Ensimmäinen suomalaissatelliitti putoaa alas ensi yönä (päivitetty)

Aalto-2 avaruudessa (piirros)
Aalto-2 avaruudessa (piirros)

Taas yksi ekakerta avaruudessa: ensimmäinen kiertoradalle päässyt suomalaissatelliitti putoaa sieltä alas keskiviikon ja torstain välisenä yönä.

Siinä missä juhannuksena 2017 avaruuteen laukaistu Aalto-1 on virallisesti ensimmäinen suomalaissatelliitti, ennätti sen seuraaja ensimmäisenä avaruuteen. Koska Aalto-2 on osa kansainvälistä QB50-tutkimusohjelmaa, rekisteröitiin se Belgiaan, missä hanketta organisoinut tutkimuslaitos sijaitsee. Näin ensimmäinen suomalaissatelliitti on siis Belgian avaruusalusrekisterissä.

Kaksikiloinen Aalto-2 lähetettiin avaruuteen maaliskuussa 2017. Se nousi kiertoradalle Cygnus-avaruusaluksella, joka kuljetti satelliitin Kansainväliselle avaruusasemalle. Sieltä tämä Otaniemessä tehty laite vapautettiin avaruuteen 25. toukokuuta 2017.

Siihen saatiin lähes välittömästi yhteys, mutta jo muutaman päivän päästä se heittäytyi mykäksi: siihen ei saatu yhteyttä, eikä se valitettavasti päässyt tekemään tutkimustaan. Satelliitissa oli mukana Oslon yliopistossa tehty Langmuir-luotain, eli varattujen hiukkasten lämpötilaa, tiheyttä ja sähköisyyttä mittaava laite.

QB50 on belgialaisen Von Karman -instituutin hanke, johon osallistuu yliopistoja ja tutkimuslaitoksia ympäri maailman. Tarkoituksena on tutkia ilmakehän yläosia ja lähiavaruutta kaikkiaan 35 satelliitin voimin; alun perin tarkoitus oli lähettää 50 satelliittia, mistä tulee hankkeen nimi, mutta lopulta kaikki satelliitit eivät päässeet matkaan.

Ideana hankkeessa on se, että kun kaikki satelliitit toimivat eri puolilla maapalloa ja putoavat alaspäin hieman eri tahtiin, saadaan hyvin kattava kuva ilmakehästä. Lisäksi satelliittien putoamista seuraamalla saadaan lisätietoja ilmakehän tiheydestä ja ominaisuuksista.

Vaikka Aalto-2 ei siis ole lähettänyt mittaustietoja, on sen putoamisen seuranta osana muiden satelliittien putoamista erittäin kiinnostavaa.

Näillä näkymin Aalto-2 putoaa ilmakehään ja tuhoutuu sen kitkakuumennuksen vuoksi yöllä torstaina 7. helmikuuta. Eilen (maanantaina 4.2.) tehty ennuste on hieman muuttunut ja nyt näyttää siltä, että putoaminen tapahtuu keskiviikon ja torstain välisenä yönä puolenyön aikaan. Nyt tiistaina illalla satelliitin korkeus on jo alle 200 km, eli tästä alkaen putoamistahti kiihtyy nopeasti.

Satelliitin rataa voi seurata mm. SatFlare-sivustolla.

Luonnollinen tuhoutuminen

Kaikki matalalle kiertoradalle laukaistut satelliitit, kuten juuri Aalto-2 ja sen kaltaiset nanosatelliitit, putoavat luonnollisesti alaspäin, koska satojenkin kilometrien korkeudessa on hieman ilmakehän rippeitä. Hyvin ohut kaasu hidastaa niiden ratanopeutta, jolloin ne putoavat alaspäin.

Mitä alemmaksi niiden rata putoaa, sitä voimakkaammin ilmanvastus vaikuttaa, kunnes lentorata kääntyy yhä jyrkemmin alaspäin ja suuntaa lopulta lähes suoraan kohti maapalloa.

Matalla olevat pienet satelliitit eivät siksi jää avaruuteen avaruusromuna, mutta niistäkin olisi hyvä päästä eroon nopeammin ja hallitusti.

Aalto-1 tulee testaamaan tekniikkaa, jolla putoamista voidaan jouduttaa. Se laukaistiin hieman korkeammalle kiertoradalle, joten sen vajoaminen alaspäin on ollut hitaampaa.

Eräs Aalto-1:n tutkimuslaitteista on niin sanottu plasmajarru. Tarkoituksena on testata sen periaatteen toimintaa. Tämä Ilmatieteen laitoksessa tehty laite vapauttaa pitkän sähköjohtimen vapaasti avaruuteen, ja kun johtimeen kytketään virta, alkaa se jarruttaa satelliitin nopeutta. Laite voisi auttaa pääsemään kätevästi eroon toimintansa lopettavista, tehtävänsä tehneistä satelliiteista.

Juttua on päivitetty tiistaina 5.2. illalla.

Suomi 100 -satelliitti voi hyvin ja nappailee kuvia

Suomi 100 -satelliitin ensimmäinen kuva.
Suomi 100 -satelliitin ensimmäinen kuva.
Suomi 100 -satelliitin ensimmäinen kuva kartalla.

Joulukuun 3. päivän illalla avaruuteen lähetetyn Suomi 100 –satelliitin ensimmäinen viikko avaruudessa on sujunut hyvin. Nyt myös sen ottama kuva on julkaistu.

Maata kiertää taivaalla tällä haavaa kolme tuliterää satelliittia, jotka laukaistiin avaruuteen marraskuun lopussa ja joulukuun alussa. Suomi 100 -satelliittitiimi ennätti julkaisemaan satelliittinsa ottaman kuvan ensimmäisenä, mutta tuo itsenäisyyspäivänä esille tuotu kuva oli vielä raakile. Tänään satelliittitiimi julkaisi ensimmäisen, "kunnollisen" kuvan.

Näin siis Iceye-X2 ennätti virallisesti ensimmäisenä kuvan julkaisemisessa ja nyt odotamme Reaktor Hello World -satelliitin ottamia kuvia; tiedossamme on, että kuvia on jo otettu, mutta kameraa ollaan vielä säätämässä, joten yhtiö ei halua esitellä puolivalmiita kuvia.

Suomi 100 -satelliitin viikon päivät kestäneen lennon alun aikana satelliitin alijärjestelmät on tarkistettu ja yhteydenpito satelliittiin on saatu rutiininomaiseksi. Satelliittiin ollaan yhteydessä Otaniemessä olevan maa-aseman kautta useita kertoja päivässä. Samalla asemalla hallitaan myös avaruudessa olevaa Aalto-1 –satelliittia.

Suomi 100 –satelliitin varsinainen käyttäminen on myös alkanut: sen kameralla on otettu useita kuvia viime viikon puolivälistä alkaen ja kameran asetuksia on säädetty sopiviksi. Ensimmäiset kuvat satelliitista saatiin itsenäisyyspäivänä, mutta ensimmäiset kunnolliset kuvat otettiin sunnuntaina 9.12.

“Tämä on hieno välietappi”, iloitsee hankkeen vetäjä, professori Esa Kallio.

“Opiskelijat ovat viettäneet maa-asemalla öitä ja päiviä ja saaneet paitsi satelliittimme toimimaan hienosti, niin myös ehtineet ottamaan kameralla useita hienoja kuvia. On ollut upeaa seurata, miten ensimmäiset ylivalottuneet otokset ovat muuttuneet tällaisiksi taideteoksiksi!"

9.12. otetut kuvat on koottu otsikkokuvana olevaan kollaasiin. Ne otettiin Suomen päällä klo 11.26 – 11.29, mutta kuvassa ei ole Suomea vaan maapallon kaunis horisontti katsottuna Suomen päältä kohti länttä.

Suomi 100 -satelliitin ensimmäinen kuva kartalla.

Kuvat ovat hieman lomittain toisiinsa nähden, koska satelliitti pyörii hitaasti akseliensa ympäri avaruudessa.

Pyöriminen johtuu siitä, että satelliittiin kohdistui avaruuteen vapauttamisensa aikana pieniä sivuttaisvoimia. Eräs viime viikon tehtävistä lennonjohdossa olikin selvittää miten satelliitti pyörii tarkalleen ja tämän pyörimisen vähentäminen. Tämä on aivan normaalia toimintaa nanosatelliittien lennoilla.

Pyörimisestä on myös hyötyä, eikä sitä yritetäkään kokonaan hillitä: näin satelliitin lämpötila pysyy tasaisena, kun kukin sen kyljistä saa lyhyen aikaa kerrallaan kokea Auringon kuuman porotuksen ja varjopuolen kylmyyden.

Myös kuvaamisen kannalta pieni pyöriminen on hyvä asia, koska sen ansiosta kameralla voidaan ottaa tähän tapaan laajoja panoraamakuvia. Peräkkäin otetut kuvat muodostavat näin automaattisesti laajemman kuvan, jolloin esimerkiksi suuren alueen kattavat revontulinäytelmät voidaan saada kuvattua kokonaisuudessaan.

Tyypillisesti satelliitista lähetetään alas ensin vain “postikortteja”, pieniä kuvia, joiden perusteella maa-asemalla päätetään mitkä kuvat ladataan alas täysikokoisina. Kuvien siirtoon menee paljon rajallista yhteysaikaa, joten epäonnistuneita tai vähemmän mielenkiintoisia kuvia ei kannata ladata lainkaan.

Myöhemmässä vaiheessa satelliitti valitsee kuvia myös itsenäisesti yksinkertaisen tekoälyn avulla. Eräs satelliitin poikkitieteellisistä kokeista on “opettaa” satelliitti tekemään valintoja myös taiteellisesti: se siis osaisi tunnistaa esteettisesti kauniit kuvat. Tärkein tämän ominaisuuden sovellus on kuitenkin revontulien automaattinen löytäminen kuvista.

Tähän mennessä havaintoja on tehty satelliitin kameralla, ja sen kuvien laatu tulee vielä olennaisesti paranemaan tästä ensimmäisestä "virallisesta" kuvasta.

Satelliitin tieteellisen päähyötykuorman, avaruussääilmiöitä ”kuuntelevan” radiotutkimuslaiteen käyttö havaintojen tekemiseen aloitetaan vasta tammikuun alussa – kiihkeän alun jälkeen satelliitti ja maa-aseman tiimi viettävät rauhallisempaa joulunaikaa.

Aalto-yliopiston kumppani Suomi100 -satelliitin kehityksessä on Ilmatieteen laitos, joka on osallistunut satelliitin tietokoneohjelmiston ja instrumenttien valmistukseen ja on mukana tieteellisessä tutkimusohjelmassa.

Kirjoittaja toimii Suomi 100 -satelliitin tiedotusvastaavana ja tämä jokseenkin sama teksti on julkaistu myös Aalto-yliopiston tiedotteena ja Suomi 100 -satelliitin nettisivuilla.

Video: Näin BepiColombo rynnisti matkaan kohti Merkuriusta – tältä se näytti laukaisupaikalta suomalaissilmin

Video: Näin BepiColombo rynnisti matkaan kohti Merkuriusta – tältä se näytti laukaisupaikalta suomalaissilmin

Viimeinkin! Tätä on kyllä odotettu! BepiColombo-luotain on matkalla kohti Merkuriusta. Suuri (ja pitkään kestävä) tutkimusmatka on alkanut.


20.10.2018

Pitkään rakenteilla ollut luotain lähetettiin matkaan kohti Merkuriusta aikaisin lauantaina 20. lokakuuta Suomen aikaa Kourousta, Etelä-Amerikasta.

Mukana luotaimessa on suomalaistekoinen mittalaite SIXS, jonka tekijöistä kolme oli mukana paikan päällä seuraamassa laukaisua. Tässä on mittalaitteen tieteellisenä johtajana toimivan Juhani Huovelinin kuvaama video laukaisusta ja tunnelmien kommentointia.

Suomalaiset ovat osallistuneet aikaisemminkin suurella osuudella Euroopan avaruusjärjestön satelliitteihin ja luotaimiin, mutta koskaan ei planeettatutkimusluotaimessa ole ollut näin paljon suomalaista tietotaitoa. 

Suurin osuus tulee SIXS-nimisen tutkimuslaitteen tekemisestä. Sen kehittämisestä on vastuussa Helsingin yliopisto ja siellä yliopistonlehtorina toimiva Huovelin on mittalaitteen päätutkija. SIXS toimii luotaimessa kimpassa brittiläisen MIXS-mittalaitteen kanssa, ja professori Karri Muinonen on sen toinen päätutkija. Professori Rami Vainio Turun yliopistosta vastaa puolestaan SIXS:in hiukkasilmaisimesta.

Kaikkiaan Suomesta BepiColombon tieteelliseen työhän osallistuu kaikkiaan toistakymmentä tutkijaa Helsingin ja Turun yliopistojen lisäksi Aalto-yliopistosta ja Ilmatieteen laitokselta.

Tutkijoiden lisäksi mukana hankkeessa on paljon suomalaista avaruusteollisuutta:

- Oxford Instruments Technologies Oy ja turkulainen Aboa Space Research Oy ovat vastanneet SIXS-instrumentin teknisestä suunnittelusta ja rakentamisesta.

- TalviOja Consulting Oy on vastannut SIXS-instrumentin lämpösuunnittelusta ja -mallinnuksesta.

- Space System Finland Oy on kehittänyt ohjelmistot SIXS- ja MIXS -mittalaitteiden yhteiseen ohjaus- ja tietojenkäsittely-yksikköön.

- Patria Aviation Oy (nykyisin RUAG Space Fnland Oy) on valmistanut SIXS:n ja MIXS:n yhteisen ohjaus- ja tietojenkäsittely-yksikön.

Näiden lisäksi Ilmatieteen laitos on ollut vastuussa projektipäällikön ja laadunvalvonnan työosuuksista.

Työn on rahoittanut pääosin Tekes, joka on ollut tämän vuoden alusta osa Business Finland -organisaatiota.

Siinä missä BepiColombon suunnittelu ja rakentaminen ovat olleet täynnä teknisiä haasteita sekä viivytyksiä, sujuivat Ariane 5 -kantoraketin valmistelu matkaan ja laukaisu avaruuteen erittäin sujuvasti. Kaikki meni juuri suunnitellusti, sää laukaisupaikalla oli hyvä, eikä raketin kanssa ollut teknisiä hankaluuksia.

BepiColombo kuljetettiin keväällä Euroopan avaruusjärjestön teknisestä keskuksesta ESTECistä osina rahtilennoilla Ranskan Guyanaan, missä kesän aikana osat testattiin vielä kerran sekä laitettiin yhteen. Lisätietoja osista on mm. tässä artikkelissamme.

Luotain liitettiin kantorakettiin aiemmin tällä viikolla, sen nokkakartio laitettiin paikalleen ja raketti kuljetettiin laukaisualustalle torstaina. Perjantaina illalla raketin tankkaaminen aloitettiin ja matkaan se päästi tarkalleen suunniteltuun aikaan klo 4.45 lauantaina Suomen aikaa.

Kun laukaisusta oli kulunut 27 minuuttia, oli BepiColombo oikealla radallaan kohti planeettainvälistä avaruutta ja se irtosi Ariane 5:n ylimmästä vaiheesta. Ensimmäinen signaali luotaimesta saatiin noin klo 5:20 aamulla, kun lentoonlähdöstä oli kulunut hieman alle 40 minuuttia.

Aurinkopaneelit avautuivat sen jälkeen ja vahvistus siitä, että ne olivat auki normaalisti saatiin noin tunti ja 14 minuuttia matkan alkamisen jälkeen. Tänään luotaimessa olevat pienet kamerat ottavat kuvia, joilla aurinkopaneelien oikea avautuminen voidaan myös visuaalisesti tarkistaa.

Merkuriusta kiertämään luotain saapuu joulukuussa 2025, mutta sitä ennen se tekee useita planeettojen ohilentoja – ensimmäinen on 13. huhtikuuta 2020, jolloin luotain vilahtaa Maan ohi 11 264 kilometrin etäisyydeltä. Ohilennoilla luotaimen rataa muutetaan sopivaksi.

Alla on vielä ESAn ja Arianespacen video raketin laukaisusta.

Suomi 100 -satelliitti ratsastaa avaruuteen Falcon 9 -raketilla

Falcon 9 -raketti Vandenbergissä
Falcon 9 -raketti Vandenbergissä

Suomen satavuotissatelliitti on odottanut laukaisuaan jo lähes vuoden päivät: viime syksynä tapahtunut intialaisten rakettionnettomuus on viivyttänyt laukaisua, mutta pian siitä ei ole enää harmia, sillä satelliitti laukaistaan matkaan syys-lokakuussa Yhdysvalloista Falcon 9 -kantoraketilla.

Eräs aktiivisimmista pienten satelliittien laukaisijoista viime vuosina on ollut Intia, jonka PSLV-raketilla lähetettiin viime vuoden helmikuussa kerralla jopa 104 satelliittia. Myös muilla sen lennoilla on ollut mukana kymmeniä Suomi 100 -satelliitin kaltaisia pikkusatelliitteja. Viime syksynä tapahtunut PSLV:n laukaisuonnettomuus kuitenkin sai aikaan pitkän tauon laukaisuissa ja nyt siellä on kovasti ruuhkaa kaikkien satelliittien saamiseksi taivaalle.

Pieni Suomi 100 -satelliitti ei ole voinut etuilla jonossa, joten pääsy matkaan on viivästynyt koko ajan. Viimeisin takaisku tuli nyt kesällä, kun satelliitti ei päässytkään mukaan seuraavaan PSLV:n laukaisuun; elokuisen lennon päähyötykuorma on ennakoitua painavampi, joten mukana lentävien nanosatelliittien määrää piti rajoittaa. Suomi 100 -satelliitti oli yksi mukaan kaavailluista, mutta pois karsituista satelliiteista.

Nyt kuitenkin Aalto-yliopiston tiimi yhdessä hollantilaisen laukaisuvälittäjän kanssa on saanut järjestettyä satelliitille uuden kyydin. Satelliitti lähetetään avaruuteen syyskuun lopussa tai lokakuun alussa amerikkalaisen SpaceX -yhtiön Falcon 9 -raketilla. Laukaisu tapahtuu Kaliforniasta Los Angelesin pohjoispuolella olevasta Vandenbergin lentotukikohdasta, mistä SpaceX laukaisee matkaan kaikki polaariradalle menevät satelliitit.

Tilanne on siis täsmälleen päinvastainen kuin aikanaan Aalto-1 -satelliitilla, joka oli alun perin tarkoitus laukaista matkaan Falcon 9:llä Kaliforniasta.

Falcon 9:n silloisten ongelmien vuoksi laukaisu siirtyi ja siirtyi eteenpäin, kunnes lopulta laukaisuvälittäjän avulla satelliitille saatiin paikka PSLV-raketilta. Nyt Falconien lennot sen sijaan ovat sujuneet erittäin hyvin ja laukaisuita on ollut parhaimmillaan pari kuukaudessa, joten siellä on nyt tilaa pikkusatelliiteille – etenkin kun koko tuleva lento, jolla Suomi 100 -satelliitti on mukana, on omistettu pikkusatelliittien laukaisuun.

Jos kaikki sujuu hyvin, vie raketti avaruuteen kerralla lähes 120 satelliittia. Lento tulee siis rikkomaan intialaisten taannoisen ennätyksen.

Kyseessä on uudenlainen Falcon 9:n lento, sillä amerikkalainen Spaceflight-yhtiö on ostanut koko laukaisun itselleen ja jakaa siltä paikkoja pikkusatelliiteille. Yhtiö on rakentanut tätä varten erityisen laitteiston, jonka sisään ja kyljessä oleviin kiinnikkeisiin voidaan laittaa paljon erilaisia satelliitteja noin satakiloisista piensatelliiteista aina useita nanosatelliitteja sisältäviin laukaisusovittimiin.

Yhtiö aikoo laukaista satelliitteja tähän tapaan vastaisuudessa ainakin kerran vuodessa Falcon 9 -raketeilla. Lisäksi Spaceflight välittää paikkoja muilta raketeilta asiakkailleen.

Yllä olevassa kuvassa tätä rakennelmaa testattiin viime vuoden lopussa. Noin kuusi metriä korkeaan, pääasiassa komposiiteista ja alumiinista tehtyyn rakennelmaan on tässä kiinnitettynä ns. massasimulaattoreita, eli mötiköitä, jotka vastaavat satelliitteja massaltaan ja muodoltaan.

Kyseessä ei ole vain passiivinen teline satelliiteille, vaan mukana on varsin haastava vapautussysteemi, joka lähettää satelliitit matkaan juuri haluttuina hetkinä ja oikeassa järjestyksessä. Joka tapauksessa satelliitteja tulee olemaan laukaisun jälkeen varsin paljon samoilla seuduilla avaruudessa, joten yksittäisiin satelliitteihin yhteyden saamiseen saattaa mennä pari päivääkin.

Voi siis olla, että esimerkiksi Suomi 100 -satelliittiin ei saada yhteyttä heti laukaisun jälkeen, vaan vasta hieman myöhemmin, kun satelliitit ovat ajautuneet hieman kauemmaksi toisistaan.

Mukana tällä Sun Synch Express -lennolla (virallisemmin SSO-A) on ainakin 115 satelliittia 16 eri maasta. Lopullista listaa mukaan tulevista satelliiteista ei vielä ole, koska kyytiin on hyväksytty Suomi 100 -satelliitin tapaan viime hetken tulijoita ja osa aiemmin mukaan tarkoitetuista satelliiteista on jäänyt pois. Tilanne elää vielä edelleen.

Suomalaisittain kiinnostavaa on se, että samassa laukaisussa on myös Iceye -yhtiön toinen satelliitti, Iceye X2. Kyseessä on 80-kiloinen satelliitti, eli aivan toisen luokan asiakas kuin hieman yli kilon painava Suomi 100 -satelliitti.

Suomi 100 -satelliitti on ollut laukaisuvalmiina jo lähes vuoden ajan. Odotusaikana tosin sitä sekä sen ohjelmistoja on paranneltu, ja nyt keväällä satelliitti valmisteltiin uudelleen laukaisua varten. Silloin se myös kuumennettiin, jolloin sen sisälle mahdollisesti kertynyt ylimääräinen vesihöyry ja epäpuhtaudet saatiin poistettua.

Yllä olevassa kuvassa pöydällä oleva satelliitti on juuri menossa tähän kuumennukseen VTT:n tiloissa Otaniemessä.

Tämän jälkeen satelliitti on ollut Aalto-yliopiston puhdastilassa erityisen suojan sisällä odottamassa siten, että vain sen akkuja on välillä ladattu.

Näillä näkymin satelliitti viedään ensi viikolla Alankomaihin, Delftiin, missä se asennetaan rakettiin kiinnitettävään laukaisusovittimeen heinäkuun lopussa. Elokuussa se kuljetetaan Yhdysvaltoihin, mistä se lähetetään avaruuteen aikaisintaan 30. syyskuuta (tai todennäköisesti lokakuun puolella).

*

Kirjoittaja on ollut mukana Suomi 100 -satelliittihankkeessa viime vuonna ja avustaa Aalto-yliopistoa satelliittiin liittyvässä tiedotuksessa yhä edelleen. Tämä teksti perustuukin Suomi 100 -satelliittihankkeen nettisivuile tehtyyn artikkeliin.

Aalto-1 on ollut vuoden avaruudessa – toimii hyvin ja oppii uusia temppuja

Aalto-1 avaruudessa (käsitelty kuva)
Aalto-1 avaruudessa (käsitelty kuva)
Aalto-1:n ensimmäinen kuva

Suomen avaruusalusrekisterin ensimmäinen satelliitti, Aalto-1, laukaistiin avaruuteen tasan vuosi sitten. Vuoteen on mahtunut hankaluuksia, mutta niistä on selvitty enemmän kuin kunnialla. Satelliitti on päässyt tekemään myös merkittäviä havaintoja.

Aalto-yliopiston opiskelijoiden suunnittelema ja rakentama Aalto-1-nanosatelliitti lähti avaruusmatkalleen tasan vuosi sitten intialaisen PSLV-raketin kyydissä. Pitkään odotettu laukaisu sujui mallikkaasti, ja yhteys satelliittiin saatiin heti samana aamuna.

Siitä alkaen siihen ollaan oltu yhteydessä lähes päivittäin Aalto-yliopiston omalta maa-asemalta Otaniemestä ja kokonaisuudessaan hanke on sujunut lähes niin hyvin kuin olisi voinut toivoa: vuoteen mahtuu onnistumisia, onnenkantamoisia ja myös hankaluuksia, joista on selvitty kunnialla. Koska kyseessä on opetussatelliitti, ovat kommelluksetkin olleet juuri oikealla tavalla opetuksellisia, sillä tiimi on joutunut toden teolla opettelemaan satelliitin operointia avaruudessa erilaisissa tilanteissa.

Kuluneen vuoden aikana Aalto-1 on tehnyt tieteellisesti merkittäviä havaintoja Turussa tehdyllä säteilyilmaisimellaan. Viime syksynä se pystyi havaitsemaan juuri oikeaan aikaan oikeassa paikassa Auringosta tulleiden säteilymyrskyjen kehittymistä ja koska sillä saadut mittaustiedot olivat erittäin kiinnostavia, on satelliitin annettu tehdä alun perin suunniteltua enemmän säteilymittauksia.

”Olemme saavuttaneet kaikki tekniset ja tieteelliset tavoitteemme: ymmärrämme nyt varsin hyvin laitteen vasteen elektroni- ja protonisäteilylle ja olemme kartoittaneet Maan matalan kiertoradan säteily-ympäristöä", iloitsee Turun yliopiston avaruustutkimuslaboratorion professori Rami Vainio.

"Parhaillaan analysoimme elektronivyöhykkeen ajallisia muutoksia ja niiden riippuvuutta Maan ohi puhaltavan aurinkotuulen ominaisuuksista. Mittaustemme mukaan aurinkotuulen magneettikentän pohjois-eteläsuuntainen komponentti ennustaa parhaiten sen, kuinka intensiivistä elektronisäteily on matalalla Maan kiertoradalla. Esittelemme tuloksemme ensi kuussa COSPAR-kokouksessa Pasadenassa.”

Säteilymittari on saanut tehdä havaintojaan paljon myös toisesta syystä: oikeastaan ainoa satelliitissa ollut tekninen vika on ollut sen asennonsäädössä, mikä on tehnyt kuvien ottamisen hankalaksi. Sen sijaan säteilymittari ei tarvitse tarkkaa asennonsäätöä, joten siihen ei satelliitin hidas pyöriminen ole vaikuttanut. Hidas pyöriminen on ollut toisaalta myös hyvä asia, sillä satelliitin lämpö on pysynyt hyvin hallinnassa, kun Aurinko on paistanut siihen tasaisesti – itse asiassa samaan tapaan tasaisesti, kuin juhannusmakkara paistuu grillissä, kun makkaraa käännellään koko ajan.

Pyörivä liike on tehnyt kuvien ottamisen hankalaksi siksi, että kameroita ei ole voitu suunnata kohti Maata halutusti. Tuloksena on ollut siksi paljon huonoja otoksia, missä ei näy kuin taivasta tai palanen maapalloa. Lisäksi nopeampi tietolinkki vaatii antennin suuntaamista Maahan, ja koska kuvat ovat varsin suuria, ei huonoja räpsyjä ole kannattanut ottaa ja välittää alas, koska se on vienyt paljon kallisarvoista yhteysaikaa.

Aalto-1 kun voi olla yhteydessä Otaniemeen vain muutaman kerran päivässä, maksimissaan kymmenisen minuuttia kerralla. Esimerkiksi Aalto-1:n ensimmäisen kuvan välittämiseen alas kului useita viikkoja.

Aalto-1:n ensimmäinen kuva

Aalto-1:n asennonsäätöjärjestelmä toimii sähkömagneeteilla, jotka vääntävät maapallon magneettikentän avustuksella satelliittia haluttuun suuntaan. Magneetit ovat toimineet koko ajan hyvin, mutta niitä ohjannut tietokoneohjelmisto ei toiminut halutulla tavalla. Sen suhteen suomalaisteekkareilla on kuitenkin puhtaat paperit, sillä asennonsäätöjärjestelmä ohjelmistoineen oli hankittu Saksasta.

"Nähtävästi yksi pieni suomalaissatelliitti ei ollut kovin tärkeä asiakas saksalaisyhtiölle, joten saimme kinuta heiltä pitkään uutta koodia", sanoo Aalto-1 -hankkeen vetäjä Jaan Praks – nyt jo nauraen, sillä päivitetty ohjelmisto on toiminut hyvin ja asennonsäätö toimii nyt paljon aiempaa paremmin.

”Teknistä säätämistä on vuoden aikana ollut yllättävän paljon. Ensimmäisen vuoden jälkeen satelliitti toimii kuitenkin hyvin, ja kaikki järjestelmät ovat toimintakunnossa. Missio jatkuu, ja parhaillaan valmistelemme spektrikameraa uutta kuvasarjaa varten.”

Otaniemi katsoo jo tulevaan

Aalto-1 on jo nyt tehnyt tehtävänsä siinä mielessä, että satelliitin operoinnista on tullut rutiinia. Otaniemen maa-asemaa on paranneltu merkittävästi vuoden aikana. Opiskelijatiimi on Petri Niemelän ja Samuli Nymanin johdolla päivittänyt ohjelmistoa, parannellut antennien ohjausta ja kehittänyt aseman etäkäyttöä. Jatkossa opiskelijat muuttavat maa-aseman kokonaan ohjelmistoradiopohjaiseksi, mikä mahdollistaa sen joustavan käytön myös tulevissa avaruusmissioissa.

”Samaa maa-asemaa on tarkoitus hyödyntää tänä vuonna laukaistavan Suomi 100 -satelliitin, rakenteilla olevan Aalto-3-satelliitin sekä osana Suomen Akatemian huippuyksikköä rakennettavien Foresail-1- ja Foresail-2-satelliittien ohjaamisessa”, Praks kertoo.

Professori Jaan Praks työhuoneessaan.

Samalla myös valmistellaan jo Aalto-1:n lennon loppua. Satelliitissahan on VTT:n rakentaman spektrikameran ja Turun yliopiston ja Helsingin yliopiston yhteisen säteilyilmaisimen lisäksi Ilmatieteen laitoksen kehittämä plasmajarru, joka tulee testaamaan uudenlaista menetelmää, jolla toimintansa päättäviä satelliitteja voitaisiin tuoda avaruudesta hallitusti alas tuhoutumaan ilmakehässä.

Aalto-1 testaa tätä hallittua tuhoutumista lentonsa lopuksi; jarru nimensä mukaisesti hidastaa satelliitin ratanopeutta ja saa sen lopulta putoamaan ilmakehään, missä se tuhoutuu tähdenlentona.

Aalto-1:n avaruusmatkan pituudeksi kaavailtiin alun perin noin kahta vuotta. Praksin mukaan aikataulun pitäminen riippuu plasmajarrukokeen onnistumisesta.

”Jos kaikki menee suunnitellusti, Aalto-1 lähtee jarruttamaan vauhtia noin puolen vuoden kuluttua. Siten se ei jää avaruusromuksi kiertoradalle vaan törmää ilmakehään, näkyen meille viimeistä kertaa pienenä tähdenlentona. Jos jarrujärjestelmä ei jostain syystä toimisi, missio ja sen mittaukset voivat jatkua vuosia.”

*

Juttu perustuu osittain Aalto-yliopiston tiedotteeseen.

Onni on uusi kupu

Metsähovin radioteleskoopin kupu. Kuva: Metsähovin radiotutkimusasema
Metsähovin radioteleskoopin kupu. Kuva: Metsähovin radiotutkimusasema

Metsähovin radiotutkimusaseman maamerkki on suuren radioteleskoopin päällä oleva kupu. Nyt asema on saanut lähes miljoonan euron rahoituksen vanhan ja väsyneen kuvun uusimiseen.

Metsähovin radioteleskooppi on käytössä kellon ympäri vuoden jokaisena päivänä ja kupu suojaa sitä lumelta, tuulelta, sateelta ja auringon lämpösäteilyltä.

Valkoinen kupu on halkaisijaltaan noin 20 metriä ja se on radioaallonpituuksilla lähes näkymätön, joten teleskooppi pystyy tekemään havaintoja kuvun sisällä melkein kuin kupua ei olisikaan.

”Uusi kupu mahdollistaa tarkkojen mittausten tekemisen seuraavaksi 25 vuodeksi”, kertoo Metsähovin johtaja Joni Tammi Aalto-yliopiston tiedotteessa.

 

Radioteleskoopin suuntaus miljardien valovuosien päähän on niin tarkkaa, että pienetkin tuulenpuuskat häiritsisivät mittauksia. Myös Auringon lämpösäteily kuumentaisi herkkää vastaanotinta ja pahimmillaan jopa vaurioittaisi laitteistoa. Kuvun sisällä teleskooppi on jatkuvasti varjossa, jolloin sen voi suunnata kohti Aurinkoa huoletta, ja tämä mahdollistaa mm. Metsähovissa neljäkymmentä vuotta tehdyt aurinkohavainnot.

Talvella kuvun päälle satanut lumi sulatetaan lämmittämällä kuvun sisäilmaa kymmeniä asteita. Kuuma ilma nousee ylös ja sulattaa lumen, joka valuu vetenä alas maahan jättäen kuvun puhtaaksi.

Uutta kupua ei noin vain osteta kaupasta, sillä maailmassa on vain pari valmistajaa, jolta saadaan tarpeeksi laadukas kupu tilattua. Kupu pitää suunnitella siten, että sen muoto ei häiritse radiosignaalien kulkemista.

Tarkoitus on, että uusi kupu on käytössä ensi vuoden aikana.

*

Artikkeli on Aalto-yliopiston tiedote lähes sellaisenaan.

Mitä se millennium-palkittu atomikerroskasvatusteknologia on?

Mitä se millennium-palkittu atomikerroskasvatusteknologia on?

Järjestyksessään jo kahdeksas Millennium-teknologiapalkinto annettiin tiistaina 22.5.2018. Sen sai suomalainen Tuomo Suntola, joka kehittämä atomikerroskasvatusteknologia on tieteen ja tekniikan varsinainen monitoimityökalu.


25.05.2018

Periaate on hyvin yksinkertainen: on tyhjökammio, missä on pinta, jonka päälle halutaan kerrostaa erilaisia aineita. Aineita höyrystetään yksi kerrallaan kammion sisälle sopivissa olosuhteissa (paine ja lämpötila), jolloin niiden atomeita laskeutuu pinnalle ja muodostaa siihen molekyylikerroksen.

Pinta huuhdellaan eri aineiden höyryttämisen välillä ja kerrosten paksuutta voidaan höyrytyksen aikaa ja ainemäärää säätämällä. 

Kerrokset voivat olla joko koko pinnan tasaisesti kattavia, tai niihin voidaan saada aikaan muotoja laittamalla pinnan päälle esimerkiksi valottamalla filmin kaltainen kerros ainetta, joka estää kerroksen muodostumisen. Tämä laminaattikerros huuhdellaan höyrytyksen jälkeen pois, jolloin tuloksena on juuri halutun kaltainen kuvio pinnalla.

Kun tällaisia tarkasti suunniteltuja, eri aineista koostuvia kerroksia ladotaan päällekkäin monia, saadaan aikaan kolmiulotteinen nanokokoa oleva rakenne – kuten esimerkiksi mikropiiri tai valoa hohtava pinta.

Ensimmäinen ALD-tekniikan sovellus olikin elektroluminesenssinäyttö. Niissä lasilevyn päälle rakennettiin atomikerroskasvatuksella ensin läpinäkyvä johderivistö, sitten eristekerros ja sen jälkeen hohdemateriaalikerros, jonka päälle jälleen uusi eristekerros ja lopuksi vielä johdinrivistö. Elektroluminesenssinäytöt ovat erittäin luotettavia ja käteviä yhä edelleen.

Nyt palkittu Tuomo Suntola kehitti ensinnä ALD-teknologian ja ohutkalvojen valmistuslaitteiston 70-luvulla, ja sai niille kansainvälisen patenttisuojan. Tämä mahdollisti ohutkalvojen laajamittaisen teollisen valmistamisen.

ALD-teknologian taustalla olevaa tieteellistä perustutkimusta olivat tehneet myös silloisessa Neuvostoliitossa professorit Valentin B. Aleskovski ja Stanislav I. Koltsov.

”Kun puolijohdeteknologiassa ymmärrettiin ALD-teknologian merkitys 2000-luvun alussa, sen käyttö räjähti valtavaan kasvuun”, Tuomo Suntola toteaa TAF:n tiedotteessa.

Tekniikkaa käytetään runsaasti myös muihin tarkoituksiin ja etenkin ohutkalvojen hyödyntämisestä lääketieteellisissä instrumenteissa ja implanttien pinnoilla on saatu lupaavia tutkimustuloksia.

Startup-yrityksiä on syntynyt kaupallistamaan teknologiaa esimerkiksi sovelluksissa, jotka säätelevät lääkeaineiden vapautumista ihmiskehossa.

ALD-menetelmällä voidaan parantaa muun muassa aurinkokennojen, led-valojen ja sähköautojen litium-akkujen suorituskykyä ja sitä voidaan hyödyntää ympäristöystävällisissä pakkausmateriaaleissa. Menetelmää käytetään myös erilaisissa optiikan sovelluksissa. Arkipäivän käytössä ohutkalvot estävät metallin tummumista kellojen ja hopeakorujen pinnoitteissa.

ALD-kalvojen valmistukseen käytettävien laitteistojen ja kemikaalien maailmanlaajuiset markkinat ovat arviolta noin kaksi miljardia dollaria, ja ALD-teknologiaan nojaavan kuluttajaelektroniikan markkina-arvo yltää jo ainakin viiteensataan miljardiin dollariin.

Atomikerroskasvatusta VTT:n laboratoriossa. Kuva: VTT

Konkreettisimmin ALD on vaikuttanut mikroprosessoreiden ja muistikomponenttien tekemiseen. Elämämme onkin mullistunut koko ajan tehokkaampien älypuhelinten ja tietokoneiden ansiosta. Teknologian kehitys puolestaan on tehnyt mahdolliseksi monia nyt arkisia sovelluksia sosiaalisesta mediasta tekoälyyn.

Suntolan innovaatio on yksi keskeinen tekijä siinä, että kuuluisa Mooren laki on jatkunut aina tähän päivään saakka: mikropiirien teho on kaksinkertaistunut parin vuoden välein hintojen kuitenkin samalla laskiessa.

”ALD-menetelmä on malliesimerkki käyttäjälle piilossa olevasta teknologiasta, joka on kuitenkin välttämätöntä näkyvälle kehitykselle. ALD on demokratisoinut tietotekniikan omistamista ja sen myötä ihmiskunnan tiedonsaantia ja viestintämahdollisuuksia”, sanoo Millennium-teknologiapalkinnon kansainvälisen palkintolautakunnan puheenjohtaja, Aalto-yliopiston professori Päivi Törmä.

*

Juttu perustuu osittain Tekniikan Akatemian tiedotteeseen. Video on Tekniikan Akatemian YouTube-kanavalta.

Mahtavaa: aurinkokennojen elinikä voidaan jopa kymmenkertaistaa

Uusia aurinkokennoja ihmetellään. Kuva: Valeriya Azovskaya, Aalto Materials Platform
Uusia aurinkokennoja ihmetellään. Kuva: Valeriya Azovskaya, Aalto Materials Platform

Aurinkosähkö kasvattaa osuuttaan maailman sähköntuotannossa kovaa vauhtia. Uusia materiaaleja etsitään koko ajan, mutta yhtä lailla olisi tärkeää pidentää kennojen käyttöikää; nyt osa niistä menettää hyötysuhdettaan varsin nopeasti, mikä tekee investoimisesta aurinkokennoihin vähemmän kannattavaa. Suomalaistutkimus haluaakin parantaa kennojen ikääntymisen mittaamista.

Otsikkokuvassa Kati Miettunen (vas.) ja Armi Tiihonen (oik.) tutkivat tuoreita väriainekennoja ikääntymistesteihin käytetyllä ja kameramittauksiin soveltuvalla kennoalustalla.

Heistä Tiihonen väitteli Aalto-yliopistolla 6.4.2018 uudenlaisten väriaineherkistettyjen ja perovskiittiaurinkokennojen ikääntymiseen liittyvistä tekijöistä. Väitöskirjassa on kehitetty keinoja aurinkokennojen eliniän lisäämiseen sekä esitetty, miten ikääntymistestejä voisi parantaa.

Perovskiittiaurinkokennoissa on valoa sieppaavana osana kiderakenne, joka koostuu perovskiitista, kalsiumtitanaattia sisältävästä mineraalista. Perovskiittia sisältävät aurinkokennot ovat hyvin lupaavia, koska niillä on saavutettu jopa yli  20 prosentin hyötysuhteita. 

Ne ovat tällä haavaa varsin kalliita, mutta niistä on mahdollista kehittäää hyvinkin edullisia versioita tulevaisuudessa.

Korkeampi hinta ei myöskään haittaisi niin paljoa, jos tuore suomalaistutkimus auttaisi osaltaan pidentämään kennojen ikää kenties jopa kymmenkertaiseksi.

”Perovskiittiaurinkokennoja ei ole aikaisemmin tutkittu nopealla, matalan kynnyksen valokuvausmenetelmällä", kertoo Tiihonen.

"Menetelmällä havaittiin jo vähäinenkin perovskiitin hajoaminen, minkä vuoksi valokuvaus voi joissain tapauksissa korvata sitä perusteellisemman ja työläämmän röntgenkristallografiamittauksen.”

Röntgenkristallografiamittauksen ajankohta voidaan valita valokuvaustulosten perusteella.

Jos kuvaamalla ei havaita muutoksia kennoissa, niiden röntgenkristallografiamittausta voi lykätä. Valokuvaamalla voi myös saada jopa luotettavamman tuloksen kuin esimerkiksi optisilla mittauslaitteilla.

Menetelmä perustuu värimuutoksiin, joita ikääntyminen usein aiheuttaa kennossa. Esimerkiksi väriainekennoissa, joissa on voimakkaan keltaista jodia sisältävää elektrolyyttiä, ikääntyminen muuttaa elektrolyyttiä läpinäkyvämmäksi.

Samoin perovskiittikennoissa tumman perovskiitin hajoaminen muuttaa kennoa keltaisemmaksi. Kun muutokset mitataan, ikääntymistä voidaan seurata kvantitatiivisesti.

Valokuvaus voi olla hyödyllistä molempien aurinkokennotyyppien teollisessa tuotannossa, koska kuvaamalla havaitaan kennojen ikääntymismuutokset nopeasti ja edullisesti.

Kennojen ikääntyminen pitää ymmärtää paremmin

Väitöstyössä on analysoitu laajasti perovskiitti- ja väriaineherkistettyjen aurinkokennojen ikääntymistestejä, joissa ilmeni vakavia puutteita. Tutkimus sisältää myös keinoja kasvattaa kennojen elinikää hidastamalla elektrolyytin vaalenemista.

”Ikääntymismekanismin ymmärtäminen on erittäin tärkeää. Kennorakennetta ja elektrolyyttiä muokkaamalla olemme pystyneet jopa kymmenkertaistamaan aurinkokennojen eliniän”, painottaa dosentti Kati Miettunen.

Tutkimuksessa vertailtiin jodi- ja kobolttielektrolyyttejä, ja havaittiin ikääntymisen hidastuvan varauksenkuljettajaa vaihtamalla. Jodielektrolyytit eivät olekaan kobolttia kestävämpiä, kuten on uskottu.

”Tutkimme ympäristötekijöiden vaikutusta elektrolyytin vaalenemiseen ja kennojen ikääntymiseen. Epäpuhtauksien, kuten veden, vähentäminen tai UV-valon suodattaminen ovat tärkeitä, mutta niistä saatu hyöty jäi oletettua pienemmäksi”, lisää Tiihonen.

Väriainekennoilla on laajat sovellusmahdollisuudet, sillä niitä voidaan tehdä monista eri materiaaliyhdistelmistä ja useissa väreissä.

Perovskiittikennot taas herättävät innostusta nopean kehityksensä vuoksi: niiden hyötysuhde on vuosikymmenessä jo lähes kymmenkertaistunut hieman yli 20 prosenttiin. 

Kun ja jos laadukkaammilla ikääntymistesteillä voisi vielä pidentää perovskiitti- ja väriainekennojen elinikää olennaisesti, saataisiin niistä hyviä ja edullisia vaihtoehtoja perinteisille aurinkokennoille.

*

Juttu perustuu Aalto-yliopiston tiedotteeseen. Kuva: Valeriya Azovskaya, Aalto Materials Platform.

Tutkijat saivat selville mikä erottaa nopeat ja hitaat kirjoittajat toisistaan

Kirjoittamista. Kuva: flickr / Chris Blakeley
Kirjoittamista. Kuva: flickr / Chris Blakeley

168 000 koehenkilöä testasi kirjoitusvauhtinsa tutkijoiden kehittämällä verkkotestillä. Nopeimpia näppäilijöitä yhdisti mm. pianon soittamista muistuttava painallustekniikka. Voit tehdä myös itse testin!

Aalto-yliopiston ja Cambridgen yliopiston tutkimukseen osallistui vapaaehtoisia yli 200 eri maasta. Selvästi suurin osa, 68 prosenttia, oli Yhdysvalloista.

Enemmistö osallistujista oli nuoria ja rutinoituneita näppäimistön käyttäjiä, ja noin 70 prosenttia oli osallistunut kirjoitustekniikan kursseille.

Keskimäärin osallistujat kirjoittivat 52 englanninkielistä sanaa minuutissa. Hajonta oli kuitenkin erittäin suurta.

”Nopeimmat koehenkilöt ylsivät 120 sanaan minuutissa. Se on mahtava tulos, kun ottaa huomioon, että koe tehtiin kontrolloidusti ja satunnaislauseilla”, sanoo professori Antti Oulasvirta.

Nopeimmat kirjoittajat tekivät vähiten virheitä, mutta tutkijat havaitsivat datan perusteella myös toisen yhdistävän tekijän: pianon soittamista muistuttavan painallustekniikan, jossa kirjoittaja painaa seuraavaa näppäintä jo ennen, kuin nostaa sormen ylös edelliseltä.

Tekniikka on suosittu peliharrastajien keskuudessa, mutta tämä on ensimmäinen kerta, kun tutkimuksessa on havaittu sitä hyödynnettävän myös kirjoittamisessa.

”Nopeista kirjoittajista 40–70 prosenttia hyödynsi rolloveriksi kutsumaamme tekniikkaa riippumatta siitä, kirjoittivatko he kosketusnäytöllä vai fyysisellä näppäimistöllä. Rollover toimii vain tiheään toistuvilla kirjainyhdistelmillä ja edellyttää, että käyttäjä osaa kirjoittaa katsomatta sormiaan”, tohtorikoulutettava Anna Feit sanoo.

Nopeuteen ei tarvita kymmentä sormea – tai edes kirjoituskursseja

Suurin osa koneella kirjoittamista koskevasta tutkimuksesta on peräisin kirjoituskoneiden aikakaudelta. 70- ja 80-luvuilla ammattikirjoittajat ylsivät 60–90 sanaan minuutissa. Kirjoituskoneella tehdyt virheet olivat yleensä tuplalyöntejä tai kirjainten väliin jäämisiä, kun taas näppäimistöllä tai kosketusnäytöllä kirjoittaessa tyypillinen virhe on väärän kirjaimen painaminen. Nykyisin kirjoittajien tekniikoissa on myös enemmän vaihtelua.

“Nykyisillä näppäimistöillä painallukseen vaaditaan paljon vähemmän fyysistä voimaa kuin kirjoituskoneella kirjoittaessa. Siksi itseoppineet kirjoittajat voivat olla todella nopeita, vaikkeivat hyödyntäisi perinteistä kymmensormitekniikkaa”, Feit selittää.

Tutkijat havaitsivat myös, ettei kursseilla käyneiden ja itseoppineiden välillä ollut juurikaan eroja nopeudessa tai virheiden määrässä. Tulos vahvistaa aiemmat tutkimukset, joiden mukaan itseoppineet löytävät itselleen sopivimmat kirjoitustavat ja kursseja käyneet taas unohtavat osan oppimastaan.

Tutkimukseen osallistuneet vapaaehtoiset antoivat ennen testin tekemistä luvan anonyymiksi muutetun datan hyödyntämiseen.

”Tällaiset joukkoistamista hyödyntävät kokeet antavat meille tietoa ihmisen ja koneen vuorovaikutuksesta todella suuressa mittakaavassa ja ovat siksi välttämättömiä, kun mietitään tulevaisuuden käyttöliittymien suunnitteluperiaatteita”, sanoo professori Per Ola Kristensson Cambridgen yliopistosta.

Vaaka-akseli kuvaa minuutissa kirjoitettujen sanojen määrää, pystyakseli koehenkilöiden määrää. Kokeeseen osallistuneiden keskimääräinen kirjoitusnopeus oli 52 sanaa minuutissa. Suomen kielessä sanojen keskipituus on selvästi pidempi kuin englannissa, joten tulosta ei voida suoraan verrata suomen kielellä tehtyihin testeihin.

 

Näin kirjoitat nopeammin

Tohtorikoulutettava Anna Feit kertoo, miten kirjoittaminen onnistuu nopeammin:

  • Virheiden korjaaminen on hidasta, eli vältä niitä. Kirjoita heti oikein ja vähän – hitaammin  se on lopulta nopeampaa.
  • Opettele kirjoittamaan niin, ettei sinun tarvitse katsoa sormiisi. Motorinen järjestelmäsi oppii pian muodostamaan yleisimmistä kirjainyhdistelmistä nopeita ”trillejä”, mikä vauhdittaa kirjoittamista. Katseen pitäminen näytössä tekee myös virheiden korjaamisesta nopeampaa.
  • Harjoittele rolloveria. Käytä eri sormia kahdelle eri kirjaimelle sen sijaan, että liikuttaisit samaa sormea näppäinten välillä, ja paina seuraavan kirjaimen näppäintä jo ennen kuin nostat edellisen ylös.
  • Tee välillä kirjoittamistesti verkossa, se auttaa sinua seuraamaan edistymistäsi ja huomaamaan, missä sinulla on parantamisen varaa. Varmista, että testissä käytetään aina uusia lauseita – näin et harjoittele turhaan samoilla teksteillä.

Tutkimus tehtiin yhteistyössä TypingMaster.com:n kanssa.

Data on saatavissa tutkimuskäyttöön osoitteesta userinterfaces.aalto.fi/136Mkeystrokes/

Kirjoitusnopeutensa voi testata osoitteessa typingmaster.research.netlab.hut.fi/

*

Juttu on Aalto-yliopiston tiedote. Otsikkuva: flickr / Chris Blakeley.

Tähtitieteen ennätykset murskaksi: maapalloa suurempi virtuaaliteleskooppi on hypersupertarkka

Havainnekuva RadioAstron-satelliitista havaitsemassa yhdessä maanpinnalla sijaitsevan radioteleskoopin kanssa ja oikealla kuva galaksin NGC 1275 suihkusta.
Havainnekuva RadioAstron-satelliitista havaitsemassa yhdessä maanpinnalla sijaitsevan radioteleskoopin kanssa ja oikealla kuva galaksin NGC 1275 suihkusta.
Osa havaintojen tekoon maanpinnalta osallistuneiden radioteleskooppien verkostosta. Kuva: Paul Boven; satelliittikuva: Blue Marble Next Generation, NASA Visible Earth.

Kun Maan päällä olevien radioteleksooppien signaalit yhdistetään avaruudessa olevan radioteleskoopin havaintojen kanssa. saadaan aikaiseksi historian tarkin tähtietieteellinen havaintolaite. Se voisi nähdä biljadipallon Kuun pinnalta – tai galaksin NGC 1275 ytimestä pursuavan kaasukuihkun todella hyvin.

Tämä uutinen alkaa kuin satu: kaukana avaruudessa, 230 miljoonan valovuoden päässä maapallosta, sijaitsee jättiläisgalaksi NGC1275.

Sen keskustassa oleva miljardin Auringon massainen musta aukko synnyttää lähes valonnopeudella virtaavia plasmasuihkuja, joiden syntyalueen rakenteesta on tähän mennessä tehty päätelmiä vain mallien ja tietokonesimulaatioiden avulla.

Nyt tutkijat ovat pystyneet kuvaamaan plasmasuihkun rakenteen kymmenen kertaa lähempänä suihkun lähtöpistettä kuin aikaisemmin, vain parin sadan mustan aukon säteen päässä.

”Tutkimustulos yllätti meidät", iloitsee kuvat ottanutta kansainvälistä havainto-ohjelmaa johtava akatemiatutkija Tuomas Savolainen.

"Lähellä syntypaikkaansa suihku osoittautui leveämmäksi kuin suosituimmat mallit ennustavat. Tämä voi tarkoittaa, että ainakaan suihkun uloin kerros ei synny aivan mustan aukon välittömässä läheisyydessä, kuten tietokonesimulaatioiden pohjalta on ajateltu, vaan kauempana aukkoa ympäröivässä kertymäkiekossa. Tuloksemme ei vielä kumoa malleja mutta antaa niiden kehittelijöille tärkeää tietoa, kuinka viedä malleja oikeaan suuntaan.”

Toinen mielenkiintoinen uusi havainto on se, että suihkun rakenne on erilainen kuin Maata lähempänä olevassa M87-galaksissa.

Se on ollut tähän mennessä ainoa kohde, jonka plasmasuihkun rakennetta on kuvattu näin lähellä mustaa aukkoa. Tässä vaiheessa tutkijoiden teoria on, että rakenteen erilaisuus johtuu suihkujen ikäerosta.

”Nyt havaitsemamme suihku on käynnistynyt uudelleen vain reilu vuosikymmen sitten, eikä se ole siksi saavuttanut tasapainotilaa ympäristönsä kanssa. Nyt meillä on ainutlaatuinen tilaisuus seurata, kuinka mustan aukon tuottama plasmasuihku syntyy ja kasvaa”, selittää puolestaan professori Gabriele Giovannini Italian kansallisesta astrofysiikan tutkimusinstituutista.

NGC 1275 on Perseuksen galaksijoukon massiivinen keskusgalaksi 230 miljoonan valovuoden päässä. Oikealla olevan suihkun pituus on vain noin kolme valovuotta, ja musta aukko sijaitsee kuvan yläosassa olevan kirkkaan pisteen sisällä.

Otsiokkokuvassa oikealla olevan kuvan yksityiskohdat ovat pienempiä kuin omaa aurinkokuntaamme ympäröivän Oortin komeettapilven koko, eli avaruuden mittakaavassa todella pieniä yksityiskohtia kun ottaa huomioon galaksin etäisyyden.

Yksi teleskooppi avaruudessa, loput maassa

Merkittävä parannus kuvien tarkkuudessa oli mahdollinen Maata kiertävän venäläisen RadioAstron-radioteleskoopin ja yli kahdenkymmenen maanpinnalla sijaitsevan radioteleskoopin yhdistelmän avulla.

Ideana on yhdistää toisiinsa useampi radioteleskooppi ja käsitellä niiden signaaleita siten, että teleskoopit toimivat kuin yksi todella suuri teleskooppi. Fysiikan peruslakien mukaan havainnon tarkkuus riippuu teleskoopin halkaisijasta, mikä tässä tapauksessa kaukaisimpien teleskooppien välinen etäisyys.

Nyt tehdyssä havainnoissa oli osallisina useita radioteleskooppeja Maan päällä ja yksi avaruudessa. Koska radioteleskooppina toimiva venäläinen RadioAstron -satelliitti etääntyy parhaimmillaan meistä 350 000 kilometrin – eli lähes Kuun radan etäisyydelle – päähän, on virtuaalinen teleskooppi kooltaan todella suuri. Erotuskyvyltään se onkin tähtitieteen historian tarkin havaintolaite.

Osa havaintojen tekoon maanpinnalta osallistuneiden radioteleskooppien verkostosta. Kuva: Paul Boven; satelliittikuva: Blue Marble Next Generation, NASA Visible Earth.
Osa havaintojen tekoon maanpinnalta osallistuneiden radioteleskooppien verkostosta. Kuva: Paul Boven; satelliittikuva: Blue Marble Next Generation, NASA Visible Earth.

 

Plasmasuihkujen tutkiminen auttaa ymmärtämään mustien aukkojen fysiikkaa sekä galaksien keskustoissa sijaitsevien mustienaukkojen vaikutusta ympäröivään galaksiin ja sen evoluutioon, kuten vaikka uusien tähtien syntynopeuteen galaksissa.   

”Minua kiinnostaa erityisesti se, miten nämä rakenteet ylipäätään voivat syntyä; miten luonto pystyy tekemään stabiilin, lähes valonnopeudella liikkuvan plasmasuihkun tavalla, joka vaikuttaa niin helpolta, mutta jota ihminen ei ainakaan toistaiseksi pysty matkimaan”, Savolainen toteaa.

Savolainen työskentelee Aalto-yliopistossa elektroniikan ja nanotekniikan laitoksella sekä Metsähovin radio-observatoriolla ja johtaa RadioAstron-satelliitin radiogalakseihin keskittyvää havainto-ohjelmaa. Aalto-yliopiston ja Italian kansallisen astrofysiikan tutkimusinstituutin lisäksi tutkimusryhmässä olivat mukana muun muassa Venäjän tiedeakatemian Lebedev-instituutti, saksalainen radioastronomian Max-Planck-instituutti ja Academia Sinica Taiwanista. Venäjän avaruusjärjestön RadioAstron-satelliittiohjelmaa johtavat Lebedev-instituutti ja avaruusteknologiayhtiö Lavochkin.

*

Juttu pohjautuu Aalto-yliopiston tiedotteeseen.