta ei voida olla suoraan yhteydessä lennonjohtoon. Maa kun ei ole sieltä koskaan näkyvissä.

Tämän vuoksi Kiina lähetti jo kesällä Kuuta kiertämään pienen Queqiao -nimisen linkkisatelliitin. Yhteydenpito maavalvomon ja laskeutujan välillä tapahtuu siis sen kautta. Linkkiä testattiin jo 12. joulukuuta, kun Chang'e-4 asettui kiertämään Kuuta.

Yllä oleva video näyttää, miten laskeutuminen nyt yöllä tapahtuu. Videossa on mukana kuvamateriaalia Chang'e-3 -laskeutujalta, joka oli hyvin samanlainen kuin Chang'e-4. Kolmonen laskeutui Kuun "etupuolelle" vuonna 2013.

Chang'e-4 on laskeutumisen alkaessa soikealla kiertoradalla, jonka läheisin piste tulee 15 kilometrin päähän Kuun pinnasta ja kaukaisin on noin sadan kilometrin päällä. Laskeutuja sytyttää rakettimoottorinsa ja hidastaa ratanopeuttaan, jolloin se alkaa pudota alaspäin. Vähitellen rataa käännetään yhä pystysuoremmaksi, jolloin lopulta laskeutuja lähestyy pintaa suoraan ylhäältä päin.

Radan muutos pystysuoraksi tapahtuu 6 – 8 kilometrin korkeudessa.

Laskeutuja seuraa laskeutumista tutkallaan ja tarkkailee kameroillaan laskeutumispaikkaa siltä varalta, että maastossa on vaarallisia kohteita. Jos kaikki sujuu hyvin, se navigoi automaattisesti itsensä turvalliselle alueelle, jos alkuperäisellä laskeutumispaikalla on jotain mahdollisesti uhkaavaa.

Kameroiden lisäksi laskeutuja kartoittaa maastoa allaan 3D-laserskannerilla. Sitä varten se pysähtyy hetkeksi leijumaan paikoillaan noin sadan metrin korkeudessa.

Rakettimoottori sammuu parin metrin korkeudessa ja sen jälkeen laskeutuja putoaa vapaasti alas. Kuun pienessä painovoimassa tämä ei ole vaarallista, mutta silti osuminen pintaan on kuin ajaisi kolarin pienellä nopeudella.

Koko laskeutuminen tapahtuu automaattisesti, koska radiosignaalin viive Maan ja luotaimen välillä on liian suuri.

von Karman

Laskeutumispaikka on eräs Kuun "kääntöpuolen" suurimmista kraattereista, joka on saanut nimensä Theodore von Kármánilta, unkarilais-amerikkalaiselta matemaatikolta ja fyysikolta, joka oli muun muassa perustamassa Nasan Jet Propulsion Laboratoryksi myöhemmin muuttunutta avaruustekniikan tutkimuslaitosta Kaliforniaan.

Nimellä ei tietenkään ole mitään suoraa tekemistä kiinalaislennon kanssa; kraatteri vain on kiinnostava ja juuri sopiva laskeutumiseen.

186 kilometriä halkaisijaltaan oleva kraatteri sijaitsee Kuun etelänavan tuntumassa olevan Aitkenin altaassa, joka on eräs suurimmista Kuussa olevista (ja ylipäänsä Aurinkokunnassa tunnetuista) törmäyskraattereista. Se on puolestaan pienempien kraatterien peitossa, ja von Kármán on yksi niistä.

Seutu on erittäin kiinnostavaa siksi, että osa kraattereista on aina varjossa. Niiden pohjilta on havaittu myös vesijäätä, ja nähtäväksi jää, millainen on von Kármánin pohjan olemus.

Massaltaan noin 1,2-tonnisen laskeutujan kyydissä on 140-kiloinen kulkija, joka rullaa alas laskeutujan päältä varsin pian laskeutumisen jälkeen. Se tekee omia tutkimuksiaan laskeutujan ympäristössä ja lähettää osaltaan – toivottavasti – hienoja kuvia tästä ennen näkemättömästä paikasta Kuun pinnalla.

Lue lisää lennosta Andrew Jonesin erinomaista artikkelista gptimes.com -sivulla.

Avainsanat

Kuunpimennyksiä voi nähdä muulloinkin kuin vain täydenkuun aikaan

Pe, 07/27/2018 - 20:18 By Jarmo Korteniemi
Kuva: Lucien Rudaux

Tänään illalla Suomen taivaalla näkyy pitkä ja varsin komea kuunpimennys. Harva tulee ajatelleeksi, että vastaavaa sattuu muuallakin Aurinkokunnassa. Vielä harvempi hoksaa, että niitäkin tapahtumia voi katsella.

Kuunpimennyksessä planeettamme tulee suoralle linjalle kuumme ja Auringon väliin, ja Maan varjo peittää Kuun. Voisi oikeastaan sanoa, että täysikuu on täydellisimmillään vain ja ainoastaan kuunpimennyksen aikaan.

Kuunpimennyksiä voi kuitenkin yllättäen nähdä myös silloin kun kuu ei ole täysi. Se tosin onnistuu vain kolmella hieman epätavallisella tavalla. Kaikkiin tarvitaan laatikon ulkopuolella ajattelua, apuvälineitä, ja kenties pilkunkin viilausta.

(1) Ensimmäinen vaihtoehto on siirtyä planeetalta pois. Kansainvälisen avaruusaseman Cupolassa oleva astronautti voi nähdä sekä täydellisen kuunpimennyksen että vastakkaisessa suunnassa olevan Auringon vain hieman päätään kääntäen. Kuu on sieltä katsoen lähes, muttei aivan täysi.

(2) Avaruuteen meno ei tietystikään ole kaikille mahdollista. Toinen vaihtoehto on paljon helpompi, ja mahdollistaa kuunpimennyksen katselun huomattavasti useammin kuin normaalisti. Kuunpimennys-termi täytyy vain ymmärtää laajemmin ja suunnata katse kauemmas avaruuteen.

Jupiteria kiertävät "Galilein kuut" erottuvat selvästi neljänä pienenä valopisteenä emoplaneettansa vieressä jo hyvillä kiikareilla. Aika ajoin, tarkkaan katsottuna, joku niistä kuitenkin voi näyttää sammuvan. Tuolloin kyseinen kuu on joutunut joko Jupiterin tai jonkun kanssakuunsa varjon peittämäksi - eli emoplaneetta tai joku toinen kuu on mennyt "sammuneen" kuun ja Auringon väliin. Kyse on siis kuunpimennyksestä aivan toisaalla. Ja, koskapa tilanteen näkee Maasta katsottuna hieman vinosti, kuu ei meiltä katsottuna ole aivan täysi.

Esimerkki Jupiterin Europa-kuun rengasmaisesta pimennyksestä.

Lisää Jupiterin kuiden tapahtumia (okkultaatioita, ylikulkuja ja pimennyksiä) voi tarkastella joko Project Pluton tai Sky and Telescopen taulukoista. Niitä on itse asiassa yllättävän usein. Aikoja kannattaa kuitenkin verrata Jupiterin näkymiseen Suomessa, esimerkiksi Ursan tähtikartan avulla.

(3) Kolmas keino on sijoittaa käytetty apuväline hieman eri paikkaan kuin missä itse on. Näin pimennyksiä voi nähdä vieläkin enemmän, ja erilaisia.

Marsin kaksi kuuta joutuvat aika ajoin punaisen planeetan varjoon. Pienen kokonsa vuoksi ne kuitenkin uppoavat kokonaan näkymättömiin. Curiosity-mönkijän ottamassa kuvasarjassa näkyy oivasti kuinka Phobos himmenee hiljalleen Marsin kaasukehän vaikutuksesta ja lopulta sammuu täysin päästessään itse planeetan taa.

Planeettojen kummajainen on Uranus. Sen kuiden kiertotaso on kohtisuorassa planeetan kiertorataan nähden: Kuut siis kiertävät ikään kuin pystysuorassa planeetan ympäri. Siksi sen kuiden pimennyksiä sattuu vain muutamien kymmenien vuosien välein. Tällä hetkellä Uranus lähestyy vuonna 2028 koittavaa päivänseisausta, jolloin sekä Uranuksen että sen kuidenkin pohjoisnavat osoittavat kohti Aurinkoa. Seuraavan kerran kuunpimennyksiä voi sattua vasta vuonna 2049, päiväntasauksen aikaan - eli silloin, kun kuiden kiertotaso pyyhkäisee Auringon yli eli on linjassa sekä Auringon että Uranuksen kanssa. Edellisen kerran näin kävi vuonna 2007.

Aurinkokunnassa on lukemattomia muitakin kuunpimennyksiä. Kuita löytyy paitsi kuudelta planeetalta, myös sadoilta muilta kappaleilta. Niitä on useimmilla kääpiöplaneetoilla ja ainakin 300 muulla pienkappaleella. Useimmat kuista joutuvat aika ajoin joko toistensa tai emokappaleensa varjoon. Voi kysyä filosofisesti: tapahtuuko kuunpimennys, jos kukaan ei ole sitä näkemässä?

Kuunpimennyksiä ainakin löytyy, jos vain tietää mistä hakea.

Kaikki riippuu kuitenkin näkövinkkelistä - sieltä pimentyneestä kuusta katsottuna kun kyse on aina auringonpimennyksestä. Otsikkokuvana on Rudauxin maalaus aiheesta.

Otsikkokuva: Lucien Rudaux (1874–1947)

Miksi kuunpimennyksestä kannattaa innostua? Koska luvassa on 3D-kokemus.

Pe, 07/27/2018 - 12:00 By Jari Mäkinen
Kuunpimennys koosteena

Tänään illalla tapahtuu täydellinen kuunpimennys, joka on paitsi tavallista pitempi, niin myös jännä taivaanmekaniikan puolesta: Kuu, Maa ja Aurinko ovat nyt juuri sopivasti kohdallaan, jotta niistä saa kauniin kolmiulotteisen kokemuksen. Ennusteen mukaan myös sää suosii illan taivaallista spektaakkelia!

Kuunpimennyksessä Kuu kulkee radallaan maapallon varjon läpi, eli Kuu, Maa ja Aurinko ovat avaruudessa täsmälleen samalla suoralla. Koska Kuu kiertää Maata lähes samassa tasossa, missä Maa kiertää Aurinkoa, tapahtuu erilaisia kuunpimennyksiä varsin usein. Joskus niitä on jopa neljä vuodessa.

Kiertoradat eivät ole kuitenkaan aivan samassa tasossa, joten suurin osa näistä pimennyksistä on osittaisia. Kuu kulkee siis "vain" läheltä varjoa tai osuu vain osittain varjoon. Tapaukset, joissa Kuu menee täsmälleen Maan varjon läpi, ovat harvinaisempia.

Päinvastoin kuin auringonpimennykset, ovat kuunpimennykset näkyvissä kaikkialta maapallolta, jos Kuu vain on horisontin yläpuolella. Edellinen Suomesta näkynyt täydellinen kuunpimennys oli syyskuussa 2015 ja seuraava sellainen on ensi vuonna tammikuun 21. päivänä.

Mitä tapahtuu tänään illalla?

Kuunpimennys alkaa, kun Kuun reuna lipuu Maan heittämään puolivarjoon. Tällöin Auringon kiekosta osa valaisee yhä Kuuta kirkkaasti ja pimennystä on vielä hyvin vaikeaa huomata. Osittaisen pimennyksen alkaessa Kuu alkaa siirtyä puolivarjosta Maan täysvarjon alueelle ja sen edellä kulkeva reuna alkaa tummua selkeästi.

Täydellinen pimennys alkaa klo 22.30 Kuun kuljettua kokonaan Maan täysvarjoon. Täydellisen pimennyksen syvin hetki koetaan klo 23.22. Kuu näyttää tällöin tumman punertavalta ja sen pinta voi olla hyvinkin tumma. Täydellinen pimennys päättyy klo 00.13 kun Kuu lipuu jälleen Maan puolivarjoon ja lopulta sieltä pois. Koko pimennys on ohi klo 02.29.

Pimennyksen kulku

Puolivarjopimennys alkaa klo 20.15

Osittainen vaihe alkaa klo 21.24

Kuu nousee Helsingissä klo 21.52

Aurinko laskee Helsingissä klo 22.03

Täydellinen vaihe alkaa klo 22.30

Kuu nousee Oulussa klo 22.37

Aurinko laskee Oulussa klo 22.51

Pimennys syvimmillään klo 23.22

Kuu nousee Utsjoella klo 0.00

Täydellinen vaihe päättyy klo 0.13

Osittainen vaihe päättyy klo 1.19

Puolivarjopimennys päättyy klo 2.29

Pimennyksen eteneminen Helsingissä. Kuu nousee osittaisen pimennyksen ollessa jo käynnissä ja täydellinen pimennys alkaa Kuun ollessa edelleen varsin matalalla. Kuvan taivaan liukuväri kuvastaa taivaan tummumista pimennyksen edetessä. Kuva: Ursa / Veikko Mäkelä.


Tarjolla 3D-kokemus

Jos sää on hyvä, on tämä tämäniltainen pimennys on upea näky siksi, että sen aikana voi nähdä omin silmin hyvin konkreettisesti, miten Kuu, Maa ja Aurinko ovat jonossa. Kun Kuu nousee, laskee Aurinko toisella puolella taivasta. Kuun lisäksi sen luona nousee taivaalle Maan varjo, jonka myötä taivas muuttuu ensin tumman siniseksi, sitten mustaksi.

Koska taivas ei ole täysin musta, ei verenpunainen pimentynyt Kuu ole aivan niin hehkeä kuin se olisi sysimustalla taivaalla, mutta kolmiulotteinen kokemus on kenties jopa sykähdyttävämpi.

Siksi pimennystä kannattaa mennä katsomaan jollekin korkealle paikalle, mistä näkyy kaakkoon sekä luoteeseen alas horisonttiin saakka. Helsingissä kenties paras paikka on Malminkartanon täyttömäki (tai ravintola Tornin baari), mutta myös Jätkäsaaren lounaiskulma (jos rakennustyöt eivät estä sinne menemistä) ja Särkiniemen puiston ranta Lauttasaaressa voivat olla hyviä. Samoin Katajanokan pää ja Suomenlinnan eteläkärki ovat kenties sopivia.

Erinomainen paikka on myös Kaivopuisto, missä Ursa järjestää tornillaan toimintaa nyt illalla. Tähtitorni on auki ja sen ympärillä pidetään piknikkiä pimennyksen ajan.

The Photographer's Ephemeris näyttää hyvin missä suunnassa Aurinko ja Kuu laskevat ja nousevat eri paikoissa. Sen avulla voi hyvin suunnitella havaintopaikkaa!

Kuun ja Auringon lisäksi taivaalla ovat kirkkaat planeetat Venus ja Jupiter. Myös Saturnus on näkyvissä ja saattaapa taivaalla vilahtaa jo perseidien tähdenlentojakin, vaikka niiden maksimi on vasta 12. elokuuta.

Tämä kuunpimennys on myös erikoislaatuinen siksi, että se on varsin pitkä: kyseessä on tämän vuosisadan toiseksi pisin täydellisen pimennyksen vaihe. Kuunpimennys tapahtuu kuitenkin sen verran hitaasti, että tämä ei ole niin suuri asia.

*

Jutun keskivaiheen tiedot on otettu Ursan tiedotteesta. Otsikkokuva: Joshua Valcarcel / USN (3.3.2007)

Video: Laskeudu Kuuhun Apollo 11:n mukana

Ensi vuonna juuri näinä päivinä muistellaan todella voimakkaasti Apollo 11 -lentoa, sillä tuo ensimmäinen laskeutuminen Kuun pinnalle tapahtui vuonna 1969, eli 49 vuotta sitten. Ensi vuonna tapauksesta tulee kuluneeksi siis 50 vuotta, joskin tuota saavutusta kannattaa muistella nytkin.


Apollo 11 lähti matkaan 16. heinäkuuta 1969 Cape Kennedystä ja alus saapui kolme astronauttia mukanaan Kuun kiertoradalle 19. heinäkuuta klo 19.21 Suomen aikaa.

Seuraavana päivänä illalla klo 22.18 Suomen aikaa kuumoduuli Eagle laskeutui Kuun pinnalle. Sen kyydissä olivat astronautit Neil Armstrong ja Edwin Aldrin, joiden laskeutuminen kiertoradalta alas oli jo sinällään suuri seikkailu.

Tämä mainio video näyttää koko laskeutumisen aina siitä alkaen, kun kuumodulin rakettimoottori käynnistyi aina siihen saakka, kun alus oli tukevasti Kuun pinnalla. Videon mukana voi melkeinpä kokea olevansa mukana laskeutumisessa ja joka tapauksessa se näyttää, miten hienosti kaksikko suoriutui vaativasta tehtävästään.

Kuukävely oli kuitenkin lennon kohokohta; alla on Nasan siitä tekemä kooste.

Alla olevien linkkien avulla voi heittäytyä vieläkin paremmin Apollojen aikaan – aikaan, jolloin avaruuslennot olivat vielä seikkailuita!

Marsin ja Kuun luolat tarjoavat suojaa astronauteille

La, 06/09/2018 - 22:17 By Jarmo Korteniemi
Kuva: Jesse Richmond

Kuusta ja Marsista on löydetty monia jättimäisiä laavan muovaamia tunneleita. Salaperäisten luolastojen on uumoiltu olevan käteviä suojapaikkoja astronauteille joskus tulevaisuudessa. Millaisia nuo laavatunnelit todella ovat, ja toisivatko ne satunnaiselle avaruusmatkailijalle oikeata turvaa?

Olet hämärässä. Päivänvalo kajastaa kaukana yläpuolellasi olevasta pyöreästä aukosta. Jalkojesi alla on yllättävän tasainen kivipohja. Siellä täällä lojuu katosta pudonnut lohkare. Edessäsi olevassa seinässä on jättimäisiä valumia, joista osa tuntuu rosoisilta, toiset sileiltä, paikoin jopa hieman aaltoilevan lasin kaltaisilta. Seinä jatkuu sekä oikealle että vasemmalle upoten lopulta pimeyteen. Ylhäällä seinä kaartuu katoksi, ja jossain kohdassa valumat muuttuvat rosoisemmaksi. Ikään kuin katosta roikkuisi lukemattomia lepakoita, odottaen yön tuloa. Jos näkisit tarkemmin, huomaisit katon olevan tuhansien tippukivimäisten "laavapuikkojen" peitossa.

Kaikki, mitä näet, on syntynyt samoihin aikoihin kun naapuriplaneetalla oli vasta yksisoluista elämää. Jos sitäkään. Vain valoa tuova aukko on poikkeus, se syntyi asteroiditörmäyksessä muutama miljoona vuotta sitten.

Tervetuloa marsilaiseen laavatunneliin.

Jos, tai siis kun ihmiset joskus ryhtyvät asuttamaan Kuuta tai Marsia, on tukikohdan paikkavalinta tärkeää. Aivan yhtä tärkeää kuin resurssien löytäminenkin.

Pinnalla on vaarallista oleilla voimakkaan ultraviolettisäteilyn, kosmisten säteiden ja mikrometeoriittien vuoksi. Marsinkaan kaasukehä ei paljoa suojaa tarjoa - tiheys kun vastaa omaa ilmakehäämme jossain yli 30 km korkeudella. Pinnalla on myös joka paikkaan tarttuvaa pölyä, joka saattaa pahimmillaan olla jopa myrkyllistä. Lämpötilakin vaihtelee siellä ikävästi. Pitkään moisissa oloissa asustelevat joutuvat etsimään turvallisemman asuinpaikan.

Ratkaisun saattavat tarjota luolat. Laavatunneleita löytyy kummaltakin pallolta, ja paksu kivikatto on hyvä suoja taivaalta tulevia uhkia vastaan.

Missä ja millaisia?

Laavatunnelit sijaitsevat tietystikin vulkaanisilla alueilla.

Kuussa alueet näkyvät paljain silminkin tummina tasankoina eli "merinä". Nuo alunperin jättimäiset törmäysaltaat peittyivät laavalla muutamia miljardeja vuosia sitten.

Etenkin tasankojen reunamilta löytyy useita keskiosia kohti kiemurtelevia uurteita. Niistä osa on syntynyt avoimina laavakanavina, toiset taas laavatunneleina, joiden katot ovat romahtaneet pitkältä matkalta.

Uurteen päättyessä virran jatkoa voi usein seurata pienempien romahdusten avulla. Luotainkuvissa ne näkyvät pyöreinä "kattoikkunoina", eli tummina ja näennäisesti pohjattomilta vaikuttavina reikinä pinnassa. Joskus ne piirtävät pinnalle romahdusten jonoja.

Marsista kattoikkunoita on löydetty lähes yksinomaan Tharsiksen jättimäisten tulivuorten lähettyviltä. Toisinaan kattoikkunat voivat mennä uudelleen tukkoon pinnalta putoavan hiekan ja pölyn vaikutuksesta.

Kuun (ylin) ja Marsin laavatunneleiden kattoikkunoita. (NASA/LRO/HiRISE)

Yksikään laskeutuja ei ole käynyt lähelläkään tunnettuja kattoikkunoiden paikkoja, saati sitten hypännyt tunneliin sisälle. Voimme siis vain arvailla miltä luolassa näyttäisi. Todennäköisesti näkymä olisi jotakuinkin samanlainen kuin Maan laavatunneleissa.

Vain yksi asia Maan tunneleissa on varmasti erikoista - virtaava tai ainakin nestemäinen vesi, jota tihkuu kiven läpi. Moista ei edes Marsissa voisi esiintyä, mutta jäätä saattaisi sekä sieltä että Kuunkin luolista ehkä löytyä. Käsittämättömän hyvällä tuurilla Marsin laavatunneleissa voisi myös olla myös merkkejä eliöistä, jotka ovat paenneet pinnan vaikeammiksi käyneitä olosuhteita.

Laavatunnelit voivat olla hyvinkin suuria, sillä niiden koko riippuu gravitaatiosta. Mitä pienempi painovoima, sen suuremmaksi tunneli voi kasvaa ilman että katto romahtaa omasta painostaan. Kun tunnelin halkaisija Maassa on ehkä kymmeniä metrejä, Marsissa se on reippaasti yli sata. Kuun tunnelit saattavat olla jättimäisiä, jopa lähes kilometrin levyisiä.

Tunnelin kokoa voi arvioida paitsi kattoikkunan halkaisijasta, myös pohjalle syntyvän varjon muodosta.

Asuminen luolassa

Laavatunnelit on jo kauan tiedetty potentiaalisiksi asumuspaikoiksi tuleville miehitetyille Kuu- tai Marskäynneille. Ne voivat toimia myös kätevinä varastoina.

Kaikki alussa luetellut ongelmat ovat tunnelissa historiaa. Kymmenien metrien kivikatto suojaa sekä säältä että säteilyltä. Lämpötila voi tunnelissa olla pakkasen puolella, mutta siedettävämpi kuin kylmimmät ajat pinnalla. Meteoriiteista ei myöskään tarvitse huolehtia, paitsi jos kyse on todella suuresta kivestä, jolta ei muutenkaan voisi helposti suojautua.

Tunnelinpätkän tekeminen kokonaan ilmatiiviiksi lienee vähintäänkin vaivalloista, joten varsinaisen asumuksen täytyisi ainakin aluksi olla erillinen, tunneliin sijoitettava rakennus. Rakenne voi olla kuitenkin kevyempi kuin pinnalla, esimerkiksi vain ilmanpaineella pystyssä pysyvä.

Löytyy tunneleista riskejäkin. Miljardeja vuosia ehjänä pysynyt katto voi yllättäen alkaa rakoilla asutuksen myötä. Riittävä tekijä voi olla rakennustyön tai liikenteen aiheuttama tärinä, tai kosteuden ja lämpötilan muutokset. Sadankin metrin korkeudelta putoilevat irtokivet tekisivät pahaa jälkeä.

Lisäongelmia toisivat myös tunneliin ja sieltä pois pääsy. Kattoikkunan kautta on vaikea ja hyvin vaarallista kulkea. Astronauttien on siksi paikallistettava tunnelin pää tai muu paikka, josta pystyy kävelemään tai mieluiten ajamaan sisään.

Kallion sisässä asuminen taas voi pidemmän päälle aiheuttaa yllättäviä psykologisia haasteita.

Luolan synty

Laavatunnelin syntyprosessi on yksinkertainen. Pinnan alta purkautuu magmaa, joka virtaa laavana alarinteeseen. Etenkin painanteessa virran katto ja reunat jähmettyvät, kuori eristää keskiosan kuuman kiven, ja keskelle syntyy pitkään virtaavan laavan tunneli. Kun purkaus viimein loppuu, tunneli tyhjenee viimeisten pisaroiden liruessa ulos tai jähmettyessä tasaiseksi lattiaksi tunnelin pohjalle.

Muutama vaatimus kuitenkin on. Laavaa täytyy olla riittävästi, sen pitää olla kuumaa ja juoksevaa, ja rinteen on oltava tarpeeksi jyrkkä, jotta laava virtaa loppuun asti tunnelin läpi eikä jämähdä tukkimaan reittiä.

Purkauksen loputtua tunnelit ovat pitkiä kiemurtelevia tyhjiä putkia. Ja nyt, miljardien vuosien kuluttua, ne odottelevat yhä asukkaita.

Lisätietoa, esim. Melville, 1994.

Kirjoittaja on Marsin ja Kuun vulkanismia tutkinut planeettageologi.

Muokattu klo 22.50: Poistettu jutun lopusta jaarittelua muista luolistaö.

Otsikkokuva on Thurstonin laavatunnelista Havaijilta (Jesse Richmond / Flickr)

Muut kuvat: NASA.

Kuu on aina pidentänyt Maan vuorokautta

Ti, 06/05/2018 - 16:54 By Markus Hotakainen

Vuorokauteen tulee jatkuvasti lisää tunteja, mutta niin hitaasti, että pahimpiin kiireisiin se ei ihan heti tuo helpotusta.

1,4 miljardia vuotta sitten Maan pyörähdysaika oli vain hieman yli 18 tuntia. Syypää löytyy ihan naapurista: oma kiertolaisemme Kuu.

"Kun Kuu loittonee, Maa on kuin piruettia tekevä taitoluistelija, jonka pyöriminen hidastuu, kun hän ojentaa kätensä", havainnollistaa Stephen Meyers.

Uudessa tutkimuksessa Meyers on kollegoineen kehitellyt tilastollisen menetelmän, jolla tähtitieteellinen teoria ja geologiset havainnot pystytään linkittämään toisiinsa. Kiviin ja kallioihin rekisteröinyt tieto kertoo menneistä ajoista, sekä Aurinkokunnan historiasta että muinaisista ilmastonmuutoksista.

"Tavoitteenamme oli soveltaa astrokronologiaa ajanmääritykseen kaukaisessa menneisyydessä ja hahmottaa hyvin vanhoja geologisia ajanjaksoja", Meyers toteaa.

"Pyrimme tutkimaan miljardeja vuosia vanhoja kiviä samaan tapaan kuin selvittelemme nykyisiä geologisia prosesseja."

Maan liikkeeseen vaikuttavat vetovoimallaan muut Aurinkokunnan kappaleet, sekä planeetat että Kuu. Ne muuttavat Maan rataliikettä, pyörähdysaikaa ja pyörimisakselin asentoa. Aikakausien kuluessa tapahtuneet muutokset noudattavat Milankovićin jaksoja, jotka vaikuttavat auringonvalon jakautumiseen maanpinnalla ja sitä kautta ilmaston hitaaseen muuttumiseen.

Pitkät jaksot näkyvät kivissä, joilla on ikää satoja miljoonia vuosia. Sitä kauemmas menneisyyteen on kuitenkin vaikea kurkistella, sillä geologiset ajoitusmenetelmät eivät ole enää riittävän tarkkoja, kun puhutaan miljardeista vuosista.

Tutkimusta vaikeuttaa myös epävarmuus Kuun ja sen rataliikkeen historiasta sekä Aurinkokunnan kaoottisuus. Jacques Laskarin vuonna 1989 esittämän teorian mukaan vähäiset vaihtelut planeettojen radoissa kumuloituvat vuosimiljoonien kuluessa merkittäviksi muutoksiksi, joita on vaikea laskea ajassa taaksepäin.

Jo aiemmin Meyers on kollegoineen pystynyt määrittämään kivikerrostumista Maan ilmastohistoriaa 90 miljoonan vuoden taakse, mutta mitä pidemmälle tähdätään, sitä suurempia ovat epävarmuustekijät.

Esimerkiksi Kuu etääntyy tällä hetkellä Maasta 3,82 senttimetrin vuosivauhdilla. Jos loittonemisnopeus on pysynyt samana, 1,5 miljardia vuotta sitten Kuu olisi ollut niin lähellä Maata, että vuorovesivoimat olisivat repineet sen hajalle. Tiedämme kuitenkin Kuulla olevan ikää noin 4,5 miljardia vuotta. Jokin ei täsmää.

Vuonna 2016 Meyers aloitti yhteistyön Alberto Malinvernon kanssa, ja he onnistuivat kehittämään tilastollisen menetelmän, jolla tähtitieteellinen ja geologinen tieto saatiin yhdistettyä luotettavaksi dataksi.

He testasivat TimeOptMCMC-menetelmäänsä kahdessa kalliokerrostumassa, Kiinan pohjoisosissa sijaitsevassa Xiamaling-muodostelmassa, jolla on ikää 1,4 miljardia vuotta, ja eteläisellä Atlantilla 55 miljoonan vuoden ikäisessä Walvis-harjanteessa.

Uudella menetelmällä he pystyivät määrittämään geologisten havaintojen perusteella sekä Maan pyörimisakselin suunnassa että kiertoradan muodossa tapahtuneet vaihtelut. Samalla selvisi vuorokauden pituus ja Kuun etäisyys Maasta eri aikakausina.

Tutkimuksesta kerrottiin Wisconsinin yliopiston (Madison) uutissivuilla ja se on ilmestynyt Proceedings of the National Academy of Sciences -tiedejulkaisussa (maksullinen).

Kuva: NASA

Kiinalaisluotain saapui Kuun luokse

Pe, 05/25/2018 - 17:51 By Jari Mäkinen
Kiinalaisen Chang’e 5-T1 -luotaimen ottama kuva.

Kiinalaisten Queqiao -luotain on saapunut Kuun luokse tänään ja jatkaa nyt kohti asemapaikkaansa Kuun kääntöpuolella. Se tulee välittämään siellä ollessaan tietoja myöhemmin laukaistavan, Kuun etelänavan tuntumaan laskeutuvan Chang'e 4:n ja lennonjohdon välillä.

Otsikkokuvana oleva kuva ei ole Queqiaon ottama, mutta pian se saattaa lähettää samanlaisia. Kuvan otti Chang’e 5-T1 vuonna 2014, kun Kiina testasi kykyään tehdä tällainen, varsin vaativa lento Kuun luokse ja takaisin.

Viime sunnuntain ja maanantain välisenä yönä (Suomen aikaa) laukaisu Queqiao on lentänyt kuluneen viikon ajan kohti Kuuta ja ohitti sen tänään noin 110 kilometrin korkeudelta matkallaan kohti Maan ja Kuun painovoimasysteemin niin sanottua Lagrangen pistettä 2.

Piste sijaitsee noin 64 000 kilometriä Kuun takana Maasta katsottuna ja Kuusta mitattuna.

Luotaimen tehtävänä on toimia myöhemmin (joulukuussa?) laukaistavan Chang'e 4 -laskeutujan ja maa-aseman välisenä tietolinkkinä, ja paikka on kerrassaan mainio tätä varten. Luotain kun ei ole paikallaan L2-pisteessä, vaan kiertää sitä, ja voi siksi olla käytännössä koko ajan suorassa yhteydessä Kuun etelänavan tuntumassa Kuun Maahan näkymättömällä puolella olevaan laskeutujaan ja Maahan.

Tiedonvälitystä varten luotaimessa on 4,2 metriä halkaisijaltaan oleva suuri lautasantenni.

Aikanaan 1960-luvulla Nasa suunnitteli jo tiedonvälitusluotainta lähetettäväksi L2-pisteeseen, koska tuolloin toivottiin jonkun Apollo-aluksista laskeutuvan myös Kuun "takapuolelle". Kuuhan kääntää koko ajan saman puolen kohti Maata, ja olisi ollut erittäin kiinnostavaa laskeutua myös toiselle puolelle. Tätä ei kuitenkaan koskaan tehty – ei Apollo-lentoa Kuun toiselle puolelle, eikä L2-luotainta.

Queqiaossa on kaksi kameraa, joiden toivotaan ottavan vastaisuudessa myös kauniita kuvia Kuun takaa. Näitä maisemia ei nähdä siis koskaan Maasta, mutta ne on kyllä kartoitettu jo hyvin monien Kuuta kiertäneiden luotainten avulla.

Ensimmäisenä Kuun kääntöpuolen kuvasi neuvostoliittolainen Luna 3 lokakuussa 1959. Siksi monet siellä olevat kohteet on nimetty Neuvostoliitossa.

Otsikkokuvassa olevassa kuvassa selvimmin näkyvä musta täplä on Moskovan meri. Sen alapuolella, melkein reunassa on Tsiolkovski-kraatteri.

Aivan kaikkea ei kuitenkaan nimetty neuvostovenäläisittäin, sillä Tsiolkovskin oikealla puolella oleva selvä musta kohta on Jules Verne -kraatteri.

Olemukseltaan Kuun kääntöpuoli on aivan erilainen, sillä siellä ei ole toiselta puolelta tuttuja suuria merialueita. Sinne laskeutuminen ja sen parempi tutkimus auttaa osaltaan selvittämään syytä kahden puolen suuriin eroihin.

Hyvän yleiskatsauksen Kuun kääntöpuoleen saa esim. USGS:n kuukartasta.

Chang'e-5 T1 oli vuonna 2014 tehty koelento, jonka tärkein tarkoitus oli testata maahanpaluukapselia, jonka avulla ensi vuonna Chang'e-5 -laskeutuja voisi palauttaa Kuun pinnalta ottamansa näytteen Maahan. Kapseli kiersi Kuun ja palasi takaisin Maahan, ja matkallaan se otti Kuvia – kuten otsikkokuvana olevan. 

Nyt lennossa olevan Queqiaon matkan etenemisestä ei ole kerrottu mitään julkisesti, mutta se ei ole uutta. Kiinalaiset panttaavat tietoja ja kertovat yleensä vasta jälkikäteen mitä on tapahtunut – jos edes silloinkaan. On siis mahdollista, että Queqiao ei enää edes toimi, mutta todennäköisti (ja toivottavasti) lento jatkuu normaalisti.

Jäämme siis odottamaan uusia kuvia Kuun kääntöpuolelta!

*

Juttua on korjattu Chang'e 4:n laukaisuajan suhteen: laskeutujan oletettu laukaisuaika on joulukuu 2018.

Kiina lähettää illalla tietoliikennesatelliitin kuualuksia varten

Su, 05/20/2018 - 12:30 By Jari Mäkinen
Kiinan kuulinkkisatelliitti

Jos kaikki sujuu suunnitelman mukaan, nousee raketti lentoon Kiinasta nyt keskiyöllä ja lähettää avaruuteen ainutlaatuisen laitteen: tietoliikennesatelliitin, jonka tehtävänä on välittää tietoja Maahan myöhemmin tänä vuonna Kuuhun laskeutuvalta kiinalaisalukselta. Luppoaikanaan satelliitti tekee tähtitieteellisiä havaintoja.

Vuonna 2013 Kiina lähetti Kuun pinnalle Chang'e 3 -laskeutujan ja sen mukana pienen, sympaattisen kuukulkijan, Yutun. 

Myöhemmin tänä vuonna – mahdollisesti jo heinäkuussa – kiinalaiset laukaisevat Kuuhun uuden samanlaisen kaksikon. Chang'e 4 on käytännössä edellisen lennon toisinto, paitsi että nyt laskeutumispaikka tulee olemaan haastavampi: alus koetetaan saada Kuun etelänavan luona olevaan kraatteriin, joka on halkaisijaltaan 180 kilometriä.

Tämä Von Kármán -kraatteri on kiinnostava, koska sen pohjalta on havaittu paljon rautaoksidia ja toriumia. Siellä saattaa olla myös vesijäätä. Kraatteri on todennäköisesti myös eräs vanhimmista Kuun pinnanmuodoista.

Ongelmana on kuitenkin se, että kraatteri sijaitsee Kuun takapuolella. Kuuhan kääntää koko ajan saman puolensa kohti Maata, koska Kuun pyöriminen on lukittunut vuorovesivoimien vuoksi. Laskeutuja ei voi siksi olla suoraan yhteydessä Maahan, joten radiolinkkiä varten tarvitaan erityinen tietoliikennesatelliitti, joka sijaitsee sellaisessa paikassa, mistä on suora linja niin Maahan kuin laskeutumisalueellekin Kuun pinnalla.

Queqiao -nimen saanut linkkisatelliitti ohjataan Maan ja Kuun systeemin niin sanottuun toiseen Lagrangen pisteeseen. Ranskalaismatemaatikko Joseph-Louis Lagrangen vuonna 1772 laskemat pisteet ovat kohtia, joissa taivaankappaleiden vetovoimat yhdessä keskipakoisvoiman kanssa saavat aikaan sen, että pisteessä oleva alus pysyy lähes paikallaan.

Maan ja Kuun Lagrangen piste 2 on noin 64 000 kilometriä Kuun takana Maasta katsottuna, ja koska Queqiao käytännössä kiertää avaruudessa tuota pistettä, pystyy se välittämään kätevästi signaaleita lennonjohdon ja Kuun takapuolella olevan laskeutujan välillä.

Queqiao laukaistaan matkaan Pitkä Marssi 4C -kantoraketilla Xichangin satelliittilaukaisukeskuksesta Sichuanin maakunnasta Kiinan keskiosissa. Laukaisu on tarkoitus tehdä maanantaina aamulla kello 5.28 paikallista aikaa, eli Suomen aikaa maanantain puolella klo 00.28.

Chang'e 3 Yutu-kulkijan kuvaamana.

Silkkimatoja Kuuhun!

Chang'e 3:n näköinen Chang'e 4 on kiinnostava lento monessakin mielessä. Ensinnäkin se on ensimmäinen laskeutuminen Kuun takapuolelle ja myös ensimmäinen erittäin kiinnostavalle eteläiselle napa-alueelle. Se on järjestyksessään 20. laskeutuminen Kuun pinnalle ja jo toinen Kiinan tekemä laskeutuminen Kuuhun.

Laskeutujan mukana on paljon jo huomiota herättänyt pieni kapseli, jonka sisällä on silkkimatoja. Tarkoituksena on tutkia niiden elämistä Kuun pinnan olosuhteissa – toisin tietysti ilmaa sisältävän kapselinsa sisällä.

Mukana on jälleen myös pieni kulkija, joka tulee kuvaamaan ja tutkimaan laskeutumisaluetta muutaman sadan metrin säteellä.

Chang'e 4 on myös tärkeä askel kohti seuraavaa kiinalaislaskeutumista Kuuhun: Chang'e 5 -lennon on tarkoitus tuoda ensi vuonna viisi kiloa painava näyte Kuusta Maahan. Lento on myös teknisesti erittäin haastava ja kiinnostava, joten se on tieteellisen merkityksensä lisäksi osoitus Kiinan avaruustekniikan korkeasta tasosta.

Lento on periaatteessa samanlainen kuin oli neuvostoliittolaisen Luna 24:n näytteenhakulento vuonna 1976.

Kiinan tarkoituksena on lähettää ihmisiä Kuuhun vuoteen 2030 mennessä.

Harakoiden siipien silta

Kiinan kuualukset on nimetty kansantarinoiden mukaan. Siinä missä Chang'e on kiinalaisten Kuun jumalatar ja Yutu oli "kuukaniini", on Queqiao "harakoiden silta" ja se viittaa paitsi tietoliikennesiltaan laskeutujan ja maa-aseman välillä, niin myös tarinaan: tietotoimisto Xinhuan mukaan harakat tekevät kuukalenterin seitsemännen kuukauden seitsemäntenä yönä siivillään sillan, jotta Taivaiden jumalattaren seitsemäs tytär, Zhi Nu, voisi kulkea taivaalla olevan Linnunradan ylitse tapaamaan aviomiestään.

Queqiaolla on myös konkreettinen yhteys Linnunrataan, sillä sen mukana on hollantilaisten Astronin tekemä radiotutkimuslaite, NCLE (Netherlands Chinese Low-Frequency Explorer). Työhön ovat Alankomaiden puolelta osallistuneet myös Dwingeloon radio-observatorio, Nijmegenin yliopisto ja Delftissä oleva avaruusyhtiö ISIS.

Laite (kuvassa yllä) havaitsee hyvin matalia radiotaajuuksia, joita ei voida ottaa vastaan Maassa, koska ilmakehä ei päästä kunnolla lävitseen alle 30 MHz taajuudeltaan olevia sähkömagneettisia aaltoja. Kiinnostavaa laitteessa on myös se, että se voi ottaa vastaan matalia taajuuksia hyvin laajalla aallonpituuskaistalla. Tähtitieteilijät saavat radiolaitteellaan muun muassa lisätietoja maailmankaikkeuden alkuajoista sekä aurinkotuulesta.

Samalla kuukyydillä lähtee matkaan myös kaksi pientä kiinalaista radiotutkimussatelliittia, Longjiang-1 ja Longjiang-2.

Queqiao ei ole ensimmäinen Kiinan lento kauas Kuun radan ulkopuolelle. Chang'e 5-T1 testasi Chang'e 5:n laskeutumiskapselin toimintaa lokakuussa 2014 tekemällä koukkauksen Kuun ympäri ja palaamalla sieltä kovaa vauhtia takaisin Maahan.

*

Kuvat: Kiinan avaruushallinto, Kiinan tiedeakatemia ja Radboud Radio Lab / ASTRON / Albert-Jan Boonstra

Jutussa ollutta laukaisuaikaa on täsmennetty illalla, kun lisätietoja tarkasta ajankohdasta saatiin.

Marsia kohti lentävä nanosatelliitti otti upean kuvan maapallosta

Ke, 05/16/2018 - 17:49 By Jari Mäkinen
Kuva maapallosta ja Kuusta MarCO-B:n oittamana

Maapallo on pieni planeettaa suuressa, tyhjässä ja kylmässä avaruudessa. Monet toki tietävät tämän, mutta sen näkeminen on aina yllättävää. Kohti Marsia lentävä pieni MarCO-luotain otti kuvan Maasta ja Kuusta, ja kuva on yksinkertaisuudessaan kaunis.

Kaksi ammoisen videonauhurin kokoista nanosatelliittia laukaistiin toukokuun 5. päivänä kohti Marsia. Ne lähetettiin matkaan Nasan InSight-laskeutujan kanssa samalla raketilla ja nyt ne lentävät lähes samanlaisella radalla laskeutujan kanssa kohti punaista planeettaa.

Ne olivat 9. toukokuuta jo miljoonan kilometrin päässä Maasta, jolloin toinen niistä, MarCO-B, nappasi tämän kuvan.

Kuvassa näkyy oikealla avattuna oleva antenni auringonvalossa ja vasemmalla luotaimen lämpösuojaa. Keskellä mustaa avaruutta on yksi selvä piste: maapallo.

Pienen pisteen luona, sen alapuolella vasemmalla on heikompi ja pienempi piste, Kuu.

Kuva tuo mieleen Voyager 1 -luotaimen vuonna 1990 ottaman kuvan, joka tunnetaan nyt nimellä "pale blue dot", eli "valju sininen piste".

Tuon kuvan teki tunnetuksi luotaimen tutkijaryhmään kuulunut Carl Sagan, joka myös ehdotti alun perin sen ottamista. Hän näytti sitä aina osoittamaan kuinka pieni ja vaatimaton oma planeettamme on – vaikka meistä se tuntuu niin suurelta. Meille Maa onkin toki tärkeä, mutta harva tulee ajatelleeksi, että se on itse asiassa kuin avaruusalus, jonka pinnalla elämme avaruudessa.

Siinä missä Voyager 1 otti kuvansa kaukoputkimaisella kamerallaan läpi noin kuuden tuhannen miljoonan kilometrin päästä, oli MarCO:n etäisyys "vain" miljoona kilometriä ja se käytti laajakulmalinssiä.

MarCO-luotaimet

MarCO-luotaimet (Mars Cube One) tekivät kuvan ottamista edeltävänä päivänä 8. toukokuuta ennätyksen, koska silloin niistä tuli kauimmaksi Maasta koskaan lähetetyt nanosatelliitit.

Ne perustuvat nykyisin hyvin suosittuun Cubesat-formaattiin ja ovat hyvin samanlaisia kuin esimerkiksi suomalainen Aalto-1 -satelliitti. MarCO:t ovat tosin kaksi kertaa suurempia, niin sanotusti kuuden yksikön cubesateja.

Tarkalleen ottaen MarCO:jen rungot ovat kooltaan 36,6 x 24,3 11,8 cm. Avaruudessa niiden kyljistä ponnahti auki aurinkopaneelit ja suuri levymäinen yhteydenpitoon käytettävä antenni.

Suurin osa nanosatelliiteista kiertää maapalloa alle 800 kilometrin korkeudessa. Nyt aikomuksena on testata niissä käytetyn tekniikan toimivuutta planeettainvälisessä avaruudessa. Koska keskenään samanlaiset MarCO:t eivät kierrä nyt maapalloa, vaan ovat matkalla kohti Marsia, niitä on satelliitti-sanan sijaan parempi kutsua luotaimiksi. 

Maa on tässä piirroksessa suhteettoman suuri: oikeasti Marsista katsottuna Maa on vain piste taivaalla.

InSight laskeutuu Marsiin, mutta MarCO:t lentävät Marsin ohi. Ne tarkkailevat laskeutujan asettumista Marsin pinnalle avaruudesta, mutta InSight ei luota niihin laskeutumisensa aikana – Marsia kiertävä Mars Reconnaissance Orbiter välittää tietoja Maahan. Jos pikkuiset luotaimet toimivat kuitenkin hyvin, voitaisiin tulevaisuudessa planeettaluotaimien kanssa lähettää tällaisia pieniä apuluotaimia, ja joissakin tapauksissa koko lento voitaisiin tehdä tällaisella pikkuluotaimella. Ne kun ovat edullisempia tehdä ja lähettää matkaan.

Seuraava MarCO-luotaimien merkkipaalu on myöhemmin tässä kuussa, kun ne tekevät ratakorjauksen. Vastaavaa ei ole koskaan aikaisemmin yritetty nanosatelliitilla.

Myös Suomessa on suunniteltu planeettalentoon sopivaa nanosatelliittia.

Reaktor Space Lab on tehnyt hahmotelman asteroidia tutkivasta laitteesta, joka perustuisi cubesat-formaattiin ja joka käyttäisi VTT:n kehittämää pientä hyperspektrikameraa asteroidin kuvaamiseen.

Tämä ASPECT-niminen laite olisi lentänyt Didymos -asteroidin luokse Euroopan avaruusjärjestön AIM-luotaimen (Asteroid Impact Mission) mukana. Valitettavasti AIM peruutettiin joulukuussa 2016, mutta sen idea elää edelleen ja myös suomalainen planeettatutkimuscubesat saattaa saada vielä uuden mahdollisuuden.