Kuurainen aamu Marsissa

Kuuraa Marsin pinnalla
Kuuraa Marsin pinnalla

Nyt kun taivaalta sataa lisää lunta jo valmiiksi nietosten peittämään maahan, voidaan vilkaista olosuhteita naapuriplaneetan pinnalla – tosin vuosikymmenien takaa.

Päivän kuva

Vaikka Marsin harvassa kaasukehässä on mitättömän vähän vesihöyryä, merkkejä siitä näkyy toisinaan planeetan punaisella pinnallakin. Kylmän yön jälkeen kivistä hiekka-aavikkoa peittää valkoinen kuura. Se ei kuitenkaan ole härmistynyttä vesihöyryä kuten Maassa vastaavissa oloissa, vaan hiilidioksidin ja veden muodostamaa klatraatiksi kutsuttua ainetta.

Päivän kuvan on ottanut Viking 2 -luotain 18. toukokuuta 1979 Utopian tasangolla, suunnilleen Lontoota vastaavalla leveysasteella. Horisontti ei todellisuudessa ole vino, vaan luotaimen laskeutuessa yksi sen kolmesta jalasta jäi kivenmurikan päälle. Syksyllä 1976 laskeutunut luotain toimi kuvan ottamisen jälkeen vielä melkein vuoden ajan ennen kuin sen akuista loppui virta. 

Kuva: NASA/JPL

 

NASAn seuraava Mars-lento peruutettu – kenties koko luotain jää lähettämättä

InSight
InSight

Päivitys: InSight on nyt virallisesti NASAn vuoden 2018 laukaisulistassa, mutta sen matkaan lähettäminen oikeasti on vielä epävarma

InSight-laskeutuja oli tarkoitus lähettää Marsiin ensi maaliskuussa, mutta sen päätutkimuslaitteessa havaitun vian vuoksi NASA on päättänyt olla lähettämättä sitä.

Voi olla, että 675 miljoonaa dollaria maksanut laskeutuja jää kokonaan lähettämättä. Joka tapauksessa laukaisu lykkääntyy kaksi vuotta eteenpäin, sillä Marsiin kannattaa lähettää luotaimia vain   joka toinen vuosi.

Näin ollen ESAn yhdessä venäläisten kanssa ensi helmikuussa lähetettäväksi suunniteltu ExoMars on ainoa kohti punaista planeettaa lähetettävä alus tässä laukaisuikkunassa.

Nimi InSight on lyhennys sanoista Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, eli laskeutujan tarkoituksena oli tutkia Marsin sisustaa seismometrin  avulla sekä selvittää sen geodesiaa sekä lämpötasapainoa. Sen avulla oli tarkoitus saada lisätietoa planeetan sisärakenteesta ja sen ytimen koosta.

Sen päätutkimuslaite, joka nyt aiheuttaa laukaisun peruutuksen, on ranskalaistekoinen seismometri SEIS. Itse kolmesta seismometristä koostuva instrumenttipaketti toimii erinomaisesti, mutta siinä oleva 22 cm halkaisijaltaan oleva sylinteri, jonka sisällä pitäisi olla tyhjiö, alkoi yllättäen vuotaa testeissä. 

Tyhjiökammio on pettänyt testeissä jo kolme kertaa aikaisemmin, mutta insinöörit olettivat jo korjanneensa vian lopullisesti, kunnes se alkoi taas vuotaa. 

Koska laukaisupäivä alkaa olla jo kovin lähellä, ja luotaimen laukaisuvalmistelun pitäisi alkaa jo pian, ei aika enää riitä korjaamiseen – ja ennen kaikkea korjauksen uuteen suunniteluun sekä laitteen testaamiseen. Kallista laskeutujaa ei kannata lähettää matkaan, jos sen päätutkimuslaitteen toiminta halutulla tavalla ei ole varmaa.

Lisäksi laskeutujassa on mukana saksalaistekoinen Marsin pinnan lämmönjohtavuutta mittaava laite, magnetometri, kameroita sekä säämittareita. Laskeutujan lähettämän radiosignaalin avulla oli myös tarkoitus tutkia planeetan sisustaa.

NASA kertoo, että laskeutujan lähettämisen lykkääminen on luonnollisesti ikävää, mutta se ei vaikuta amerikkalaisten Mars-tutkimukseen laajemmin. Kyseessä on ns. edullinen välilento, ja se käyttää Phoenix-laskeutujassa käytettyä tekniikkaa ja ulkomailta saatuja mittalaitteita.

Seuraava etappi NASAlle on vuonna 2020 lähetettävä kulkija, joka on samankaltainen kuin nyt Marsissa oleva Curiosity-kulkija – tosin hieman erilaisilla tutkimuslaitteilla varustettuna.

Jos InSight lähetetään matkaan, niin se täyttäisi nyt NASAn marslentokalenterissa vuonna 2018 olleen aukon.

Nyt NASA katsoo vain sivusta: eurooppalainen ExoMars esiteltiin (video)

Nyt NASA katsoo vain sivusta: eurooppalainen ExoMars esiteltiin (video)

Se on kolme ja puoli metriä korkea, 4300 kiloa massaltaan oleva ilmestys, joka on tarkoitus singota venäläisellä Proton M -kantoraketilla 14. maaliskuuta ensi vuonna kohti Marsia.

26.11.2015

Ja nyt se on Cannesissa, Ranskassa, ThalesAlenia Space -yhtiön puhdastilassa, missä se on laitettu kasaan eri puolilta Eurooppaa ja Venäjää saapuneista osista.

Se on moneen kertaan lykkääntyneen ja välillä jo melkein kuopatun ExoMars-hankkeen ensimmäinen luotain sekä sen mukana Marsiin lähetettävä laskeutumistekniikkaa testaava pieni laskeutuja.

ExoMarsItse luotain tunnetaan lyhennenimellä TGO, Trace Gas Orbiter, sillä sen tärkein tehtävä on mitata ja kartoittaa paljon aiempaa paremmin punaisen planeetan kaasukehässä olevia merkkikaasuja. Erityisen kiinnostava sellainen on metaani, koska Marsissa on havaittu omituisia metaanipitoisuuksia: tärkeimmät metaanin tunnetut lähteet ovat tulivuoret sekä pinnan alla hitaasti tapahtuvat mineraalien reaktiot veden kanssa ... ja elämä.

On mahdollista, että pinnanalaiset mikrobit hönkäilevät Marsin kaasukehään metaania, mutta koska viime aikoina on huomattu, että Marsin tulivuoritoiminta on päättynyt varsin myöhään, voi myös olla niin, että siitä peräisin olevaa metaania tihkuu vielä kaasukehään.

TGO onkin varustettu kahdella tarkalla spektrometrillä, jotka mittaavat kaasukehää. Metaanin lisäksi mitattavia kaasuja ovat mm. vesihöyry, typpioksidi sekä asetyleeni, joka sekin voisi viestiä biologisista prosesseista Marsissa. 

Lisäksi luotaimessa on tarkka kameralaitteisto, joka pystyy erottamaan vain viisi metriä kooltaan olevia yksityiskohtia, sekä neutroni-ilmaisin, joka voi sondata noin metrin syvyydelle saakka jäätä pinnan alta noin kymmenen kertaa tarkemmin kuin tähän saakka.

TGO ja Schiaparelli lähestyvät Marsia

TGO:n mukana Marsiin matkaa Schiaparelliksi ristitty noin kaksi metriä halkaisijaltaan oleva laskeutuja, jonka tärkein tehtävä on testata tekniikkaa, jota vaaditaan Marsin pinnalle laskeutumiseen. 

Lisäksi se mittaa laskeutuessaan ensimmäistä kertaa Marsin kaasukehän tuulia ja ominaisuuksia avaruudesta aina pinnalle saakka, ja pinnalla se jatkaa säätietojen sekä kaasukehän tutkimista muutaman Marsin päivän ajan. Lisäksi mukana on kameralaitteisto, joka kuvaa laskeutumispaikkaa. 

Erityisen haastavaksi laskeutumisen tekee se, että se tapahtuu ensi lokakuussa aikaan, jolloin Marsissa on pölymyrskykausi pahimmillaan: laskeutuja saattaa siksi joutua myrskyn kouriin ja siksi sen lämpösuojakilvestä on tehty hieman paksumpi, jotta se kestäisi mahdollisen pölyn törmäykset. Laskeutuminen tapahtuu näillä näkymin 19. lokakuuta 2016. 

ExoMars 2018

Esinäytös vuodelle 2018

Schiaparellin testaamaa tekniikkaa on tarkoitus käyttää vuonna 2018 laukaistavan ExoMars-kulkijan (kuva yllä) saamiseen turvallisesti punaisen planeetan pinnalle. Siinä missä nyt Schiaparellin massa on "vain" 600 kg, on ExoMars-kulkijan sekä sen laskeutumislavetin massa noin kaksi tonnia. 

Kulkijassa on mukana koko joukko tutkimuslaitteita, jotka ovat joko ensimmäisiä tai paljon aiempia parempia. Kiinnostavin näistä on poralaitteisto, jonka avulla ExoMars voi ottaa näytteitä noin kahden metrin syvyydestä pinnan alta ja tutkia näytteitä pienellä laboratoriolla.

Pinnan alta saatavat näytteet ovat erittäin kiinnostavia, koska siellä ei Auringon ultraviolettisäteily tai avaruudesta tuleva ionisoiva säteily ole vaikuttanut.

ExoMars on myös erikoinen kulkija siksi, että se voi paitsi rullata eteenpäin pyörillään, joissa on sähkömoottorit ja levenevä ulkopinta, niin kykenee käyttämään pyöriä myös kävelemiseen: liikuttamalla tankoja, joissa pyörät ovat kiinni, samaan tapaan kuin hyönteinen liikuttaa jalkojaan, voi kulkija hiippailla pois paikoista, joista se ei ajamalla pääsisi.

TGO

Tiukka aikataulu

Ensi vuoden alussa on jälleen noin kahden vuoden välein toistuva aika, jolloin Maasta on edullisinta lähettää Marsiin luotain. Maan ja Marsin sijainnit radoillaan ovat silloin sopivat.

NASA lähettää 4. maaliskuuta matkaan InSight-laskeutujansa, ja TGO:n sekä Schiaparellin parivaljakko lähtee matkaan kymmentä päivää myöhemmin, 14. maaliskuuta. Kuten amerikkalaisella kumppanillaan, on "laukaisuikkuna" varsin lyhyt, eurooppalaisluotaimen tapauksessa vain 12 vuorokautta. Jos venäläinen Proton ei pääse matkaan Baikonurin kosmodromista ennen maaliskuun 26. päivää, eivät luotaimet tavoita Marsia.

Jotta luotain olisi varmasti valmis laukaisuun tuolloin, on sitä valmisteltu nyt yötä päivää matkaan. Juuri ennen joulua luotain, laskeutuja ja kaikki niiden laukaisuvalmistelussa vaadittavat laitteet kuljetetaan Cannesista Torinon lentoasemalle rekoilla, mistä ne lennätetään Antonov-rahtikoneilla Moskovan kautta Baikonuriin.

Siellä tammi-helmikuussa kaksikko valmistellaan matkaan, testataan vielä kerran, tankataan ja asennetaan raketin nokkaan. Ja toivon mukaan laukaisu tapahtuu heti laukaisuikkunan avauduttua 14. maaliskuuta.

Jos näin käy, saapuu luotain Marsiin 16. lokakuuta 2016. Schiaparelli laskeutuu Meridani-tasangolle 19. lokakuuta (se irrotetaan omille teilleen ennen kuin TGO asettuu kiertämään Marsia). Laskeutuja toimii Marsin pinnalla suunnitelman mukaan 19.-23. lokakuuta, ja TGO välittää sen tietoja Maahan.

Joulukuusta 2016 alkaen TGO alkaa käyttää ilmajarrutusta hyväkseen muuttaakseen rataansa matalammaksi, eli se koukkaa välillä Marsin kaasukehän yläosien kautta, jolloin kaasun kitka hidastaa sen vauhtia. Samalla luotain myös kuumenee hieman, mikä on otettu huomioon sen suunnittelussa. Lopulta sen kiertorata on noin 400 km korkeudella pinnasta.

TGO:n suunniteltu toiminta päättyy tammikuussa 2019, mutta siinä on mukana polttoainetta sen verran runsaasti, että periaatteessa se voisi toimia aina vuoteen 2022 saakka – kenties jopa pitempään.

Tekniikan lisäksi haastavaa on ollut (ja osin on vielä edelleen) luotaimen ohjelmistojen tekeminen, sillä TGO on suunniteltu toimimaan erittäin itsenäisesti. Se ei siis vaadi jatkuvaa lennonjohdon paapomista samaan tapaan kuin nykyiset Mars-luotaimet.

Komea kaksikko

Jos TGO-luotainta pääsisi katsomaan toiminnassa, olisi se varsin komea näky, sillä TGO:n aurinkopaneelien kärkiväli on yli 17 metriä ja sen suuri lautasantenni on 2,2 metriä halkaisijaltaan.

SchiaparelliVieläkin upeampaa olisi seurata Schiaparellin laskeutumista Marsiin, sillä se joutuu kokemaan rauhallisen planeettainvälisen lennon jälkeen kuuden minuutin rajun toiminnan, kun se hidastaa 21 000 kilometrin tuntinopeudesta nollaan.

Kun laskeutuja osuu Marsin kaasukehään, on sen korkeus pinnasta noin 122 km. Ensin sen keraaminen lämpösuoja paitsi suojaa sitä kuumuutta vastaan, niin myös jarruttaa vauhtia siinä määrin, että laskuvarjo voidaan avata noin 11 kilometrin korkeudessa. Nopeus on silloin vielä noin 1650 kilometriä tunnissa.

Lämpösuoja irtoaa noin seitsemän kilometrin korkeudessa, minkä jälkeen se alkaa hallita laskeutumista aktiivisesti asennonsäätö- ja jarrutusrakettimoottorien avulla. Laskuvarjo irtoaa noin 1,3 kilometrin korkeudessa. Nyt nopeus on vielä noin 270 km/h.

Tämän jälkeen rakettimoottorit alkavat jarruttaa siten, että laskeutujan nopeus on kahden metrin korkeudessa enää kaksi kilometriä tunnissa, siis vähemmän kuin normaali kävelyvauhti. Rakettimoottorit sammuvat ja Schiaparelli putoaa pinnalle. Sen rakenne on tehty kestämään 11 km/h:n törmäys pintaan.

Näin Marsin "kanavat" ensimmäisenä 1800-luvun lopussa havainnut italialainen tähtitieteilijä Giovanni Schiaparelli pääsee lopulta planeettansa pinnalle ainakin nimellisesti. Alla on hänen tekemänsä kartta Marsista vuodelta 1888.

Schiaparellin Mars-kartta vuodelta 1888

Marsista on tulossa rengasplaneetta

Mars ja sen rengas
Mars ja sen rengas

Pari viikkoa sitten kerroimme, että Marsin suurempi kuu Phobos on hiljalleen hajoamassa. Television ostoskanavien iskulausetta lainaten voisi todeta, että eikä tässä vielä kaikki: Mars saa ympärilleen renkaan.

Toisin kuin Kuu, joka etääntyy Maasta hitaasti muutaman senttimetrin vuosivauhdilla, Phobos lähestyy Marsia suunnilleen samaan tahtiin. Koska Phobos on höttöinen sorakasa eikä kiinteä kappale, siihen kohdistuvat vuorovesivoimat repivät sen ennen pitkää helposti hajalle. 

Kuu pirstoutuu ehkä 20–40 miljoonan vuoden kuluttua. Phoboksen jäänteet eivät kuitenkaan leviä taivaan tuuliin, vaan jäävät Marsia kiertävälle radalle – eli muodostavat planeetan ympärille renkaan. Parinkymmenen miljoonan vuoden kuluttua Aurinkokunnassa on siis kaikkiaan viisi rengasplaneettaa.

Jupiterista, Saturnuksesta, Uranuksesta ja Neptunuksesta poiketen Mars ei kuitenkin pysty säilyttämään uutta statustaan kovin pitkään. Renkaan elinikää ei pystytä arvioimaan kovin tarkasti, mutta se on miljoonan ja sadan miljoonan vuoden välillä.

Suuremmat kappaleet syöksyvät alas melko pian, mutta pienemmät sirut ja pöly kiertävät Marsia mahdollisesti miljoonien vuosien ajan ennen kuin vajoavat hiljalleen yhä alemmas ja päätyvät lopulta harvaan kaasukehään tuhoutuen meteoreina.

"Jos kuu hajoaa noin 1,2 Marsin säteen etäisyydellä [planeetan keskipisteestä] eli noin 680 kilometriä korkeudella, siitä muodostuu hyvin kapea rengas, jonka tiheys on samaa luokkaa kuin Saturnuksen massiivisimpien renkaiden", sanoo Tushar Mittal, toinen tutkimuksen tekijöistä. 

Aikaa myöten rengas levenisi ja sen ainetta alkaisi pudota Marsiin. Silloin renkaan elinikä jäisi korkeintaan muutamaan miljoonaan vuoteen. Mikäli kuu hajoaa jo kauempana Marsista, rengas voisi säilyä jopa sadan miljoonan vuoden ajan.

Marsin rengas ei välttämättä erottuisi Maasta saakka – jos täällä on enää ketään sitä yrittämässä – koska pöly heijastaa huonosti auringonvaloa. Rengas kuitenkin heijastaisi valoa Marsiin ja lisäisi hieman sen kirkkautta. Myös planeetan pinnalle lankeava renkaiden varjo saattaisi erottua riittävän isolla kaukoputkella.

"Jos Marsin pinnalla seisoisi joidenkin kymmenien miljoonien vuosien kuluttua, näky olisi melkoinen", arvelee Benjamin Black, tutkimuksen toinen tekijä.

Marsin kuun kohtalosta kerrottiin Kalifornian Berkeleyn yliopiston uutissivuilla ja se on julkaistu Nature Geoscience -tiedelehdessä (maksullinen).

Kuva: Tushar Mittal / Celestia 2001-2010, Celestia Development Team.

Maa näkyy nyt iltataivaalla

Maa Marsin iltaivaalla
Maa Marsin iltaivaalla

Päivän kuva

Ei, otsikossa ei ole kirjoitusvirhettä: Maa tosiaan loistaa iltataivaalla – Marsin pinnalta katsottuna. 

Päivän kuva on parin vuoden takaa. NASAn Curiosity-kulkija otti sen tammikuun viimeisenä päivänä vuonna 2014. Aurinko oli laskenut vajaat puolitoista tuntia aiemmin, ja Maa oli painumassa kohti horisonttia.

Samalla tavalla kuin Merkurius ja Venus näkyvät meidän taivaallamme aina melko lähellä Aurinkoa – ja siten vain aamulla tai illalla – Marsista katsottuna myös Maa kimmeltää ainoastaan aamu- tai iltatähtenä. 

Tällä hetkellä Mars näkyy Venuksen ja Jupiterin kanssa aamulla ennen auringonnousua himmeänä punaisena valopisteenä, joten Marsista katsottuna Maa on iltataivaalla – aivan kuten Curiosityn pari vuotta sitten ottamassa kuvassa.

Jos ihminen joskus matkaa Marsiin, kotiplaneettamme loistaa punasävyisellä ilta- tai aamutaivaalla kirkkaana valopisteenä, mutta sen rinnalla näkyy myös Kuu. Suurennoksessa kiertolaisemme erottuu maapallon alapuolella.

Kuvat: NASA/JPL-Caltech/MSSS/TAMU

Marsin Phobos-kuu on pirstoutumassa!

Phobos, Marsin kuu
Phobos, Marsin kuu

Ei tosin ihan vielä eikä kovin nopeasti, mutta parinkymmenen kilometrin läpimittaisen, muodoltaan epäsäännöllisen kuun kohtalo on jo sinetöity.

Phoboksen pinnalla kulkevat pitkät, matalat uurteet ovat todennäköisesti halkeamia, jotka johtavat lopulta koko kuun hajoamiseen.

Phobos kiertää Marsia lähempänä kuin yksikään toinen Aurinkokunnan kuu omaa planeettaansa: sen etäisyys punaisen planeetan pinnasta on vain noin 6 000 kilometriä.

Etäisyys kuitenkin pienenee kaiken aikaa. Marsin vetovoima kiskoo kuuta lähemmäs kahden metrin verran vuosisadassa. Phoboksen arvioidaan hajoavan kokonaan 30–50 miljoonan vuoden kuluessa.

"Phobos on todennäköisesti alkanut jo hajota ja ensimmäinen merkki siitä on näiden uurteiden syntyminen", toteaa Terry Hurford NASAn Goddardin avaruuslentokeskuksesta.

Pitkään Phoboksen uurteiden arveltiin syntyneen, kun kuuhun iskeytyi Stickney-kraatterin synnyttänyt kappale. Törmäys olisi ollut niin raju, että Phobos lähestulkoon hajosi saman tien. 

Sittemmin kuitenkin todettiin, että uurteet eivät tule säteittäisesti kraatterin kohdalta, vaan ainoastaan sen läheisyydestä. Uuden mallin mukaan ne olisivatkin syntyneet Phoboksen muodon muuttuessa, kun Marsin vetovoima saa aikaan siinä vuorovesivoimia.

Samanlaiset vuorovesivoimat aiheuttavat Maa-Kuu-järjestelmässä maapallolla – nimensä mukaisesti – vuorovesien vaihtelun ja Kuun venymisen aavistuksen pitkulaiseksi. 

Selitys esitettiin alkujaan jo 1970-luvulla, kun Viking-luotaimet välittivät kuvia Phoboksesta. Silloin kuun kuitenkin arveltiin olevan kauttaaltaan kiinteä kappale, joten vuorovesivoimien laskettiin olevan liian heikkoja, jotta ne olisivat saaneet sen halkeilemaan.

Nykyisin Phobosta pidetään pidemminkin hädin tuskin koossa pysyvänä sorakasana, jonka pinta on noin sadan metrin paksuudelta puuterimaista regoliittia, meteoriittitörmäysten murentamaa kiviainesta.

Tällaisen kappaleen sisäosissa voi tapahtua muodonmuutoksia, joiden seurauksena myös ulkokerrokset muokkautuvat uuteen uskoon. Tutkijat arvelevat, että Phoboksen pintaosat ovat joustavat, mutta rakenteellisesti niin heikot, että niihin syntyy helposti halkeamia.

Silloin vuorovesivoimat pystyvät vaivatta rikkomaan pintakerroksen. Uuden mallin mukaan tehdyt laskelmat sopivat hyvin yksiin Phoboksen pinnalla havaittujen uurteiden kanssa. Selitys istuu myös siihen, että uurteet näyttävät olevan eri-ikäisiä. Se viittaa niitä synnyttävän prosessin olevan käynnissä kaiken aikaa. 

Neptunuksen Triton-kuulle voi käydä ennen pitkää samalla tavalla kuin Phobokselle. Myös se lähestyy hitaasti planeettaa ja sen pinnalla on havaittu halkeamia. Phoboksen tutkimus saattaa antaa viitteitä joidenkin eksoplaneettojen kohtalostakin.

"Emme saa näistä kaukaisista planeetoista kuvia, joista näkisimme, mitä siellä on tapahtumassa, mutta uusi tutkimus auttaa meitä ymmärtämään niitä paremmin. Jos planeetta on lähestymässä tähteään, se saattaa olla hajoamassa samalla tavalla", arvelee Hurford.

Uudesta mallista kerrottiin NASAn uutissivuilla.

Kuva: NASA/JPL-Caltech/University of Arizona

 

Revontulia! Tällä kertaa Marsissa

Marsin revontulia
Marsin revontulia

Maa ei ole ainoa planeetta, jonka yötaivaalla leiskuvat toisinaan revontulet. Jupiterilla ja Saturnuksella on voimakkaat magneettikentät, jotka saavat aikaan niiden napaseuduille samanlaisen ilmiön kuin maapallon lähiavaruudessa on havaittavissa, mutta revontulia on myös Marsissa.

Naapuriplaneetallamme ei ole enää samanlaista kattavaa magneettikenttää kuin Maalla, mutta muinoin sellainen on ollut. Ja siitä on edelleen rippeet jäljellä. Etenkin eteläisen pallonpuoliskon ylänköalueilla on havaittavissa heikkoa magneettisuutta.

Aurinkotuulen mukana kulkevat hiukkasmyrskyt voivat aiheuttaa revontulia myös ilman magneettikenttää, sillä suoraan planeetan kaasukehään iskeytyvät hiukkaset virittävät kaasuatomeita ja -molekyylejä siinä missä magneettikentän ohjaamat hiukkasetkin. Magneettikenttä kuitenkin voimistaa ilmiötä.

Vuodesta 2003 lähtien Marsia tutkinut Euroopan avaruusjärjestön Mars Express -luotain havaitsi pian saapumisensa jälkeen tietyillä alueilla ultraviolettialueella loimottavia revontulia. Yli kymmenen vuoden aikana kertyneiden havaintojen perusteella tutkijat ovat nyt hahmottaneet missä ja miten marsilaiset revontulet syntyvät. 

"Ultraviolettirevontulet ovat osoittautuneet hyvin harvinaisiksi ja lyhytaikaisiksi: ne kestävät vain joitakin sekunteja. Vaikka Mars Express kulkee samojen alueiden ylitse useita kertoja, tietyllä paikalla havaitut revontulet eivät näytä toistuvan myöhemmin", toteaa Lauriane Soret Liègen yliopistosta.

Kaikkiaan 113 ratakierroksesta, joilla luotain katsoi alaspäin planeetan yöpuolelle, ainoastaan yhdeksällä havaittiin revontulia. Joillakin kierroksilla niitä näkyi useamman kerran, joten kaikkiaan positiivisia havaintoja kertyi 16.

Kolme kertaa revontulia havaittiin, kun luotain tarkasteli Marsin kaasukehää viistossa kulmassa. Silloin voitiin määrittää niiden korkeus, joka oli keskimäärin 137 kilometriä.

 

 

Ylläolevaan kuvaan on merkitty kaikki revontulihavainnot valkoisilla palloilla. Eri värit kertovat heikon magneettikentän ominaisuuksista. Punaisilla alueilla magneettikentän voimaviivat ovat suljettuja silmukoita, violeteilla ne ovat avoimia ja jatkuvat kauas avaruuteen.  

Mars Express pystyi revontulia havaitessaan mittaamaan myös kaasukehään iskeytyvien elektronien energioita. Kun tutkijat yhdistivät kaikki luotaimen tekemät havainnot, kävi ilmi, että revontulien esiintyminen edellyttää erityisiä olosuhteita ja niitä näkyy ainoastaan avointen ja suljettujen magneettisten voimaviivojen raja-alueilla.

Mittaukset paljastivat myös odottamattoman poikkeaman elektronipurkausten ja revontulien esiintymisalueiden välillä. Se kertoo elektronien liikettä ohjaavien magneettikentän voimaviivojen kallistuneen planeetan pinnan suhteen. 

"Näyttää siltä, että säteilyn syntyä ohjaa tietynmallinen paikallinen magneettikenttä: kun se alkaa avautua, syntyy sateenvarjomainen muoto, joka päästää läpi energisiä elektroneja", selittää Jean-Claude Gérard.

Elektronit saavat lisävauhtia magneettikentän voimaviivojen suuntaisissa sähkökentissä ja törmäävät kaasukehän hiilidioksidimolekyyleihin, mistä on seurauksena ultraviolettialueen revontulia.

"Olemme havainneet, että Marsin kuoren magneettisiin alueisiin liittyvät ultraviolettirevontulet ovat hyvin rajallisia, harvinaisia ja ohimeneviä ilmiöitä, joissa tapahtuu sekä ajallisia että paikallisia muutoksia. Ne poikkeavat huomattavasti muilla planeetoilla esiintyvistä revontulista", päättää Soret.

Tutkimuksesta kerrottiin ESAn uutissivuilla sekä Icarus- ja Journal of Geophysical Research: Space Physics -tiedelehdissä (maksullisia).

Kuva: ESA / J.-C. Gérard et al.

VTT auttaa Mars-robottien yhteydenpitoa

Rakennusrobotteja
Rakennusrobotteja

Teknologian tutkimuskeskus VTT kertoi eilen olevansa mukana hankkeessa, jossa kehitetään kommunikointitekniikkaa tulevaisuuden Mars-lentoja varten.

Aikanaan astronautit tulevat käyttämään etäyhteydellä erilaisia työvälineitä ja robotteja, ja on tärkeää, että yhteys toimii katkeamatta ja luotettavasti.

Tätä tekniikkaa on testattu käytännössä viimeksi nyt syyskuussa, kun tanskalaisastronautti Andreas Mogensen ohjasi Kansainväliseltä avaruusasemalta alhaalla Maassa olleita robotteja. Tästä on myös pieni video alla. 

Tehtävät olivat nyt yksinkertaisia, mutta tulevaisuudessa esimerkiksi Marsissa robottien avulla voidaan rakentaa asema Marsin pinnalla jo ennen astronauttien saapumista sinne. 

Voisi hyvin kuvitella, että astronautit ohjaavat toimia Marsia kiertävästä aluksestaan ennen kuin lähtevät laskeutumaan itse pinnalle.

Lähes kaikki tulevaisuuden miehitetyt avaruustutkimuslennot lähtevät siitä ajatuksesta, että robotit ja astronautit toimivat yhdessä – on siis tärkeää kehittää jo nyt tekniikkaa, jolla homma toimii hyvin.

 

Suomalais-italialainen UNISONO

Toistaiseksi VTT:n tietotaitoa ei ole käytetty avaruusaseman etäyhteyksissä, mutta pian tullaan käyttämään: suomalaisten johtamassa UNISONO-hankkeessa kehitetään tekniikkaa, jolla etäkäyttäjä ja robotti pystyvät toimimaan saumattomasti yhdessä.

Tähän viittaa myös hankkeen nimi, sillä musiikissa termi “unisono” tarkoittaa sitä, kun usea esiintyjä laulaa tai soittaa yksiäänisesti.

Tarkoituksena on käyttää hankkeessa kehitettyä yhteyden luotettavuutta parantavaa tekniikkaa aluksi vain kansainvälisen avaruusaseman ja Maan pinnalla olevan robotin välisessä yhteydessä. 

Marsissa robotin ja astronauttien ohjauspisteen välillä ei ole tietoliikennesatelliitteja maapallon ja ISS-avaruusaseman tapaan, vaan yhteyden pitää olla suora. Linkki aseman ja robotin välillä on mahdollinen siis vain silloin, kun avaruusasema on maa-asemalta katsottuna horisontin yläpuolella.

Koska Mars-alus tullee kiertämään Marsia hieman kauempana kuin avaruusasema kiertää Maata, on aika, jolloin suora yhteys on kerrallaan mahdollinen Marsissa pitempi kuin täällä Maassa. 

Jotta tätä pitempää suoraa yhteyttä voitaisiin jäljitellä Maan pinnalla, on aikomuksena linkittää useampia maa-asemia yhteen, jolloin yhteys kestäisi saman aikaa kuin Marsissa. 

UNISONOn avulla yhteys pystytään säilyttämään luonnollisena, vaikka maa-asema vaihtuukin. Linkkiä aseman ja Maan välillä voidaan vaihtaa saumattomasti.

Hanke on alkanut kesäkuussa 2014 ja VTT:n kanssa siinä on mukana italialainen avaruusteknologiayritys Altec SpA. Se on osa Euroopan avaruusjärjestön avaruusrobotiikkaa tutkivaa METERON-ohjelmaa (Multi-Purpose End-To-End Robotic Operation Network) 

Sovelluskohteitta muuallakin kuin avaruudessa

Vaikka nyt tekniikkaa on tarkoitus käytettää "vain" maapallolla ja tulevaisuuden Mars-lentojen simuloinnissa, on kehitettyjä ratkaisuita mahdollista soveltaa kaikkialla, missä on langattomia radioyhteyksiä sekä vaihtuvia yhteyspisteitä.

Kännykkäverkoissa tämä on jo arkipäivää, kun mobiililaitteet liikkuvat tukiasemalta toiselle; uuden tekniikan avulla yhteydet saadaan pysymään entistä häiriöttömämpinä. Esimerkiksi älypuhelimien käyttäjät hyötyvät tästä.

Peliteollisuus puolestaan voisi hyödyntää UNISONO-hankkeen teknologiaa mobiilipelien häiriöiden poistamisessa.

Fuusiovoimalan robotit tiennäyttäjinä

VTT on käyttänyt UNISONO-projektissa hyödyksi monia tekniikoita ja työkaluja, joita on kehitetty aikaisemmissa projekteissa. 

Tärkeässä roolissa on esimerkiksi Qosmet-työkalu, jolla mitataan radiotietoliikenneverkon suorituskykyä. UNISONOssa Qosmetilla voi mitata, että yhteys pysyy katkeamattoman koko operaation ajan.

VTT on kehittänyt myös yhdessä Tampereen teknillisen yliopiston kanssa etäoperointia ja huoltorobotteja ITER-fuusiokoelaitokseen.

Otsikkokuvassa on Foster + Partnersin hahmottelemia Mars-aseman rakennusrobotteja.

Planeetat lähes kolaroivat taivaalla

Planeetat aamutaivaalla
Planeetat aamutaivaalla

Päivän kuvaJos heräät aikaisin ja näet tähtitaivaan ennen Auringon nousua, voit nähdä siellä itäisellä taivaalla kolme kirkasta planeettaa.

Näistä Venus ja Jupiter ovat huomiota herättävän kirkkaita, ja niitä säestävä Mars on puolestaan selvästi punertava.

Ne olivat viime viikonloppuna erityisen lähellä toisiaan, jolloin esimerkiksi John Williams sai kuvattua kolmikon taivaalta. Kuvassa on itse asiassa myös Merkurius, joka näkyy (heikosti tosin) kuvassa horisontin päällä heikkona valopisteenä keskiosan vasemmalla puolelta.

Kolmikko on aamutaivaalla nyt tämän jälkeenkin oikeastaan koko loppuvuoden, tosin ei enää niin tiiviinä muodostelmana. Lisäjännitystä saadaan 7. marraskuuta, jolloin niiden luona on näyttävästi myös kapea kuunsirppi. Saturnus liittyy joukkoon vielä joulukuussa.

Tänään maanantaina muuten Venus on suurimmassa läntisessä elongaatiossaan: tämä tarkoittaa sitä, että se näkyy taivaalla kauimpana Auringosta "länteen päin", eli näkyvissä aamutaivaalla. Tästä Venus, jonka rata on Maan rataa sisempänä Auringon ympärillä, liikkuu taivaalla jälleen lähemmäksi Aurinkoa, kunnes sen havaitseminen on hankalaa (koska se on Auringon suunnalla) ensi maaliskuusta alkaen. Venus alkaa näkyä iltatähtenä jälleen ensi vuonna elokuusta alkaen, kuten se näkyi alkuvuodesta tänä vuonna.

Planeettojen tarkemmat sijainnit voi katsoa mm. Ursan netissä olevasta tähtikartasta.

Kuva: Flickr / John Williams CC-lisenssillä

Marsiin suunnitteilla hämmästyttävä rakennus

ICE HOUSE -Mars-rakennus
ICE HOUSE -Mars-rakennus
Team LavaHive

Yksin Marsissa -elokuvan siivittämänä kaikki punaiseen planeettaan liittyvä tutkimus on ollut viime aikoina otsikoissa, ja NASA on käyttänyt tätä nostetta varsin tehokkaasti hyväkseen. 

Se pieni yksityiskohta, että NASA:lla on vaikeuksia löytää tällä hetkellä rahoitusta edes yksinkertaisten luotaimien lähettämiseen Marsia tutkimaan, ei haittaa suurisuuntaisten tulevaisuudenvisioiden esittämistä. Toisaalta nämä saattavat herättää sen verran myös päättäjien huomiota, että rahoitusta lisättäisiin – tai se vain innostaa yksityiset yrittäjät ryntäämään punaiselle planeetalle ennen viranomaisjärjestöjä.

Eräs kiinnostavimmista ja kenties pitkällä tähtäimellä merkittävimmistä tuoreista Mars-tempauksista on NASAn ja rakennusten 3D-tulostusta edistävä teollisuusyhdistys America Makesin kilpailu Mars-siirtokuntien rakennuksista.

Kilpailun voittajat julkistettiin viime viikon lopulla ja voittajaksi kiri SEArch ja Clouds AO -ryhmän ICE HOUSE. 

Kuin avaruusajan design-iglu

Se poikkeaa monista suunnitelmista siinä, että rakennusta ei kaiveta pinnan alle tai haudata hiekkaan. Koska Marsin ohut kaasukehä ei estä ultraviolettivalon pääsyä pinnalle ja suojaa planeettaa huonosti kosmisia säteitä vastaan, on yleinen tapa lisätä säteilysuojausta laittaa asumuksen päälle paljon hiekkaa. 

Sen sijaan ideana on kaivaa pinnan alta vettä ja käyttää sitä säteilysuojana: koko rakennuksen uloin kerros on jäätynyttä vettä, joka samalla suojaa asukkaita ja päästää läpi valoa.

Voittajarakennuksessa onkin kiinnitetty ennen kaikkea huomiota siihen, että sen sisätiloissa olisi mahdollisimman paljon luonnonvaloa.

Asuintilat ovat rakennuksen keskiosassa, ja siellä, mahdollisimman suojaisessa paikassa sisällä, ovat myös miehistön nukkumahytit. Ulospäin tultaessa on tiloja, joissa ollaan vähemmän aikaa, ja aivan uloimpana ovat kasvihuoneet. Näin ne saavat eniten valoa ja niissä miehistön jäsenet voivat myös käydä rentoutumassa kasvien tuottamaa puhdasta ilmaa hengittäen, valosta nauttien ja Marsin maisemaa ihaillen.

Kasvihuoneiden tärkeimpänä tehtävänä on tuottaa happea ja ruokaa. Siksi suuri osa uloimmista osista onkin kasvihuoneita, joissa kasveja on sijoitettu pystyssä oleviin räkkeihin sekä suoraan pystypinnoille.

Rakennuksessa on myös “etupiha”, suojattu ja paineistettu tila varsinaisen rakennuksen ulkopuolella, missä ihmiset voivat tepastella ilman avaruuspukuja. Suuri, avoin tila auttaa myös tasaaman paineistusta aseman sisällä. Siellä voidaan tehdä myös tutkimusta, missä täytyy olla ulkona – mutta voi silti olla vielä ikään kuin sisällä. Esimerkiksi kasvien kasvattamista marsperässä voi testata siellä.

Itse rakennuksen ulkopinnassa voisi olla mikrorakenne, joka saa rakennuksen toimimaan kuin suurikokoinen, majakoissa käytettävä Fresnel-linssi: valoa voidaan fokusoida sisätiloissa haluttuihin paikkoihin.

Vaikka voittaja on upea rakennus ja siinä on monia aivan erinomaisia ideoita, se tuskin tulee olemaan aivan ensimmäinen tulevan Mars-siirtokunnan rakennus. Se on siihen aivan liian monimutkainen.

Monet kilpailun 30 loppukarsintaan päässeistä ratkaisuista ovatkin tässä mielessä todennäköisempiä. Kenties paras esimerkki realistisesta Mars-asemasta on kilpailun kolmannen palkinnon saanut Team LavaHiven ehdotus (alla). Se ei näytä lainkaan niin upealta, mutta olisi lähes tehtävissä jo nykytekniikalla – kunhan vain tavaraa saataisiin kuljetettua Marsiin edullisesti (tai siis ylipäänsä saataisiin vietyä sinne jotenkin tarvittavissa määrin).

Toivottavasti Matt Damon saa ihmiset innostumaan Marsista siinä määrin, että rakennushommiin päästäisiin oikeasti lähivuosikymmeninä.

Team LavaHive