Kiina lähettää illalla tietoliikennesatelliitin kuualuksia varten

Kiinan kuulinkkisatelliitti
Kiinan kuulinkkisatelliitti

Jos kaikki sujuu suunnitelman mukaan, nousee raketti lentoon Kiinasta nyt keskiyöllä ja lähettää avaruuteen ainutlaatuisen laitteen: tietoliikennesatelliitin, jonka tehtävänä on välittää tietoja Maahan myöhemmin tänä vuonna Kuuhun laskeutuvalta kiinalaisalukselta. Luppoaikanaan satelliitti tekee tähtitieteellisiä havaintoja.

Vuonna 2013 Kiina lähetti Kuun pinnalle Chang'e 3 -laskeutujan ja sen mukana pienen, sympaattisen kuukulkijan, Yutun. 

Myöhemmin tänä vuonna – mahdollisesti jo heinäkuussa – kiinalaiset laukaisevat Kuuhun uuden samanlaisen kaksikon. Chang'e 4 on käytännössä edellisen lennon toisinto, paitsi että nyt laskeutumispaikka tulee olemaan haastavampi: alus koetetaan saada Kuun etelänavan luona olevaan kraatteriin, joka on halkaisijaltaan 180 kilometriä.

Tämä Von Kármán -kraatteri on kiinnostava, koska sen pohjalta on havaittu paljon rautaoksidia ja toriumia. Siellä saattaa olla myös vesijäätä. Kraatteri on todennäköisesti myös eräs vanhimmista Kuun pinnanmuodoista.

Ongelmana on kuitenkin se, että kraatteri sijaitsee Kuun takapuolella. Kuuhan kääntää koko ajan saman puolensa kohti Maata, koska Kuun pyöriminen on lukittunut vuorovesivoimien vuoksi. Laskeutuja ei voi siksi olla suoraan yhteydessä Maahan, joten radiolinkkiä varten tarvitaan erityinen tietoliikennesatelliitti, joka sijaitsee sellaisessa paikassa, mistä on suora linja niin Maahan kuin laskeutumisalueellekin Kuun pinnalla.

Queqiao -nimen saanut linkkisatelliitti ohjataan Maan ja Kuun systeemin niin sanottuun toiseen Lagrangen pisteeseen. Ranskalaismatemaatikko Joseph-Louis Lagrangen vuonna 1772 laskemat pisteet ovat kohtia, joissa taivaankappaleiden vetovoimat yhdessä keskipakoisvoiman kanssa saavat aikaan sen, että pisteessä oleva alus pysyy lähes paikallaan.

Maan ja Kuun Lagrangen piste 2 on noin 64 000 kilometriä Kuun takana Maasta katsottuna, ja koska Queqiao käytännössä kiertää avaruudessa tuota pistettä, pystyy se välittämään kätevästi signaaleita lennonjohdon ja Kuun takapuolella olevan laskeutujan välillä.

Queqiao laukaistaan matkaan Pitkä Marssi 4C -kantoraketilla Xichangin satelliittilaukaisukeskuksesta Sichuanin maakunnasta Kiinan keskiosissa. Laukaisu on tarkoitus tehdä maanantaina aamulla kello 5.28 paikallista aikaa, eli Suomen aikaa maanantain puolella klo 00.28.

Chang'e 3 Yutu-kulkijan kuvaamana.

Silkkimatoja Kuuhun!

Chang'e 3:n näköinen Chang'e 4 on kiinnostava lento monessakin mielessä. Ensinnäkin se on ensimmäinen laskeutuminen Kuun takapuolelle ja myös ensimmäinen erittäin kiinnostavalle eteläiselle napa-alueelle. Se on järjestyksessään 20. laskeutuminen Kuun pinnalle ja jo toinen Kiinan tekemä laskeutuminen Kuuhun.

Laskeutujan mukana on paljon jo huomiota herättänyt pieni kapseli, jonka sisällä on silkkimatoja. Tarkoituksena on tutkia niiden elämistä Kuun pinnan olosuhteissa – toisin tietysti ilmaa sisältävän kapselinsa sisällä.

Mukana on jälleen myös pieni kulkija, joka tulee kuvaamaan ja tutkimaan laskeutumisaluetta muutaman sadan metrin säteellä.

Chang'e 4 on myös tärkeä askel kohti seuraavaa kiinalaislaskeutumista Kuuhun: Chang'e 5 -lennon on tarkoitus tuoda ensi vuonna viisi kiloa painava näyte Kuusta Maahan. Lento on myös teknisesti erittäin haastava ja kiinnostava, joten se on tieteellisen merkityksensä lisäksi osoitus Kiinan avaruustekniikan korkeasta tasosta.

Lento on periaatteessa samanlainen kuin oli neuvostoliittolaisen Luna 24:n näytteenhakulento vuonna 1976.

Kiinan tarkoituksena on lähettää ihmisiä Kuuhun vuoteen 2030 mennessä.

Harakoiden siipien silta

Kiinan kuualukset on nimetty kansantarinoiden mukaan. Siinä missä Chang'e on kiinalaisten Kuun jumalatar ja Yutu oli "kuukaniini", on Queqiao "harakoiden silta" ja se viittaa paitsi tietoliikennesiltaan laskeutujan ja maa-aseman välillä, niin myös tarinaan: tietotoimisto Xinhuan mukaan harakat tekevät kuukalenterin seitsemännen kuukauden seitsemäntenä yönä siivillään sillan, jotta Taivaiden jumalattaren seitsemäs tytär, Zhi Nu, voisi kulkea taivaalla olevan Linnunradan ylitse tapaamaan aviomiestään.

Queqiaolla on myös konkreettinen yhteys Linnunrataan, sillä sen mukana on hollantilaisten Astronin tekemä radiotutkimuslaite, NCLE (Netherlands Chinese Low-Frequency Explorer). Työhön ovat Alankomaiden puolelta osallistuneet myös Dwingeloon radio-observatorio, Nijmegenin yliopisto ja Delftissä oleva avaruusyhtiö ISIS.

Laite (kuvassa yllä) havaitsee hyvin matalia radiotaajuuksia, joita ei voida ottaa vastaan Maassa, koska ilmakehä ei päästä kunnolla lävitseen alle 30 MHz taajuudeltaan olevia sähkömagneettisia aaltoja. Kiinnostavaa laitteessa on myös se, että se voi ottaa vastaan matalia taajuuksia hyvin laajalla aallonpituuskaistalla. Tähtitieteilijät saavat radiolaitteellaan muun muassa lisätietoja maailmankaikkeuden alkuajoista sekä aurinkotuulesta.

Samalla kuukyydillä lähtee matkaan myös kaksi pientä kiinalaista radiotutkimussatelliittia, Longjiang-1 ja Longjiang-2.

Queqiao ei ole ensimmäinen Kiinan lento kauas Kuun radan ulkopuolelle. Chang'e 5-T1 testasi Chang'e 5:n laskeutumiskapselin toimintaa lokakuussa 2014 tekemällä koukkauksen Kuun ympäri ja palaamalla sieltä kovaa vauhtia takaisin Maahan.

*

Kuvat: Kiinan avaruushallinto, Kiinan tiedeakatemia ja Radboud Radio Lab / ASTRON / Albert-Jan Boonstra

Jutussa ollutta laukaisuaikaa on täsmennetty illalla, kun lisätietoja tarkasta ajankohdasta saatiin.

Outoa lasersäteilyä – onko Muurahaissumussa muukalaisia?

Muurahaissumu on tähden kuolinkouristuksissa avaruuteen puhaltunut kaasupilvi. Uusien havaintojen mukaan tähtiruumiin rinnalla piileksii toinen tähti – alieneita ei löytynyt tälläkään kertaa.

Muurahaissumu eli Menzel 3 on eteläisellä taivaalla Kulmaviivoittimen tähdistön suunnassa noin 8 000 valovuoden etäisyydellä sijaitseva planetaarinen sumu. Se on syntynyt Auringon kokoluokkaa olevan tähden puhaltaessa uloimmat kerroksensa avaruuteen, jolloin jäljelle on jäänyt suunnilleen maapallon kokoinen valkoinen kääpiö.

Euroopan avaruusjärjestön Herschel-avaruusteleskoopilla tehtyjen infrapunahavaintojen perusteella Muurahaissumusta tulee lasersäteilyä. Vastaavanlaisia kohteita tunnetaan vain muutama, sillä avaruudessa lasersäteilyn synty edellyttää aivan tietynlaisia olosuhteita.

Mielenkiintoinen yhteensattuma on, että Muurahaissumun 1920-luvulla löytänyt ja luetteloinut Donald Menzel esitti aikoinaan, että tällaisissa kaasupilvissä voi esiintyä valon vahvistusta säteilyn stimuloidun emission avulla – eli lasersäteilyä. Silloin laseria ei ollut vielä saatu toimimaan laboratoriossakaan.

"Havaitsimme hyvin harvinaista laseremissiota, jonka selittyy vedyn rekombinaatiolla", kertoo tutkimusta johtanut Isabel Aleman.

Tällaista lasersäteilyä voi syntyä ainoastaan olosuhteissa, joissa tähden lähellä on hyvin tiheää kaasua. Havaintojen ja laskennallisten mallien vertailu osoittaa, että tiheyden on oltava noin 10 000 kertaa suurempi kuin yleensä planetaarisissa sumuissa ja myös Muurahaissumun ulommissa osissa.

Yleensä planetaarisen sumun keskellä olevan kuolleen tähden ympäristö on tyhjää täynnä. Ulospäin puhaltunut kaasu on karannut avaruuteen ja jos jotain on jäänyt jäljelle, valkoinen kääpiö on vetänyt sen gravitaatiollaan puoleensa.

"Ainoa mahdollisuus näin tiheän kaasun esiintymiselle lähellä tähteä on sitä ympäröivä kiekko. Olemmekin havainneet sumun keskellä tiheän kiekon, joka näkyy sen tason suunnasta. Asento selittää osaltaan lasersignaalin voimakkuuden Maasta katsottuna", selittää tutkimukseen osallistunut Albert Zijlstra.

"Kiekon olemassaolosta voidaan päätellä, että valkoisella kääpiöllä on tähtikumppani, sillä kaasun päätymistä sitä kiertävään kiekkoon on vaikea selittää ilman seuralaisen vaikutusta. Lasersäteilyn ansiosta voimme tarkastella ainutkertaisella tavalla planetaarisen sumun keskellä olevaa kuollutta tähteä ympäröivää kiekkoa."

Löydöstä kerrottiin Manchesterin yliopiston uutissivuilla ja tutkimus on ilmestynyt Monthly Notices of the Royal Astronomical Society -tiedejulkaisussa (maksullinen).

Kuva: NASA/ESA/Hubble Heritage Team (STScI/AURA)

Elämälle tärkeää happea oli jo 500 miljoonan vuoden ikäisessä maailmankaikkeudessa

Happi on tuntemamme elämän kannalta keskeinen alkuaine. Se on syntynyt tähtien sisuksissa jylläävissä fuusioreaktioissa – uuden tutkimuksen mukaan jo maailmankaikkeuden vauvaiästä alkaen.

Vetyä, heliumia ja litiumia lukuun ottamatta kaikki universumin alkuaineet – myös elämän kannalta keskeiset hiili, happi ja typpi – ovat tulosta tähtien ydinfuusiosta. Ikääntyvien tähtien räjähtäessä alkuaineet leviävät avaruuteen ja niiden määrä kasvaa tähtisukupolvesta toiseen.

ALMA-teleskoopilla (Atacama Large Millimeter/submillimeter Array) tehtyjen havaintojen perusteella happea on esiintynyt maailmankaikkeudessa jo 13,28 miljardia vuotta sitten eli vain 500 miljoonaa vuotta alkuräjähdyksen jälkeen. Universumin ikä oli tuolloin ainoastaan neljä prosenttia nykyisestä.

Jotta nuoreen galaksiin, joka tunnetaan luettelotunnuksella MACS1149-JD1, olisi ennättänyt kertyä havaittava määrä happea, sen tähtien on täytynyt syttyä loistamaan jo paljon aikaisemmin, vain 250 miljoonan vuoden ikäisessä maailmankaikkeudessa.

"Oli jännittävää nähdä kaikkein kaukaisimman hapen signaali", kertoo tutkimusta johtanut Takuya Hashimoto Osaka Sangyo -yliopistosta.

"Äärimmäisen kaukainen ja äärimmäisen nuori galaksi osoittaa hämmästyttävää kemiallista kypsyyttä", ihmettelee puolestaan Wei Zheng, jonka johdolla määritettiin galaksin etäisyys Hubble-avaruusteleskoopin avulla.

Supernovaräjähdysten seurauksena tähtienväliseen avaruuteen levinnyt happi kuumeni ja ionisoitui massiivisten tähtien voimakkaassa säteilyssä, ja alkoi hohtaa infrapunasäteilyn aallonpituuksilla.

Yli 13 miljardissa vuodessa maailmankaikkeuden laajeneminen on venyttänyt hapen lähettämän säteilyn aallonpituutta niin paljon, että nykyisin se on havaittavissa ALMA-teleskoopin rekisteröimällä millimetrialueella.

Itse asiassa hapen ja sitä sisältävän nuoren galaksin etäisyys määritettiin nimenomaan aallonpituudessa tapahtuneen muutoksen perusteella. Havainto varmistettiin Euroopan eteläisen observatorion VLT-teleskoopilla ja lisätietoa galaksista saatiin infrapuna-alueella toimivalla Spitzer-avaruusteleskoopilla.

Sen lisäksi, että happea ei ole koskaan aiemmin havaittu näin etäältä, MACS1149-JD1 on myös kaukaisin galaksi, jonka etäisyys on onnistuttu määrittämään tarkasti.

Tutkijat arvelevat, että galaksin tähdet syntyivät 250 miljoonaa vuotta alkuräjähdyksen jälkeen. Niiden voimakas säteily ja tähtituuli puhalsivat ylijääneen kaasun galaksista ulos, jolloin uusia tähtiä ei syntynyt pitkiin aikoihin.

Vasta noin 250 miljoonaa vuotta myöhemmin galaksiin oli kertynyt riittävästi kaasua uutta tähtisukupolvea varten. Uusien tähtien säteily puolestaan ionisoi edellisen sukupolven tuottaman hapen.

"Nyt tehdyn löydön ansiosta olemme päässeet tarkastelemaan tähtien kehityshistorian varhaisinta vaihetta", Hashimoto toteaa.

Tutkimuksesta kerrottiin NRAOn (National Radio Astronomy Observatory) uutissivulla ja se on julkaistu Nature-tiedelehdessä (maksullinen).

Kuvat: ALMA (ESO/NAOJ/NRAO) / NASA/ESA Hubble Space Telescope / W. Zheng (JHU) / M. Postman (STScI) / the CLASH Team / Hashimoto et al. [otsikkokuva]; NRAO/AUI/NSF / S. Dagnello [taiteilijan näkemys]

Marsia kohti lentävä nanosatelliitti otti upean kuvan maapallosta

Kuva maapallosta ja Kuusta MarCO-B:n oittamana
Kuva maapallosta ja Kuusta MarCO-B:n oittamana
MarCO-luotaimet

Maapallo on pieni planeettaa suuressa, tyhjässä ja kylmässä avaruudessa. Monet toki tietävät tämän, mutta sen näkeminen on aina yllättävää. Kohti Marsia lentävä pieni MarCO-luotain otti kuvan Maasta ja Kuusta, ja kuva on yksinkertaisuudessaan kaunis.

Kaksi ammoisen videonauhurin kokoista nanosatelliittia laukaistiin toukokuun 5. päivänä kohti Marsia. Ne lähetettiin matkaan Nasan InSight-laskeutujan kanssa samalla raketilla ja nyt ne lentävät lähes samanlaisella radalla laskeutujan kanssa kohti punaista planeettaa.

Ne olivat 9. toukokuuta jo miljoonan kilometrin päässä Maasta, jolloin toinen niistä, MarCO-B, nappasi tämän kuvan.

Kuvassa näkyy oikealla avattuna oleva antenni auringonvalossa ja vasemmalla luotaimen lämpösuojaa. Keskellä mustaa avaruutta on yksi selvä piste: maapallo.

Pienen pisteen luona, sen alapuolella vasemmalla on heikompi ja pienempi piste, Kuu.

Kuva tuo mieleen Voyager 1 -luotaimen vuonna 1990 ottaman kuvan, joka tunnetaan nyt nimellä "pale blue dot", eli "valju sininen piste".

Tuon kuvan teki tunnetuksi luotaimen tutkijaryhmään kuulunut Carl Sagan, joka myös ehdotti alun perin sen ottamista. Hän näytti sitä aina osoittamaan kuinka pieni ja vaatimaton oma planeettamme on – vaikka meistä se tuntuu niin suurelta. Meille Maa onkin toki tärkeä, mutta harva tulee ajatelleeksi, että se on itse asiassa kuin avaruusalus, jonka pinnalla elämme avaruudessa.

Siinä missä Voyager 1 otti kuvansa kaukoputkimaisella kamerallaan läpi noin kuuden tuhannen miljoonan kilometrin päästä, oli MarCO:n etäisyys "vain" miljoona kilometriä ja se käytti laajakulmalinssiä.

MarCO-luotaimet

MarCO-luotaimet (Mars Cube One) tekivät kuvan ottamista edeltävänä päivänä 8. toukokuuta ennätyksen, koska silloin niistä tuli kauimmaksi Maasta koskaan lähetetyt nanosatelliitit.

Ne perustuvat nykyisin hyvin suosittuun Cubesat-formaattiin ja ovat hyvin samanlaisia kuin esimerkiksi suomalainen Aalto-1 -satelliitti. MarCO:t ovat tosin kaksi kertaa suurempia, niin sanotusti kuuden yksikön cubesateja.

Tarkalleen ottaen MarCO:jen rungot ovat kooltaan 36,6 x 24,3 11,8 cm. Avaruudessa niiden kyljistä ponnahti auki aurinkopaneelit ja suuri levymäinen yhteydenpitoon käytettävä antenni.

Suurin osa nanosatelliiteista kiertää maapalloa alle 800 kilometrin korkeudessa. Nyt aikomuksena on testata niissä käytetyn tekniikan toimivuutta planeettainvälisessä avaruudessa. Koska keskenään samanlaiset MarCO:t eivät kierrä nyt maapalloa, vaan ovat matkalla kohti Marsia, niitä on satelliitti-sanan sijaan parempi kutsua luotaimiksi. 

Maa on tässä piirroksessa suhteettoman suuri: oikeasti Marsista katsottuna Maa on vain piste taivaalla.

InSight laskeutuu Marsiin, mutta MarCO:t lentävät Marsin ohi. Ne tarkkailevat laskeutujan asettumista Marsin pinnalle avaruudesta, mutta InSight ei luota niihin laskeutumisensa aikana – Marsia kiertävä Mars Reconnaissance Orbiter välittää tietoja Maahan. Jos pikkuiset luotaimet toimivat kuitenkin hyvin, voitaisiin tulevaisuudessa planeettaluotaimien kanssa lähettää tällaisia pieniä apuluotaimia, ja joissakin tapauksissa koko lento voitaisiin tehdä tällaisella pikkuluotaimella. Ne kun ovat edullisempia tehdä ja lähettää matkaan.

Seuraava MarCO-luotaimien merkkipaalu on myöhemmin tässä kuussa, kun ne tekevät ratakorjauksen. Vastaavaa ei ole koskaan aikaisemmin yritetty nanosatelliitilla.

Myös Suomessa on suunniteltu planeettalentoon sopivaa nanosatelliittia.

Reaktor Space Lab on tehnyt hahmotelman asteroidia tutkivasta laitteesta, joka perustuisi cubesat-formaattiin ja joka käyttäisi VTT:n kehittämää pientä hyperspektrikameraa asteroidin kuvaamiseen.

Tämä ASPECT-niminen laite olisi lentänyt Didymos -asteroidin luokse Euroopan avaruusjärjestön AIM-luotaimen (Asteroid Impact Mission) mukana. Valitettavasti AIM peruutettiin joulukuussa 2016, mutta sen idea elää edelleen ja myös suomalainen planeettatutkimuscubesat saattaa saada vielä uuden mahdollisuuden.

Huimalla vauhdilla kasvava musta aukko löytynyt

Supermassiivinen musta aukko. Kuva: Hubble (ESA/NASA)
Supermassiivinen musta aukko. Kuva: Hubble (ESA/NASA)

Australialaistutkijat ilmoittavat löytäneensä taivaalta ennätyksellisen nopeasti kasvavan mustan aukon. Se imaisee itseensä ympäröivästä avaruudesta noin oman Aurinkomme verran massaa kahden vuorokauden kuluessa, siis noin 363 miljoonaa miljoonaa miljoonaa miljoonaa miljoonaa kilogrammaa vuodessa.

Kvasaari nimeltä SMSS~J215728.21-360215.1 on itse asiassa supermassiivinen musta aukko, joka on noin 12 miljardin valovuoden päässä. Näemme siis sen sellaisena, kuin se oli 12 miljardia vuotta sitten – siis aikaan, jolloin maailmankaikkeus oli hyvin nuori.

Tuolloin musta aukko oli massaltaan 20 miljardia kertaa oman Aurinkomme verran ja se kasvoi prosentin verran miljoonassa vuodessa. 

Prosentti miljoonassa vuodessa ei kuulosta suurelta, mutta se on, kun kyse on näin massiivisesta taivaankappaleesta.

"Tämä musta aukko kasvaa niin nopeasti, että se loistaa tuhansia kertoja kirkkaammin kuin kokonainen galaksi", sanoo tutkimusryhmän vetäjä Christian Wolf Australian kansallisesta yliopistosta.

"Emme tiedä vielä miksi ja miten tämä musta aukko kasvoi näin suureksi niin aikaisin maailmankaikkeuden historiassa."

Musta aukko säteilee valtavasti, koska siihen putoava kaasu alkaa hohtaa kiihtyessään ja muun kaasun kanssa yhteen osuessaan. Aukon ympärillä on kerääntymäkiekko, joka on säteilyn lähde; itse musta aukko ei säteile valoa.

"Jos tämä monsteri olisi Linnunradan keskustassa, niin se olisi kymmenen kertaa täysikuuta kirkkaampi. Se olisi hyvin kirkas piste taivaalla ja sen loiste peittäisi alleen kaikkien muiden tähtien valon."

Tosin jos näin massiivinen musta aukko olisi Linnunradan keskellä, olisi meillä tukalat olot. Se säteilee valon lisäksi paljon ultraviolettisäteilyä sekä röntgensäteitä, jotka grillaisivat koko ajan maapalloa.

Kyseessä oleva musta aukko on kuitenkin erittäin kaukana, eikä siitä ole meille haittaa. Se on itse asiassa varsin heikkovaloinen, eikä sitä voi havaita ilman tehokasta kaukoputkea. Havainnot siitä tehtiin Australiassa Coonabarabranin luona olevassa Siding Spring -observatoriossa olevalla kaukoputkella, joka katsoo taivasta pääasiassa infrapunavalon alueella.

Kohde näkyy lähi-infrapunassa, koska sen valo on siirtynyt punaisen suuntaan liikkuessaan laajenevan maailmankaikkeuden halki vuosimiljardien kuluessa.

Wolfin ryhmä on etsinyt supermassiivisia mustia aukkoja jo jonkin aikaa, ja nyt tehty havainto pystyttiin varmistamaan viime kuussa julkistettujen Gaia-satelliitin tietojen avulla.

Löytö varmistettiin vielä Siding Springissä olevalla 2,3-metrisellä peilillä varustetulla teleskoopilla.

Supermassiiviset mustat aukot ovat kiinnostavia paitsi sinällään, niin myös siksi, että niiden avulla voidaan tutkia varhaista maailmankaikkeutta ja sen kehitystä.

*

Löydöstä kertova tutkimus ilmestyy pian Publications of the Astronomical Society of Australia (PASA) -julkaisussa: https://arxiv.org/abs/1805.04317

Otsikkokuvassa on supermassiivinen musta aukko Hubble-avaruusteleskoopin kuvaamana. Se näyttää samalta, mutta ei ole tutkimuksessa ollut kvasaari. Kuva: Hubble (ESA/NASA)

Avaruuskivi lentää läheltä huomenna

2010 WC9 kuvattuna vuonna 2010. Kuva: Northolt Branch Observatories
2010 WC9 kuvattuna vuonna 2010. Kuva: Northolt Branch Observatories

Tiistain ja keskiviikon välisenä yönä Suomen aikaa ison liikennelentokoneen kokoinen asteroidi tulee hyvin lähelle maapalloa: etäisyyttä klo 01.05 yöllä on vain puolet Maan ja Kuun välisestä keskimääräisestä välimatkasta. Vaikka se tulee lähelle, ei siitä ole meille mitään haittaa – päinvastoin.

Kyseessä on asteroidi 2010 WC9, ja kuten nimi antaa ymmärtää, se löydettiin jo vuonna 2010.

Tarkalleen ottaen amerikkalainen taivasta koko ajan tarkkaileva Catalina Sky Survey äkkäsi sen taivaalta 30. marraskuuta 2010 ja siitä tehtiin havaintoja vajaan viikon ajan tuolloin. 2010 WC9 oli hyvin heikkovaloinen (magnitudi vain 21,8), joten se hävisi näkyvistä jo joulukuun 2010 alussa, mutta onneksi sen rata ehdittiin laskettua likimääräisesti.

Laskelmien mukaan se tuli uudelleen Maan lähelle nyt 14. toukokuuta 2018 tienoilla. Asteroidi tulikin näkyviin uudelleen viime viikolla, 8. toukokuuta, ja uudet havainnot auttoivat määrittämään sen radan varsin tarkasti.

 

Kun 2010 WC9 on lähimmillään Maata 15. ja 16. toukokuuta välisenä yönä klo 01.05 Suomen aikaa, on sen etäisyys meistä 203 000 kilometriä. Tämä hieman yli viisi kertaa kauempana kuin geostationaariset satelliitit ja likimain puolet Kuun etäisyydestä. 

Läheltä meitä vilistää kohtalaisen usein kappaleita, sillä näin läheltä tai lähempää kulkee tänä vuonna (nyt tiedossa olevien kappaleiden mukaan) 16 muutakin asteroidia. Ne ovat kuitenkin viime kuussa ohi lentänyttä 2018 GE3 -asteroidia lukuun ottamatta varsin pieniä, halkaisijaltaan muutamasta metristä pariinkymmeneen metriin. 

2010 WC9 on 2018 GE3:n tapaan arviolta satametrinen, noin 42 – 136 metriä. Todennäköisimmin se on juuri siitä puolivälistä, noin 70 metriä. 

Suuri haarukka arviossa johtuu siitä, että kappaleesta ei ole muuta tietoa kuin sen kirkkaus ja kun sen sekä etäisyyden perusteella arvioidaan kappaleen kokoa, on määräävä tekijä kappaleen pinnan kirkkaus. Tästä on olemassa erilaisia arvioita, jotka vaikuttavat siis suoraan arvioon kappaleen koosta.

Taivaanmekaniikan avulla sen sijaan on helppo laskea kappaleen nopeus: se viilettää ohilennon aikaan 46 1809 kilometrin tuntinopeudella. Lähimmillään ollessaan se on Etelämantereen päällä ja näkyy parhaiten eteläisestä Afrikasta ja Etelä-Amerikasta katsottuna.

Sen kirkkaus on parhaimmillaan noin +10 magnitudia, eli vaikka paljain silmin sitä ei voi nähdä, on se "helppo" kohde kaukoputkille. Sana helppo on sitaateissa siksi, että 2010 WC9 liikkuu hyvin nopeasti taivaalla; se viilettää Riikinkukon tähdistössä nopeimmillaan 0,22° minuutissa. Tämä tarkoittaa noin täydenkuun halkaisijan mittaista matkaa parissa minuutissa.

2010 WC9 kiertää Auringon noin 1,12 vuodessa (409 vrk) ja on radallaan lähimmillään Aurinkoa vain 0,78 Maan ja Auringon etäisyyden päässä siitä. Kauemmillaan matkaa Aurinkoon on 1,39 AU (siis Maan ja Auringon välinen matka, eli noin 150 miljoonaa kilometriä). Soikea rata on siis jotakuinkin hieman yli Venuksen radan ja vähän alle Marsin radan välissä.

Vaikka asteroidi tulee nyt näin lähelle, ei siitä ole näillä näkymin pienintäkään haittaa meille ainakaan 300 seuraavaan vuoteen. Ja vaikka tämä törmäisi Maahan, ei tuloksena olisi kuin paikallista tuhoa.

Lähiohitus on itse asiassa kiinnostava, koska jälleen kerran kohtalaisen kokoista asteroidia voidaan tutkia tarkasti Maan päällä ja kiertoradalla olevilla havaintolaitteilla. 

*

Otsikkokuvassa on 2010 WC9 kuvattuna vuoden 2010 ohilennon aikana. Kuva: Northolt Branch Observatories.

Miksi viime perjantainen Falcon 9 -raketin lento oli vallankumous – tässä kuusi yksinkertaista syytä

Falcon 9 Block 5 nousee lentoon. Kuva: SpaceX
Falcon 9 Block 5 nousee lentoon. Kuva: SpaceX
Callisto. Kuva: CNES

Avaruusyhtiö SpaceX laukaisi viime perjantaina Bangladeshin tilaaman tietoliikennesateliitin Maata kiertämään. Satelliitti ja laukaisu sinällään eivät olleet mitään erityistä, sillä kaikki kävi hyvin rutiininomaisesti, mutta lennossa oli monta seikkaa, jotka tekevät siitä hyvin tärkeän. Otsikossakin oleva sana "vallankumouksellinen" ei ole juurikaan liioittelua.

Uutisissa on kerrottu viime perjantain lennosta ja siitä, että kyseessä oli SpaceX -yhtiön Falcon 9 -kantoraketin uusi versio. Yhtiön johtajaperustaja Elon Musk hymisteli onnistuneen lennon jälkeen tyytyväisenä ja kertoi hieman yhtiön suunnitelmista tulevaisuudessa.

Suunnitelmat ovat hienoja ja pelottavia, riippuen siitä, keneltä kysytään. Jos kyse on satelliitteja avaruuteen laukaisevista yhtiöistä tai tahoista, jotka haluaisivat tulla mukaan avaruusliiketoimintaan, niin Muskin visiot ovat aivan upeita.

Jos taas asiaa kysytään nyt satelliitteja avaruuteen laukaisevilta kilpailijoilta, etenkin eurooppalaiselta Arianespacelta, niin vastauksena on pelokas ilme sekä selittelyä.

Tässä yksinkertaistettuna kuusi syytä, miksi Falcon 9:n lento oli tärkeä – ja miksi Eurooppa on pulassa.

Perjantain laukaisun ensimmäinen vaihe laskeutui suunnitellusti Atlantilla odottaneen lavetin päälle.

1. Tämä on oikeasti uudelleenkäytettävä raketti

SpaceX on osoittanut jo hienosti, miten Falcon 9 -kantorakettien ensimmäiset vaiheet saadaan palautettua takaisin alas niin kiinteälle maalle kuin merellä kelluvalle laskeutumisalustalle. 

Tähän mennessä näin on tehty 25 kertaa: 14 lentoa on tehty siten, että ensimmäinen vaihe on laskeutunut merellä olevalle lavetille, ja 11 ensimmäistä vaihetta on laskeutunut rannalle. Kahdeksan näistä palautetuista vaiheista on laukaisu uudelleen ja kaikki ovat toimineet hyvin. 

Perjantain lennolla oli käytössä uusi versio ensimmäisestä vaiheesta. Sen tekemisessä oli otettu huomioon raketteja puhdistettaessa ja uuteen lentoon valmistellessa tehtyjä havaintoja. Uuden ensimmäisen vaiheen rakettimoottorit on kiinnitetty eri tavalla, rakenteessa on muutoksia ja niiden pintamateriaalit kestävät paremmin kuumennusta, jonka kohteeksi vaiheet joutuvat alas palatessaan.

Parannusten ansiosta rakettivaiheet voidaan – ainakin suunnitelmien mukaan – lennättää uudelleen sata kertaa, ja kymmenen lentoa voidaan tehdä peräjälkeen vain hyvin pienin korjauksin. Periaatteessa vaihe tulee vain alas, se tarkastetaan ja voidaan käyttää saman tien uudelleen. Kymmenennen lennon jälkeen osia pitänee vaihtaa ja vaihe täytyy käydä tarkemmin läpi.

Musk lupasi, että vuoden kuluessa yhtiö aikoo lennättää saman ensimmäisen vaiheen uudelleen 24 tunnin sisällä. Tätä hän tosin uhosi tapahtuvaksi jo viime vuoden puolella, mutta aikataulu on viivästynyt; ajankohdan sijaan kannattaakin kiinnittää huomio siihen, että näin tulee varmasti käymään ja sen ansiosta rakettien lennätykset tulevat paljon edullisemmiksi ja helpommiksi.

Ensimmäisen vaiheen uudelleenkäyttämisen lisäksi SpaceX aikoo ottaa käyttöön myös uudelleenkäytettävät nokkakartiot ja raketin toiset vaiheet. Näiden talteen ottamisesta on tehty jo kokeita, mutta ne eivät ole vielä onnistuneet. Periaatteessa näin kuitenkin voidaan tehdä ja varmasti niin tukee käymään.

Toisen vaiheen uudelleenkäyttö on paljon vaikeampaa, koska se palaa takaisin suurella nopeudella kiertoradalta ja sen saaminen laskeutumaan siististi jaloilleen on hyvin hankalaa. SpaceX:n idea vaiheen palauttamisesta alas suurten, puhallettavien pallojen avulla on kuitenkin hyvä ja toimii teoriassa. 

Ainakin periaatteessa siis koko Falcon 9 voisi olla siis uudelleenkäytettävä.

2. Avaruuslaukaisun hinta romahtaa

Vaikka Falcon 9:stä voitaisiin kätevästi käyttää uudelleen ainoastaan sen ensimmäiset vaiheet, niin jo raketin nykyversiolla satelliitin laukaisun hinta avaruuteen tulee putoamaan olennaisesti. Ensimmäinen vaihe on raketin suurin ja kallein osa, joten jo niitä kierrättämällä hintaa voidaan laskea. 

Näyttää siltä, että aiemmin SpaceX:n mainostama 30 prosentin hinnan lasku on oikeasti suurempi. Nyt Musk puhuu vain 5-7 miljoonaa dollaria (noin 4-6 milj. euroa) maksavasta satelliittilaukaisusta, mikä on vain kymmenesosa nykyisestä hintatasosta. Vaikka tässä olisi hieman löysän puheen lisää, on suunta kohti olennaisia hinnanalennuksia.

Tämä tarkoittaa sitä, että yhä useammat voivat käyttää avaruutta hyväkseen, mikä lisää laukaisujen kysyntää, mikä osaltaan pudottaa hintoja edelleen. 

Sana vallankumous ei etenkään tässä mielessä ole yhtään liioittelua.

3. Kilpailijat ovat pulassa

SpaceX ei ole päässyt markkinajohtajaksi helpolla. Se on kehittänyt härkäpäisesti konkarien ja "viisaampien" neuvojen vastaisesti tekniikkaansa yli 14 vuoden ajan, eikä ole masentunut takaiskuista. 

Yhtiön kilpailijat ovat puolestaan lennättäneet perinteisiä kantorakettejaan aivan kuten ennen, ja vasta viime vuosina ne ovat alkaneet pohtia miten vastata SpaceX:n asettamaan haasteeseen.

Pahimmassa pulassa on eurooppalainen Arianespace, joka käyttää pääasiassa Ariane 5 -kantorakettia. Ariane on ollut kaupallisten satelliittilaukaisuiden työhevonen siitä alkaen, kun se tuli käyttöön 1990-luvun lopussa. Silloin Ariane 5 oli uusi raketti, joka oli 1960-luvulta peräisin olevia (edelleen käytössä olevia) amerikkalaisraketteja yksinkertaisempi, tehokkaampi ja edullisempi suhteessa laukaistavaan massaan.

Nyt tekeillä on uusi Ariane, numeroltaan kuusi. Se on vieläkin yksinkertaisempi ja sen koko on sopeutettu sopimaan paremmin nykyisin laukaistavien tietoliikennesatelliittien massoihin. Mutta se on edelleen kertakäyttöinen, perinteisen tyylinen raketti.

Raketista on tulossa muutama versio, joista pienimmän laukaisu maksaa arvioiden mukaan 75 miljoonaa euroa ja raskaimman 90 miljoonaa. Eroa on hieman verrattuna SpaceX:n lupaamaan, jotakuinkin saman kokoisen satelliitin laukaisevaan Falcon 9:ään ja sen noin viiteen miljoonaan euroon.

Euroopassa tutkitaan kyllä aktiivisesti erilaisia uudelleenkäytettäviä raketteja, mutta juuri nyt olemme kaukana takana kehityksessä. Ei ihme, että Arianespacen johtaja Stéphane Israël on taas nyt toukokuun puolivälissä kehottanut puolipaniikissa eurooppalaisia avaruusrahoituksesta vastaavia päättäjiä reagoimaan; Ariane-raketteja valmistava Airbus tekee jo itse omia suunnitelmiaan, mutta koska Ariane on poliittisvetoinen projekti, ei se pysty menemään itsekseen eteenpäin ilman, että nyt käynnissä oleva Ariane 6 -työ joutuisi hankaluuksiin. Vaikea ongelma.

Callisto. Kuva: CNES
Callisto on suunnitteilla oleva uudelleenkäytettävän raketin demoversio. Sen takana ovat Ranskan ja Saksan avaruushallinnot. Ensilentoa suunnitellaan vuodeksi 2020. Kuva: CNES.

5. Luotettavuus paranee

Nyt lentänyt Falcon 9:n versio on tehty täyttämään kaikki miehitettyjen avaruuslentojen turvallisuusmääräykset, koska tämän avulla SpaceX aikoo lennättää astronautteja kyytivää Dragon-alustaan avaruuteen.

Tämä tarkoittaa monia luotettavuutta parantavia muutoksia, mutta ennen kaikkea sitä, että raketin tulee kestää suurempia ulkoisia voimia laukaisun aikana ilman vaurioita ja sen systeemien pitää olla moninkertaisesti varmennettuja. Esimerkiksi rakenteet ovat nyt tehty siten, että ne kestävät 40 % enemmän voimia kuin laukaisun aikana odotetaan tapahtuvan.

Jo nyt Falcon 9 on ollut siinä mielessä kilpailijoitaan parempi, että se on voinut jatkaa lentoaan normaalisti, vaikka kaksikin sen moottoreista rikkoontuisi laukaisun aikana. 

Parempi luotettavuus on luonnollisesti hyvä uutinen myös satelliittien laukaisijoille. Satelliitteja vakuuttavat yhtiöt puolestaan joutuvat laskemaan vakuutushintojaan, mikä osaltaan vähentää kustannuksia. Vakuutukset eivät ole pakollisia, mutta lähes kaikki ottavat sellaisen.

Suunnitelmien mukaan ensimmäinen uuden Dargon-aluksen lento tapahtuu elokuussa, joskin on mahdollista, että tätä automaattisesti ilman matkustajia tehtävää lentoa tullaan lykkäämään. Astronautteja kyytiin otetaan vasta aikaisintaan loppuvuodesta; uuden Falcon 9:n täytyy lentää virheettömästi seitsemän kertaa ennen kuin ihmisiä uskalletaan laittaa sen nokkaan.

 

Kuvapari näyttää uuden (oikealla) ja vanhan (vasemmalla) Falcon 9:n olennaisimmat ulkoiset erot: uudelleensuunnitellut laskeutumisjalat ja hiilikuituinen osa ensimmäisen ja toisen vaiheen välissä.

6. SpaceX on pian alan valtias

SpaceX-yhtiöllä on nykyisin käytössään kolme laukaisualustaa, joista se pystyy tekemään laukaisuita jo nyt lähes samanaikaisesti. Kaksi näistä on Floridassa ja yksi Kaliforniassa, ja ne soveltuvat hyvin niin tietoliikenne- kuin tutkimussatelliittienkin laukaisuun. Kennedyn avaruuskeskuksessa oleva alusta sopii myös miehitetyille avaruuslennoille ja mistä tahansa voidaan laukaista rahteja pois maapalloltakin. 

Yhtiöllä on siis käytössään nyt yhtä monta laukaisualustaa kuin Euroopalla Kouroussa olevassa avaruuskeskuksessa ja enemmän kuin kilpailijoillaan.

Tähän mennessä tänä vuonna SpaceX on tehnyt yhdeksän lentoa ja viime vuonna se teki kaikkiaan 18 lentoa. Tänä vuonna se aikoo tehdä noin 30 lentoa.

Kun se alkaa vielä laukaisemaan rakettejaan tätäkin useamminkin, ensi vuonna mahdollisesti jo useita viikossa, tulee siitä pian alan ehdoton valtias. Kuka ostaisikaan kyytejä enää muilta, jos hinta on edullinen ja lentoja tehdään koko ajan?

Monopolitilanne on kuitenkin aina ongelmallinen, koska kilpailu tekee aina hyvää – ja jos Falcon 9:lle tapahtuu onnettomuus ja lennot joudutaan keskeyttämään, on tuloksena varsin suuri kaaos. Toivottavasti kilpailijat pääsevät samalle tasolle pian. 

Väläys tulevasta: BFR syrjäyttää Falcon 9:n

SpaceX laukaisi alkuvuodesta Falcon 9:n raskaan version ja sinkosi sillä näyttävästi Tesla -urheiluauton planeettainväliseen avaruuteen. Voi olla, että näitä lentoja ei pahemmin tulla enää tekemään, koska yhtiön valmisteilla oleva uusi, suuri raketti BFR (Big Falcon Rocket) tulee syrjäyttämään sen.

Musk on twiittaillut aina välillä kuvia BFR:n osista ja nähtävästi työt sen tekemiseksi ovat jo varsin pitkällä. Yhtiö on varannut niiden valmistamiseen paikan Kaliforniasta sopivasti Long Beachin sataman luota ja raketin prototyypin testaaminen alkaa ensi vuonna. Jos kaikki käy nyt suunnitellusti, ensimmäinen raketti lentäisi vuonna 2020.

BFR on kokonaan uudelleenkäytettävä ja se pystyy nostamaan 150 tonnia kerrallaan Maata kiertämään. Siitä onkin aikomus tehdä ensimmäinen todellinen avaruusrekka, jolla viedään rahtia kimppakyydillä avaruuteen. Nyt jokainen satelliitti lähetetään omalla raketillaan, tai parhaimmillaan kyydissä on kolme satelliittia – kun mukaan ei lasketa nanosatelliitteja, joita voidaan viedä jo satakuntakin kerralla. Vastaisuudessa isojenkin satelliittien kanssa tehdään juuri niin: BFR vie ne ylös ja sinkoaa siellä omille teilleen.

Falcon 9 Heavyä ei siis tarvita mihinkään, ja itse asiassa Falcon 9 jäänee pian myös eläkkeelle. Se saattaa olla antiikkinen jo viiden vuoden päästä (Ariane 6:sta ja muista tekeillä olevista uusvanhoista raketeista ei kannata edes puhua tässä yhteydessä).

Amazon-miljardööri Jeff Bezosin Blue Origin on tekemässä vastaavanlaista New Glenn -rakettia, jonka tehdas on jo harjakorkeudessa Floridassa Cape Canaveralissa.

Vaikka perinteisistä avaruusyhtiöistä ei näytäkään olevan vastaajiksi kilpailuun tässä uuden avaruusajan alussa, on tiedossa todella kiinnostavia aikoja. Ja perjantainen Falcon 9:n lento oli tässä yksi tärkeä välitavoite.

(Juttua on korjattu: satelliitti oli Bangladeshin tilaama, ei Indonesian, kuten tekstissä alun perin kirjoitettiin)

Video: Tällainen on Nasan suunnittelema Mars-helikopteri

Video: Tällainen on Nasan suunnittelema Mars-helikopteri

Nasa ilmoitti lähettävänsä pienen helikopterin Marsiin kesällä 2020. Kyseessä on enemmänkin tekniikkaa testaava koe kuin varsinainen tieteellinen tutkimus, mutta jos laite toimii suunnitellusti, voisi vastaisuudessa Mars-tutkimus ottaa suuria harppauksia eteenpäin lentolaitteiden avulla.


12.05.2018

Mars-helikopteri on pieni helikopteri, jonka runko on kooltaan berliininmunkin luokkaa, ja jonka massa on noin 1,8 kg.

Hankaluutena Marsissa lentävän kopterin suunnittelussa on se, että Marsin kaasukehän tiheys on hyvin pieni: pinnalla se on vain noin sadasosa vastaavasta täällä Maassa.

Kopterilla lentäminen Marsissa vastaa siis sitä, että samaa koetettaisiin täällä maapallolla noin 30 kilometrin korkeudessa. Tämä on hieman enemmän kuin helikopterien korkeusennätys 12440 m, jonka teki Jean Boulet kesäkuussa 1972 vuoristolentämiseen varustetulla Aérospatiale SA 315B Lama -helikopterilla.

Mikäli Nasan kopteritiimi onnistuu lennättämään kopteriaan Marsissa, saa se puolestaan kunnian ensimmäisestä toisen planeetan kaasukehässä tehdystä ilmaa raskaammasta lennosta.

Jotta pikkukopteri voisi toimia niin harvassa kaasussa, pitää kopterin olla pieni ja kevyt ja sen roottorien tulee olla epäsuhtaisen suuria ja pyöriä nopeasti. Kaksi vastakkaisiin suuntiin pyörivää roottoria vispaavatkin noin 3000 kierrosta minuutissa.

Tarkoituksena on nyt lähettää kopteri seuraavan suuren Mars-kulkijan mukana kesäkuussa 2020 kohti punaista planeettaa. Tämä toistaiseksi vain nimellä Mars 2020 -kulkija tunnettu laite on jotakuinkin samanlainen kuin nyt Marsissa oleva mopoauton kokoinen Curiosity. 

Kopteri on kiinni kulkijan alapuolella, sillä kunhan sopiva paikka lennättämiselle on löytynyt, kopteri pudotetaan Marsin pinnalle. Sen jälkeen kulkija rullaa sivuun sopivan etäisyyden päähän ja kopteri lähtee (lukuisten tarkistusten jälkeen) lentoon.

Koska sitä ei voida ohjata suoraan lennonjohdosta Maan ja Marsin välisen pitkän etäisyyden vuoksi, täytyy lennon olla täysin automaattinen.

Suunnitelmana on tässä vaiheessa käyttää aurinkopaneeleista virtansa saavaa kopteria kuukauden ajan ja tehdä sillä ainakin viisi koelentoa. Niillä lennetään muutamien satojen metrien päähän, jolloin lento kestäisi noin puolisentoista minuuttia.

Ensimmäisellä lennollaan kopteri vain nousee noin kolmen metrin korkeuteen ja pysyy siinä paikallaan puoli minuuttia.

Jos tekniikka toimii, olisivat lentolaitteet – joko pyöriväsiipiset tai lentokoneet – todella käteviä laitteita Marsin tutkimiseen. Niillä kun voitaisiin käydä tutkimassa läheltä ja tehdä mittauksia laajoilta alueilta varsin nopeasti. 

Helikopterit olisivat kaikkein parhaimpia, koska ne voisivat myös laskeutua melkein minne vain ja tutkia myös pintaa tarkemmin.

Tämä joukko on viemässä meitä Merkuriukseen

BepiColombo-hankkeeseen osallistuvia suomalaisia
BepiColombo-hankkeeseen osallistuvia suomalaisia
BepiColombon MPO Kouroussa

Merkuriukseen lähtevä eurooppalaisluotain BepiColombo on tällä hetkellä laukaisupaikallaan, missä sitä ollaan valmistelemassa loka-marraskuun vaihteessa tapahtuvaan laukaisuunsa. Hankkeeseen osallistuu myös koko joukko suomalaisia tutkijoita ja insinöörejä – he esittelivät hanketta ja töitään tänään Helsingissä.

BepiColombo on ehdottomasti kiinnostavin tulossa olevista planeettalennoista: tarkoituksena on lennättää kaksiosainen alus Merkuriukseen ja tutkia tätä Aurinkoa lähintä planeettaa, avaruutta sen luona sekä Aurinkoa monilla erilaisella mittalaitteella. Näistä yksi on kokonaan suomalainen ja toisessakin on paljon suomalaista osaamista.

Jotta luotain pääsisi suunnitelman mukaan perille, täytyy sen lähteä matkaan 5. lokakuuta – 29. marraskuuta välisenä aikana. Laukaisuaika on tiukka, koska pelkästään Maan ja Merkuriuksen ei tule olla radoillaan juuri sopivissa paikoissa, vaan myös Venuksen siinä välissä tulee olla juuri sopivasti. Pitkään kestävän lentonsa aikana luotain kun lentää kahdesti Venuksen ohitse, jotta sen vetovoiman avulla voidaan muuttaa lentorataa sopivasti.

Merkuriuksen luokse luotain saapuu lokakuussa 2021, mutta se ei jää vielä silloin kiertämään planeettaa. Sen sijaan se käyttää jälleen Merkuriuksen vetovoimaa hyväkseen ratamuutokseen – eikä vain kerran, vaan viisi kertaa uudelleen kesäkuun 2022 ja tammikuun 2025 välillä, jotta luotain voisi asettua lopulta radalle Merkuriuksen ympärillä joulukuussa 2025. 

Lentäminen sisemmäksi Aurinkokunnassa ja etenkin Merkuriuksen soikealle radalle on hankalaa!

Yhden luotaimen sijaan BepiColombossa on kaikkiaan neljä osaa. Varsinainen luotain, missä ovat tutkimuslaitteet ja joka jää kiertämään Merkuriusta, on nimeltään MPO (Mercury Planetary orbiter). Siinä on kaikkiaan 11 erilaista tutkimuslaitetta. Sen lisäksi Merkuriusta jää kiertämään toinen, pienempi tutkimusluotain, japanilaisten tekemä Mercury Magnetospheric Orbiter. Kuten nimi sanoo, keskittyy se tutkimaan Merkuriuksen magnetosfääriä ja sitä varten siinä on neljä tutkimuslaitetta.

Pitkän matkan läpi planeettainvälisen avaruuden kaksikkoa kyytii MTO, Mercury Transfer Module, missä on neljä voimakasta ionimoottoria ja niille sähkövirtaa tuottamassa kaksi pitkää aurinkopaneelia. Kun alus saapuu Merkuriukseen, tämä irtoaa pois – se on silloin tehtävänsä tehnyt. Samoin magnetosfääriluotainsa matkan aikana suojannut osa MOSIF hylätään tuolloin.

Sekä Bepi että MMO kiertävät Merkuriusta soikeilla radoilla napojen ympäri. Molemmat käyvät lähimmillään vain noin 400 kilometrin päässä Merkuriuksesta. Bepi pysyttelee suhteellisen lähellä planeettaa, mutta MMO:n rata ulottuu yli 11000 kilometrin päässä Merkuriuksesta, missä luotain havaitsee myös aurinkotuulta.

Jos kaikki käy suunnitellusti, asettuu MPO kiertämään Merkuriusta 14. maaliskuuta 2026 ja tekee tutkimuksiaan ainakin seuraavan vuoden kevääseen. Kaikissa suunnitelmissa on kuitenkin varauduttu siihen, että luotain toimii kevääseen 2028 saakka. Jos se on silloinkin vielä iskussa, ei sitä varmasti sammuteta, vaan sen annetaan toimia pitempäänkin.

BepiColombon MPO Kouroussa

BepiColombon planeettaluotainosa MPO perillä Kouroun avaruuskeskuksessa, mistä se laukaistaan lokakuussa avaruuteen Ariane 5 -kantoraketilla.


Lentonsa lopuksi luotain todennäköisesti ohjataan putoamaan Merkuriukseen, koska silloin tutkimuslaitteet pääsevät tekemään mittauksia ja ottamaan kuvia hyvinkin läheltä pintaa.

Merkuriuksen rakenteen, geologian ja koostumuksen, sen magneettikentän alkuperän ja lähiavaruuden tutkimisen lisäksi Bepi testataa  Einsteinin suhteellisuusteoriaa ja sen toivotaan tuovan myös lisätietoa yleisesti aurinkokunnan synnystä sekä kehityksestä.

Monet eksoplaneetat kiertävät tähtiään hyvin lähellä, joten Merkuriuksen tutkiminen auttaa ymmärtämään myös näitä muita tähtiä kuin Aurinkoa kiertäviä planeettoja.

MIXS ja SIXS

BepiColombo on suomalaisittain kiinnostava, koska Suomessa työskentelevät tutkijat osallistuvat lennon tieteellisten mittausten analysointiin ja sen mukana on suomalaista huipputeknologiaa. 

Tärkein kohde on luotaimessa oleva SIXS-mittalaite, joka on kokonaan tehty ja suunniteltu Suomessa, sekä sen kanssa yhdessä toimiva brittiläinen MIXS.

SIXS mittaa Auringosta saapuvaa röntgensäteilyä, elektroneja ja protoneja ja MIXS puolestaan näiden Merkuriuksen pinnalla synnyttämää röntgenfluoresenssia ja -sirontaa.

Havainnoista voidaan päätellä Merkuriuksen pinnan alkuainepitoisuuksia ja rakennetta, mikä auttaa selvittämään planeetan muodostumista ja kehitystä. Yhdessä BepiColombon muiden tiedelaitteiden kanssa näiden havaintojen avulla tutkitaan, miten Auringon hiukkassäteily tunkeutuu Merkuriuksen magneettikenttään ja miten Merkuriuksen magnetosfäärin dynaamiset prosessit puolestaan kiihdyttävät hiukkasia.

SIXSin rakennemalli on esillä Helsingin observatorion Avaruusmaa Suomi -näyttelyssä.


MIXS ja SIXS liittyvät läheisesti toisiinsa siten, että kun MIXS kuvaa Merkuriuksen pintaa hyvin tarkasti röntgensäteiden aallonpituusalueella, tarkkailee SIXS koko ajan Auringosta tulevan röntgensäteilyn määrää. Tämä auttaa säätämään MIXSin keräämiä tietoja oikeanlaiseksi. 

Lisäksi SIXS tekee mittauksia myös itsenäisesti mittauksia Auringosta. Sen toivotaan keräävän ensimmäiset pitkät aikasarjat Auringon purkauksista peräisin olevasta röntgen- ja hiukkassäteilystä lähellä Aurinkoa.

Pitkän matkan aikana BepiColombon mittalaitteet eivät ole toimettomina, vaan niillä pyritään tekemään havaintoja myös avaruudesta matkan varrella. Varsinkin Venuksen ja Merkuriuksen ohilentojen aikana tehdään mittauksia ja kuvia; näitä voidaan käyttää myös mittalaitteiden toiminnan testaamiseen ja kalibrointiin.

Helsingin yliopisto on päävastuussa Suomen osuudesta hankkeessa. SIXS-instrumentin päätutkija on dosentti Juhani Huovelin, ja professori Karri Muinonen on brittiläisen MIXS-instrumentin toinen päätutkija. Professori Rami Vainio Turun yliopistosta vastaa SIXS:in hiukkasilmaisimesta.

Helsingin yliopiston johtamassa ja Business Finlandin (viime vuoden loppuun saakka Tekes) rahoittamassa teknisessä projektissa on viisi päätason alihankkijaa, ja Ilmatieteen laitos vastaa projektipäällikön ja laadunvalvonnan työosuuksista.

Oxfords Instrument Technologies Oy ja turkulainen Aboa Space Research Oy (ASRO) ovat vastanneet SIXS-instrumentin teknisestä suunnittelusta ja rakentamisesta. 

TalviOja Consulting Oy on vastannut SIXS-instrumentin lämpösuunnittelusta ja -mallinnuksesta. Olosuhteet Merkuriuksen luona ovat hyvin hankalat, koska Auringon lisäksi laitteeseen tulee paljon lämpöä Merkuriuksen pinnasta.

RUAG Space Finland Oy (ent. Patria Aviation Oy) on valmistanut SIXS- ja MIXS-instrumenttien ohjaus- ja datankäsittely-yksikön ja Space System Finland Oy on kehittänyt ohjelmiston SIXS- ja MIXS -instrumenttien yhteiseen ohjaus- ja datankäsittely-yksikköön. 

Space Systems Finland on tehnyt myös suuren työn tarkistamalla koko BepiColombon tietokoneohjelmien laatua; tällaisissa hankkeissa, joissa ohjelmistojen pitää olla erittäin luotettavia, annetaan ne toisien yhtiöiden arvioitavaksi. Suomalaiset löysivät ohjelmistosta noin 250 pahaa bugia ja noin 500 hieman pienempää – joten työ ei ollut turhaa!

*

Juttu perustuu Helsingin yliopiston tiedotteeseen. Otsikkokuva kirjoittajan.

Video: Näin InSight -marslaskeutuja lähti matkaan sumun keskeltä

Video: Näin InSight -marslaskeutuja lähti matkaan sumun keskeltä

InSight-laskeutuja lähetettiin tänään kohti Marsia. Jos et ennättänyt katsomaan laukaisua päivällä tai olit pahassa paikassa, niin tässä voit katsoa laukaisun uudelleen!

05.05.2018

Laukaisu tapahtui tänään 5. toukokuuta klo 14.05 Suomen aikaa ja kaikki sujui hyvin. 

Atlas-kantoraketti nousi matkaan Kaliforniasta Vandenbergin lentotukikohdasta ja suuntasi etelään. Maapallon kierrettyään se kiihdytti luotaimen planeettainväliseen lentoon vaadittavaan nopeuteen ja niin InSight ja kaksi pientä nanosatelliittia olivat matkalla punaiselle planeetalle.

Laskeutuja saapuu perille 26. marraskuuta ja alkaa pian sen jälkeen sondaamaan Marsin sisustaa seismometrillään ja pinnan alle porautuvalla myyrällään.

Jos haluat katsoa kokonaisuudessaan tallenteen Nasan tämänpäiväisestä laukaisulähetyksestä, niin sen ensimmäinen osa on täällä ja toinen osa täällä.

Linkki massiiviseen InSight-juttuumme on alla.