Aprillia, aprillia!

Monissa tiedotusvälineissä on ollut tänään kaikenlaisia hupijuttuja ja ihmiset ovat tehneet toisilleen aprillipiloja. Mutta harva on tullut ajatelleeksi miksi tänään huhtikuun ensimmäisenä on tapana pilailla. 

Wikipedian mukaan aprilliperinteiden pohjana saattaa olla se, että eri puolilla maailmaa pohjoisella pallonpuolella on kevään tulemista juhlistettu monin eri tavoin, mutta pääasiassa leikitellen ja vitsaillen.

Muun muassa roomalaiset viettivät Hilaria-juhlaa 25. maaliskuuta ja hindujen maaliskuun alussa viettämä värien juhla Holi on vähintään yhtä vanha. 

Konkreettisemmin aprillin asettuminen huhtikuun alkuun on mahdollisesti saanut lisäsysäyksen siitä, että vielä 1500-luvun puolivälissä vuosi alkoi eri aikaan eri puolilla Eurooppaa: esimerkiksi Lyonissa vuosi alkoi jouluna, mutta Wienissä 25. maaliskuuta. Monin paikoin vuosi vaihtui juliaanisen kalenterin mukaisesti 1. maaliskuuta, mutta myös pääsiäinen oli vuoden vaihtumisen merkki, jolloin aikoinaan katsottiin uuden kirkkovuodenkin alkavan.

Suurista eroista aiheutui sekavuutta muun muassa sopimusten suhteen, ja Ranskaa tuolloin 1500-luvun puolivälissä kiertänyt kuningas Kaarle IX paitsi huomasi konkreettisesti ajanlaskun eri tahdin eri hiippakunnissa, niin myös harmistui sen aiheuttamista hankaluuksista. Esimerkiksi sopimuksissa, joissa kyse oli päivämääristä, oli liikaa epämääräisyyttä.

Niinpä Kaarle IX päätti yhtenäistää maansa ajanlaskun ja määräsi tammikuun alussa Pariisissa vuonna 1563 kirjatussa laissa että vuosi alkaa kaikkialla Ranskassa 1. tammikuuta. Tämä sai lain voiman 9. elokuuta 1564.

Suuri osa kansalaisista ei luonnollisestikaan tiennyt uudesta laista ja osa ei yksinkertaisesti hyväksynyt perinteisen oman ajanlaskunsa muuttamista. Niinpä heitä alettiin kutsua nykyisen pääsiäisen tienoilla olemattomiin uudenvuodenjuhliin ja tai heille lähetettiin pilailumielessä uudenvuodenlahjoista.

Aikauudistukset eivät loppuneet tähän, sillä vuonna 1582 Ranskassa siirryttiin vielä käyttämään loogisempaa (nykyistä) gregoriaanista kalenteria. Se osaltaan vielä lisäsi “vuodenvaihteella” leikittelyä.

Kanaalin toisella puolella Brittein saarilla kalenterin muuttuminen gregoriaaniseksi vuonna 1752 ei kuitenkaan saanut aikaan aprillivitsailua, sillä siellä “April Fool’s Day” tunnetaan jo 1600-luvun alusta.

Koko tarina on luettavissa Wikipedista.

Otsikkokuvassa on selkän teipattavia paperikaloja, koska monissa maissa tämä on tyypillinen, viaton aprillipila. Esimerkiksi Ranskassa aprillipiloja kutsutaan nimellä "Poisson d'avril", eli "huhtikuun kala".

Ekologin yövuoro

Sarja turkijoista työssään jatkuu tänään Turun yliopiston ekologilla.

Ekologit Kati Miettinen ja Marja-Katariina Haatanen sonnustautuvat otsikkokuvassa huomioliivein ja otsalampuin lämpimänä elokuisena iltana Turun Vienolassa. Pitkä antenni ja vastaanotin rekisteröivät pantaeläinten liikkeitä. Nyt ollaan supikoirien jalanjäljillä.

"Tämä on vähän samanlaista kuin lapsuuden lämpenee, lämpenee -leikki," nauraa Miettinen. 

"Menemme sinne, missä signaali piippaa voimakkaimmin."

Kati Miettinen on viettänyt kymmeniä öitä radiopannoitetun supikoirapariskunnan  – Hamamatin ja Vesan – liikkeitä tarkkaillen. Nyt tehtävänä on Hamamatin iltapaikannus. Miettinen asettaa korvilleen nappikuulokkeet ja kääntää vastaanottimen Hamamatia seuraavalle kanavalle. Signaali kuuluu heti. Myös Vesa on linjoilla.

Miettinen on kesästä 2009 lähtien pannoittanut eri puolilla Turun kaupunkialuetta kettuja, mäyriä, supikoiria ja kotikissoja – kissat omistajiensa luvalla. Pannoitusprojekti on tarkoittanut unettomia kesäöitä radiosignaaleja kuunnellen ja karttapisteitä merkiten. Tutkija on ollut liikkeellä keskimäärin kolmena yönä viikossa.

"Eläimistä otetaan sekä ilta- että aamupaikannuksia. Iltapaikannukset otetaan kymmenen ja kahden välillä ja aamupaikannukset kahden ja kuuden välillä. Yleensä supikoirat ovat hyvin arkoja, joten näköhavaintoa emme useinkaan saa. Viime yönä kuulin, kuinka Hamamat mussutti marjoja tai omenia ihan lähistölläni."

Eläinten elinympäristön käytöstä on paljon tietoa maaseudulta, mutta kaupungissa eläinten käyttäytyminen muuttuu. Ekologisten teorioiden mukaan kaupungissa saattaa olla tiheämmät nisäkäskannat, mikä olisi esimerkiksi tautien leviämisen kannalta vaarallista.

Miettinen onkin supikoirien ohella tutkinut muun muassa kotikissan elinympäristön käyttöä kaupungissa ja laatinut skenaarion siitä, mitä tapahtuisi vesikauhun, eli rabieksen saapuessa Turkuun.

Supikoiran vessoja

Kaupunkialueella liikkuvien nisäkkäisen ulostenäytteistä saadaan arvokasta tietoa eläinten ravinnosta. Niinpä Miettinen on kouluttanut labradorinnoutaja Pigin etsimään maastosta ketun ja supikoiran ulosteita.

Supikoiran ulosteiden löytäminen on vielä helppoa ihmisellekin, koska eläimet käyttävät aina samoja käymäläpaikkoja. Ketun ulosteen erottaminen koirankakasta taas vaatii todella tarkkoja silmiä – tai nenää.

Ekologin työ on Miettiselle kutsumusammatti.

"En edelleenkään osaa sanoa, että lähtisin töihin. Tämä on elämäntapa, jossa harrastus ja työ sekoittuvat."

Juttu on lainattu Turun yliopiston nettisivuilta.

Nessie pakoilee edelleen

Tasan 22 vuotta sitten, 28. lokakuuta vuonna 1992, Loch Nessiä kaikuluotaimella kartoittaneet tutkijat saivat mahdollisesti "kontaktin" järvessä asuvaan myyttiseen hirviöön – jälleen kerran.

Jokainen on varmasti kuullut Loch Nessin hirviöstä, legendaarisesta liskosta, jonka historia ulottuu lähes puolentoista vuosituhannen taakse. Seudulle sattunut, sittemmin pyhimykseksi julistettu Columba läksytti armon vuonna 565 vakavin äänenpainoin vesielikkoa, joka oli aikeissa syödä suihinsa rannalla taapertaneen munkin. Hirviö totteli nuhteita ja painui takaisin järven syvyyksiin.

Myyttinen monsteri vietti pitkään hiljaiseloa, kunnes siitä otettiin vuonna 1933 ensimmäinen valokuva. Tai valokuva, jonka väitettiin esittävän Loch Nessin hirviötä. Sen jälkeen "Nessien" olemassaolosta on väännetty ankarasti kättä, ja hirviötä on metsästetty kolmessa vuorossa niin verkoin, videoin kuin vedenalaisin luotauslaitteinkin.

Parhaita Nessiteras rhombopteryxin eli Nessien tähystelypaikkoja on Loch Nessin länsirannalla, lähellä Drumnadrochitin pikkukylää sijaitseva Urquhartin rauniolinna. Sen torneista ja muureilta avautuu esteetön näköala pitkälle mutta kapealle järvelle, jolla on syvyyttä enimmillään peräti 230 metriä.

Suuri syvyys tekee järven läpikotaisen tutkimisen vaikeaksi, ja siksi jotkut väittävät, että siellä on kymmenien miljoonien vuosien ajan onnistunut piileskelemään muinainen plesiosaurus eli joutsenlisko – tai varmaankin useampia liskosukupolvia, sillä kukaan ei sentään ole väittänyt, että sama yksilö olisi asustanut seudulla koko tuon ajan.

Vaikka vuosikymmenten saatossa on tehty niin vedenpinnalla kuin pinnan allakin lukuisia havaintoja, jotka vannoutuneimpien Nessien metsästäjien mielestä ovat kiistattomia todisteita hirviön olemassaolosta, niille kaikille on yhteistä epämääräisyys: ainuttakaan niistä ei voi pitää likikään kiistattomana.

Tällaisten uskomuksiin perustuvien olentojen tutkimuksella on oma nimityksensäkin, kryptozoologia. Sen "tutkimuskohteita" ovat Nessien ohella myös muut eläimet, joista on tehty kiistanalaisia havaintoja, kuten merihirviöt ja lumimiehet.

Tekniikan kehittyessä Loch Nessin syvyyksien salat ovat paljastuneet yhä paremmin ja hirviömyytti on ajautunut ahdinkoon. Havaintoja tehdään yhä vähemmän ja esimerkiksi viime vuonna Nessietä ei nähty kertaakaan. Kuluvan vuoden alussa se pääsi jälleen otsikoihin, kun Google Earth -palvelun kuvista löytyi valtavan eväkkään hahmo. Tarkasteltaessa kuvaa lähemmin se kuitenkin osoittautui huvijahdiksi, jonka keula- ja peräaallot luovat mielikuvan paksupäisestä vedeneläjästä.

Loch Nessin rantatöyräitä samotessa tulee miettineeksi, kuinka suuri osa paikalla käyvistä ihmisistä todella uskoo hirviön olemassaoloon. Tuskin kovinkaan moni, mutta silti enemmistö todennäköisesti toivoo näkevänsä myyttisen olennon edes vilaukselta. Parhaat mahdollisuudet siihen on hirviön markkina-arvoa perusteellisesti hyödyntävän Loch Ness Centren vieressä olevassa lammikossa.

Google-pomon hyppy stratosfääristä Jari Mäkinen Ma, 27/10/2014 - 11:54
Alan Eustache
Alan Eustache

Viime perjantaina yllättäen laskuvarjohyppyjen korkeusennätys rikottiin. 57-vuotias Alan Eustache hyppäsi puolisalaa korkeammalta stratosfääristä kuin Felix Baumgartner suuren mediakohun siivittämänä lokakuussa 2012.

Siinä missä Baumgartner hyppäsi 39 kilometrin korkeudesta, Eustache nousi kaasupallollaan 41,4 kilometrin korkeuteen ja pudottautui sieltä alas kohti Maata. Kummassakin tapauksessa taivas näyttää jo lähes yhtä mustalta kuin avaruudessa ja ilman tiheys on niin pieni, että ilman avaruuspuvun kaltaista painepukua ihminen kuolisi minuuteissa.

Eustache rikkoi pudotessaan äänivallin ja kiisi parhaimmillaan noin 1300 kilometrin tuntinopeudella, ennen kuin tihenevä ilmakehä alkoi hidastaa vauhtia ja hän avasi lopulta laskuvarjonsa. Hyppy kesti kaikkiaan noin 15 minuuttia – ja nousu ylös hyppykorkeuteen pari tuntia.

Olennaisin ero Baumgartnerin ja Eustrachen hypyissä oli se, että siinä missä itävaltalainen nousi ylös paineistetun gondolin sisällä ja käytti suhteellisen yksinkertaista painepukua, Eustache nousi ylös raskaammassa ja selvästi kömpelömmässä puvussaan suoraan palloon kiinnitettynä. Hänellä ei ollut gondolia, vaan periaatteessa pallo vain nosti hänet pukunsa sisällä taivaalle, kauko-ohjattu mekanismi irrotti hänet ja hän putosi alas. Tämä kevyempi ja yksinkertaisempi lähestymistapa teki myös suuremman korkeuden mahdolliseksi.

Pikkurahan puutteesta tuskin kärsivä Eustache on Googlen eräs johtajista, ja hän otti hyppyhankettaan varten pitkän loman ja palkkasi Paragon Space Development Corporation -yhtiön tekemään hänelle sopivan puvun sekä hoitamaan hypyn teknisen toteuttamisen. Yhtiö on mukana monenlaisissa ilmailu- ja avaruushankkeissa, ja puuhaa myös WorldView -kapselia, jonka avulla turistit voisivat nousta kaasupallolla ihailemaan maisemia stratosfääristä.


Video hypystä siitä ensimmäisenä kertoneen New York Timesin verkkosivuilta.

Ja nörttityyliin Eustache ei pitänyt juurikaan meteliä hankkeestaan etukäteen. Osasyynä lienee tosin se, että hänen ja Paragonin tarkoituksena näyttää olevan kehittää systeemi, millä varsin kokemattomatkin laskuvarjohyppääjät voisivat tehdä tällaisia korkeushyppyjä. Systeemi on saanut nimen StratEx (Stratospheric Explorer) ja varmasti monet raharikkaat seikkailijat ovat jo viikonlopun aikana ottaneet yhteyttä Paragoniin.

”Olen aina pohtinut voisimmeko suunnitella järjestelmän, jonka avulla ihminen voisi tutkia stratosfääriä yhtä helposti kuin meriä?”, kysyy Eustace Paragonin nettisivuilla. ”Toivon, että voimme nyt innostaa muitakin tutkimaan paremmin tätä aluetta maapallosta, mistä tiedämme vielä niin vähän.”

Tämä viimeinen lause on puppua, sillä Eustachen ja Baumgartnerin hypyissä ei ollut mitään uutta tieteelle: stratosfäärin olosuhteet tunnetaan hyvin ja sitä tutkitaan päivittäin ilmapalloilla ja satelliiteilla. Luotausraketit käyvät sitä nuuskimassa silloin tällöin ja jotkut lentokoneetkin nousevat kohtalaisen korkealle stratosfääriin. Tavalliset liikennelentokoneet lentävät stratosfäärin alaosissa.

Teknisesti hypyt ovat sen sijaan kiinnostavampia, sillä nämä yksityisten yhtiöiden tekemät puvut ja hypyn mahdollistavat laitteet ovat askel eteenpäin äärimmäisten paikkojen turismissa; hieman sukeltamisesta ja vuorikiipeilystä eteenpäin kohti oikeata avaruusturismia. Siinä mielessä hyppy oli kiinnostava ja rohkea temppu!

Pikakelaus taaksepäin 1950-luvulle

Sinänsä on koomista, että niin nämä stratosfäärihypyt kuin tulevat avaruusturistien pomppauslennot ilmakehän ulkopuolelle ovat toisintoja siitä, mitä tehtiin jo 1950-luvulla. Silloin ne tosin olivat jotain uutta ja ihmeellistä, ja niillä oikeasti tutkittiin tuntematonta stratosfääriä. X-15 -koekoneet tekivät lentoja yli sadan kilometrin korkeuteen ja myös laskuvarjohyppyjä koeteltiin yli 30 kilometrin korkeudesta.

Ensimmäinen ihminen, joka nousi yksin ilmapallolla stratosfääriin, oli Yhdysvaltain ilmavoimien kapteeni Joseph Kittinger. Hän nousi kesäkuussa 1957 liki 30 kilometrin korkeuteen Minnessotan päällä Man High I -nimisellä suuren kaasupallon alle kiinnitetyssä gondolissa. Kuva hypystä on otsikkokuvana.

Hän teki useita äärimmäisiä hyppyjä ja niistä viimeisin, elokuun 16. päivänä 1960 tehty loikkaus 31 300 metrin korkeudesta säilyi laskuvarjohyppyjen korkeusennätyksenä aina Baumgartnerin hyppyyn saakka. Hyppynsä aikana Kittinger putosi vapaasti (tosin pienen asennon hallintaan käytetyn varjon avulla) 4 minuutin 36 sekunnin ajan ja hänen huippunopeutensa oli 988 km/h.

Sekä Kittigerin hypyt kuin X-15:n lennot liittyivät ihmisen fysiologiaan, yläilmakehän tarkempaan tutkimukseen ja etenkin siellä lentämiseen vaadittavan tekniikan kehittämiseen. Yhdysvaltain ilmavoimat pohti tuolloin supernopean, stratosfäärin kautta koukkaavan vakoilu- ja pommikoneen tekemistä. Siitä kaavailtiin myös Maata kiertävälle radallekin nousevaa avaruuslentokonetta, mutta lopulta NASA päätyi käyttämään siivetöntä, laskuvarjon varassa Maahan palaavaa kapselia.

Myös rautaesiripun takana Neuvostoliitossa tutkittiin asiaa ja siellä tehtiin myös edelleen voimassa oleva ennätys. Korkeimmalta Maahan laskuvarjolla hypännyt elävä olento on koira nimeltä Lisa, joka laukaistiin raketilla yli sadan kilometrin korkeuteen 24. kesäkuuta 1954. Se singottiin avaruuspuvussaan aluksen ulkopuolelle, missä laskuvarjo jo päästettiin irralleen: varjo pullistui sitä mukaa kun koira putosi syvemmälle ilmakehässä ja paitsi hidasti putoamista, niin myös vakautti lentoa.

Seuranaan Lisalla oli toinen koira, Ryžik, mutta se pysyi pienen avaruuskapselin sisällä 45 kilometrin korkeuteen saakka. Siellä katapultti työnsi koira paran kapselinsa ulkopuolelle, jolloin se jatkoi putoamistaan ensin vapaapudotuksessa ja sitten noin seitsemän kilometrin korkeudesta alaspäin laskuvarjon varassa.

Palkkioksi uroteoistaan kumpikin koira sai lauantaimakkaraa.

Itänaapurissa myös ihmistoverit hätyyttelivät korkeuksia ja rikkoivat ennätyksiä. Siinä missä korkeusennätys säilyi Kittingerillä, nappasi Jevgeni Andreejev vapaapudotuksen ennätyksen 1. marraskuuta 1962. Hän nousi 25 460 metrin korkeuteen, mistä hän pomppasi alaspäin ja avasi laskuvarjonsa vasta vajaan kilometrin korkeudessa 24,5 kilometrin pudotuksen jälkeen. Tämä säilyi maailmanennätyksenä Baumgartnerin hyppyyn saakka.

Korkealla ei ole helppoa!

Hyvin korkealta hyppäämisessä on oikeastaan vain yksi vaaratekijä, mutta se vaikuttaa kaikkeen ja on hyvin hankala ongelma: ilman tiheys. Ilman paine on pudonnut jo liki kolmasosalla kahden kilometrin korkeudella ja kuuden kilometrin kohdalla on ilman paine enää vajaat puolikas paineesta merenpinnan tasoon verrattuna. 30 kilometrissä paine on enää vain noin 1,4% normaalipaineesta.

Näin matalassa paineessa hyppääjä tarvitsee painepuvun, joka on käytännössä kuin kevyt avaruuspuku. Ilman suojaa ihminen menehtyisi varsin nopeasti, ja näin on ennätyshypyissä jo käynytkin. Jevgeni Andreejevin seurana gondolissa oli Pjotr Doglov, joka nousi Andreejevin hypättyä vieläkin korkeammalle – 28 640 metrin korkeuteen. Hänen oli tarkoitus testata uudenlaista painepukua, mutta hän löi päänsä luukun reunaan gondolista poistuessaan, jolloin kypärän lasiin tuli halkeama ja ilma pihisi ulos puvusta. Doglov tukehtui nopeasti.

Siitä, oliko Eustachella ongelmia, ei tiedetä vielä, mutta Kittinger joutui kokemaan myös ohuen ilman hankaluudet. Hänen pukunsa oikeanpuoleinen hansikas rikkoontui matkalla korkeuksiin, jolloin hänen kätensä paisui alipaineen vuoksi lähes kaksikertaiseksi kooltaan. Kittinger ei antanut kivun haitata, vaan jatkoi nousuaan ja teki hyppynsä. Päinvastoin kuin Baumgartnerin hypyn yhteydessä mediassa hehkutettiin, ei pieni puvun rikkoontuminen johda väistämättä kuolemaan, vaan riippuu siitä kuinka suuri vaurio on ja missä kohdassa: ellei kipua oteta huomioon, ihmisen iho kestää varsin hyvin alipainetta.

Sen sijaan ultraviolettivaloa iho kestää huonosti. Korkeuksissa Aurinko paahtaa voimakkaasti, eikä ilmakehä ole suodattamassa sen säteilyä. Paljas iho palaa siksi karrelle muutamassa minuutissa ja kypärässä tulee olla erittäin hyvä suojaus.

Ohuessa ilmassa myös asennon hallinta on hankalaa ilman pieniä rakettimoottoreita, joten pienikin väärä liike saattaa johtaa kiihtyvään pyörimisliikkeeseen, jota on vaikea pysäyttää alempana ilmakehässä. Pyöriminen saattaa olla jopa niin rajua, että hyppääjä menettää tajuntansa.

Kittingerin ensimmäinen hyppy marraskuussa 1959 olikin päättyä onnettomasti juuri tästä syystä. Hän joutui laattakierteeseen, pyöri noin 120 kertaa minuutissa pystyakselinsa ympäri ja menetti tajuntansa. Pyörimisen ollessa hurjimmillaan kohdistui Kittingerin päähän ja jalkoihin yli 22 g:n kiihtyvyys. Tällaista tilannetta varten suunniteltu laite, joka avasi hänen laskuvarjonsa automaattisesti, pelasti Kittingerin hengen.

Ennätyshyppyään varten Kittinger asensi pukuunsa pienen laskuvarjon, joka hidastamisen sijaan piti häntä koko ajan oikeassa asennossa.

Eustachen puvussa ja laskuvarjojärjestelmässä oli myös useita varolaitteistoja, joilla hän olisi tullut huonosti käydessäkin turvallisesti alas. Näitä tarvitaan, mikäli hyppyjä aiotaan markkinoida kaikille.

Baumgartnerin hyppy

Jos aikanaan hyppyjä tehtiin sotilassalaisuuksien varjossa ja Eustache ei paljoa välittänyt kertoa hankkeestaan julkisuudessa, ympäröi Baumgartnerin hyppyä ja siihen valmistautumista hypetykseen saakka kohonnut mediarumba. Red Bull -energiajuoman sponsoroima hanke alkoi jo vuonna 2005, minkä jälkeen hankkeen tarkempi hahmottelu sekä gondolin ja hyppypuvun suunnittelu alkoi.

Vuoden 2011 lopussa kaikki oli valmiina ja seuraavana vuonna testien jälkeen Baumgartner teki ensimmäisen koehypyn 21 828 metrin korkeudesta ufohavainnoistaan kuuluisassa Roswellissa, New Mexicon osavaltiossa. Suurin osa ufohavainnoista oli sotilaiden tekemiä kokeita ja myös Kittingerin hypyt tehtiin laajalti autiolla Roswellin alueella. Kesällä 2012 Baumgartner teki toisen hypyn, nyt 29 584 metrin korkeudesta.

Myös Eustachen viimeviikkoinen hyppy tehtiin Roswellissa.

Baumgartnerin ennätyshyppyä edelsi useampi yritys, kunnes sunnuntaina, lokakuun 14. päivänä vuonna 2012, sää oli sopiva ja tekniikka toimi halutulla tavalla. Baumgartner nousi paineistetun gondolinsa sisällä hitaasti ylöspäin ja avasi luukun lähes tyhjyyteen tarkalleen 39 045 metrin korkeudessa. Hän kipusi ulos luukusta sen edessä olleelle tasanteelle, otti kiinni molemmin puolin olleista kaiteista ja pudottautui hallitusti alas.

Hän putosi aluksi suunnitellussa asennossa, pää alaviistoon ja raajat lievästi levällään, ja noin 40 sekunnin kuluttua hyppäämisestä hän saavutti suurimman nopeutensa, 1342,8 km/h. Yläilmakehässä äänen nopeus on noin 1100 km/h (merenpinnan tasossa normaalipaineessa ja -lämpötilassa se on 1225 km/h), joten Baumgartner ylitti selvästi tuon maagisen rajan.

Samoihin aikoihin hän alkoi myös pyöriä ja tilanne näytti vähän aikaa jopa pahalta, kunnes hän sai itsensä taas hallintaan. "Irtautuminen gondolista onnistui erittäin hyvin, mutta aloin pian sen jälkeen pyöriä hitaasti”, kertoi Baumgartner myöhemmin. “”Oletin aluksi pyörähtäväni vain pari kertaa, mutta sitten vauhti kiihtyi ja pyöriminen muuttui välillä varsin rajuksi. Luulin jopa parin sekunnin ajan menettäväni tajuntani. Niinpä en tuntenut mitään erityistä, kun rikoin äänivallin, koska olin silloin niin kiireinen yrittäessä vakauttaa itseäni.”

Baumgartner avasi laskuvarjonsa noin 1,5 kilometrin korkeudessa ja hänen jalkansa koskettivat lopulta maata 9 minuuttia ja 3 sekuntia kestäneen pudotuksen jälkeen. Tästä vapaapudotusta oli 4 minuuttia ja 20 sekuntia, joten vaikka vapaapudotus alkoi korkeammalta kuin koskaan aikaisemmin, on pisimmän vapaapudotuksen ennätys edelleen Kittingerillä, joka kiisi ilman laskuvarjon hidastusta 16 sekuntia kauemmin.

Vieläkin korkeammalle?

43-vuotias Baumgartner ilmoitti heti hyppynsä jälkeen “jäävänsä eläkkeelle” ennätyshyppäämisestä, mutta hänen varjossaan koko ajan omaa hyppyään valmistellut ranskalainen Michel Fournier on valmistellut omaa hyppyään jo pitkän aikaa. Hänen aikomuksenaan oli rikkoa ennätykset ja varmastikin Eustachen hyppy on viimein tehnyt tyhjäksi hänen kunnianhimoiset suunnitelmansa.

Fournier on jo 70-vuotias Ranskan ilmavoimien kenraali, joka on omien laskujensa mukaan tehnyt jo yli 8700 laskuvarjohyppyä. Näistä korkeimmalta tehty hyppy on 12 kilometrin korkeudesta.

Hänet valittiin vuonna 1987 mukaan Ranskan avaruushallinnon hankkeeseen, jonka tarkoituksena oli tehdä tutkimusmielissä hyppy 38 kilometrin korkeudesta. Projekti lopetettiin kuitenkin budjettileikkausten vuoksi vuonna 1989, jolloin Fournier päätti jatkaa hypyn suunnittelua itse.

Hanke on kuitenkin edennyt hitaasti, koska Fournier ei ole saanut rahakkaita sponsoreita. Alkuperäisen suunnitelman mukaan ennätyshyppy 40 kilometrin korkeudesta olisi tehty Kanadan Saskatchewanista keväällä 2008, mutta kun sää viimein oli suotuisa 27. toukokuuta, suuri ja kallis ilmapallo pääsi vapaaksi, kun sitä oltiin kiinnittämässä gondoliin. Pallo katosi taivaalle ja Fournierilta kesti pari vuotta päästä takaisin yrittämään uudelleen.

Epäonni oli mukana myös tuolloin 16. toukokuuta 2010, sillä varavarjo avautui kesken laukaisuvalmistelujen ja kallis lento piti peruuttaa. Baumgartnerin hypyn jälkeen Fournier aikoi koittaa vielä kerran, mutta herrasta ei ole sen koommin kuulunut mitään – joko ikä tai talous on tehnyt unelman mahdottomaksi.

Fournierilla oli tosin mielessään myös hurjempi ajatus: koska heliumpallo ei pysty nousemaan juurikaan yli 40 kilometriä ylemmäksi, voitaisiin gondoliin kiinnittää pieni raketti, joka sinkoaisi hyppääjän vielä hieman korkeammalle. Laskelmien mukaan 45 kilometrin korkeus olisi näin saavutettavissa “suhteellisen helposti”.

Plasmatutkija ja potaattikomeetta

Matt Taylor
Matt Taylor

Kun Rosetta-lennon laskeutujan laskeutumispaikka julkistettiin tänään Pariisissa ESAn pääkonttorissa, ei lehdistötilaisuuden puhujien joukossa ollut Matt Tayloria. Lennon päätutkija istui tällä kerralla sivussa, koska huomion kohteena oli laskeutuminen ja siihen liittyvät asiat.

”En ole juuri nyt suoraan tekemisissä jokapäiväisen tiedetyön kanssa, sillä keskityn suunnittelemaan ennen kaikkea lennon ohjelmaa pitemmällä tähtäimellä – silloin, kun laskeutuminen on jo takana ja seuraamme komeettaa”, kertoo Taylor tilaisuuden jälkeen jutellessamme.

”Luonnollisesti seuraan koko ajan kuvia ja tietoja joita saamme, olen yhteydessä tutkijaryhmiin ja jaan tämän innostuksen. Koskaan aikaisemmin ainakaan ESAlla ei ole ollut mitään avaruuslentoa, joka on yhtä intensiivinen kuin tämä.”

”Meillä on vain 24 tuntia vuorokaudessa ja liian pieni joukko käymässä tietoja läpi, joten etenkin juuri nyt tuntuu siltä, että tahti on hyvin hektinen. Tulemme vain parin kuukauden päästä ensimmäisen kerran koskemaan, maistamaan ja haistamaan komeettaa sen pinnalta, ja nyt tuota pitää pohjustaa huolellisesti – sekä pohtia jo aikaa sen jälkeen.”

”Itse syön, juon ja hengitän Rosettaa 24 tuntia vuorokaudessa ja seitsemän päivää viikossa. Elämässäni ei ole juuri nyt yhtään mitään muuta.”

Ainakin melkein, sillä lähes kauttaaltaan tatuoidulla, parrakkaalla ja sikareita toisinaan tupruttelevalla Taylorilla on ollut kesän aikana aikaa ottaa jalkaansa Rosetta-aiheinen kuva.

Antenniaika kortilla

Rosetta-luotain on toiminut erinomaisesti ja lennonjohto on onnistunut tekemään kaikki ratamuutokset erittäin hyvin. Sen aurinkopaneelit tuottavat jo sen verran riittävästi sähkövirtaa, että tieteellisten tutkimuslaitteiden toimintaa ei täydy enää rajoittaa virranpuutteen vuoksi. Sen sijaan ongelmana on – ja lähiaikoina on vielä enemmän - niin sanotun antenniajan puute.

Rosettaan ollaan yhteydessä samojen antennien kautta, joiden avulla pidetään yhteyttä myös muihin avaruusluotaimiin. ESA luottaa pääasiassa omiin ESTRACK-verkostonsa antenneihin, mutta on yhteistyössä NASAn luotainantenniverkoston, kuuluisan Deep Space Networkin kanssa. Samoin NASA pyytää apua ESAlta, kun omat antennit eivät ehdi olla yhteydessä johonkin luotaimeen.

Nykyisin avaruudessa on sen verran paljon luotaimia, että antennien kullekin antamaa aikaa pitää suunnitella tarkasti. Lisäksi nyt lähikuukausina monet luotaimet ovat juuri samalla suunnalla taivasta, joten ne kaikki vaativat samojen antennien käyttöä: Rosetta näkyy Maasta katsoen jokseenkin samoilla seuduilla kuin esimerkiksi kohti Plutoa lentävä New Horizon, asteroidi Cerestä lähestyvä Dawn ja Mars, jonka pinnalla on kaksi kulkijaa sekä kiertoradalla kolme alusta – plus yksi nyt syyskuun lopussa perille pääsevä alus, Nasan MAVEN.

Ensi vuoden alussa tapahtuu myös konjuktio, eli aika, jolloin Aurinko osuu hankalasti Maan ja Rosettan väliin. Silloin siihen ei voi olla vähään aikaan lainkaan yhteydessä.

”Nämä kaikki pitää ottaa siis huomioon suunnitelmissa, joten olemme päivittäin yhteydessä kollegoihimme ympäri maailman ja koitamme jakaa antenniaikaa. Myöhemmin ensi vuonna tilanne helpottuu kuitenkin olennaisesti, ja onneksi silloin on vuorossa myös lentomme toinen kohokohta, eli se, kun komeetta on ratansa Aurinkoa lähimmässä kohdassa.”

Taylor jatkaa selittämällä myös luotaimen operatiivisia ongelmia: ”Kaikki tutkimuslaitteet eivät voi tehdä havaintojaan samanaikaisesti, koska ne toimivat eri tavoilla ja tutkijat haluavat katsoa eri suuntiin.”

Rosetta katsoo avaruuteen vain yhteen suuntaan, eli sen tutkimuslaitteet on suunnattu kaikki jotakuinkin samalla tavalla. Niinpä esimerkiksi kun kameralla halutaan kuvata ytimestä poispäin karkaavaa pölyvirtaa ja mitata sen nopeutta, pitää Rosetta kääntää hieman sivuun komeetan ytimestä. Silloin komeetasta ei voi tehdä luonnollisestikaan suoria havaintoja.

”Koitamme suunnitella siksi kaikki toimet siten, että pystymme koko ajan käyttämään mahdollisimman montaa tutkimuslaitetta ja että kukin voisi tehdä havaintojaan mahdollisimman hyvin juuri silloin kun kyseinen tutkijaryhmä haluaa. Kun olemme päässeet tässä hyvään kompromissiin, niin seuraava ongelma on temppuilla siten, että pystymme siirtämään havaintotiedot mahdollisimman hyvin Maahan.”

Koska Rosetta on kaukana avaruudessa, se joutuu käyttämään suhteellisen hidasta tiedonsiirtonopeutta. Niinpä tietoja ei voi kerätä yksinkertaisesti vain niin paljoa kuin mahdollista, koska kaikkea ei voisi lähettää tutkijoille.

Philaen kamerat ovat ainakin kunnossa: niillä otettiin tämä 'selfie', missä näkyy aurinkopaneeli sekä komeetan ydin.

Syökö joku perunaa?

Taylorin mukaan komeetan kaksijakoinen olemus ei tullut yllätyksenä, vaan siitä saatiin kesän aikana yhä enemmän ja enemmän vinkkejä.

”Oletimme ensin että kuvissa olleet omituisuudet olisivat johtuneet vain pikselöitymisestä, koska komeettaydin oli kuvissa vielä varsin pieni.”

Jo etukäteen valokäyrien perusteella osattiin odottaa, että komeetassa on selvästi suurempi osa ja sitten pienempi pää, mutta oletuksena oli silti perinteinen perunalta näyttävä epämuotoinen möhkäle.

”Mutta kuvien tullessa paremmiksi kaksijakoisuus tuli yhä paremmin ja paremmin esille, kunnes muutamassa sivukuvassa se näkyi erittäin hyvin. Kun nyttemmin olemme tutkineet komeettaa ja sen pintaa sekä arvioineet sen koostumusta, näyttää siltä, että tässä on yhdessä paketissa melkein kaikki aikaisemmin komeettaytimistä havaitsemamme ominaisuudet ja kummalliset yksityiskohdat.”

Heti komeetan skitsofreenisen olemuksen huomaamisen jälkeen on pohdittu miten se on syntynyt: onko kyseessä kaksi toisiinsa törmännyttä ja kiinnittynyttä kappaletta, vai alun perin yksi ainoa kappale, joka on rikkoontunut. Kummassakin palasessa on nyt havaittavissa niin samanlaisia kuin erilaisiakin ominaisuuksia.

Taylorin mukaan se saattaa olla kulunut. ”Mitään varmuutta ytimen synnystä ei vielä ole, mutta yksi vaihtoehto on se, että kapealla kaula-alueella, joka yhdistää pienempää ja suurempaa osaa, on helposti hajoavaa ainetta. Ydin kuluisi siten siitä eniten aina ollessaan lähellä Aurinkoa.”

Jo nyt suurimmat kaasu- ja pölysuihkut näyttävät tulevan juuri niin sanotun kaulan alueelta.

”Kenties joku on syönyt perunaa ja se on muuttunut nyt kumiankaksi. Kunhan saamme vähitellen mittauksia ytimen vetovoimakentästä ja voimme erotella siitä kummankin osan aiheuttaman vetovoiman, niin pystymme sanomaan hieman enemmän tästäkin asiasta.”

Taylor jaksaa toistaa kuinka hyvä onni kävi aikanaan siinä, että valinta osui juuri 67P/Churyumov-Gerasimenkoon, joka on olemukseltaan huiman kiinnostava ja jonka pinnalta voi nähdä jo nyt niin paljon erilaisia asioita. ”Ja löydämme jotain uutta koko ajan!”

Kuvat komeettaytimestä käyvät yhä tarkemmiksi ja huimemmiksi. Tässä Chury 5. syyskuuta 61 kilometrin etäisyydeltä kuvattuna. Pienimmät yksityiskohdat tässä ovat noin metrin kokoisia.

Valinta on alue ’J’

Toistaiseksi komeetan kummallisuus ei ole kuitenkaan saanut aikaan olennaisia muutoksia lentosuunnitelmaan, ellei huomioon oteta arvioitua hankalampaa laskeutumispaikan valintaprosessia.

Kenties myöhemmin, kun Rosetta on lähempänä ydintä ja sen mahdollisesti epätasainen vetovoima tuntuu selvästi, tulee luotaimen operoinnista hieman erilaista kuin on oletettu. Silloin Rosettaa vain pitää ’oppia lentämään’ uudelleen.

Tämä on tärkeää ennen laskeutumista, sillä silloin Rosetta tulee tekemään koukkauksen kohti laskeutumispaikkaa, irrottamaan Philaen kyljestään ja nousemaan sen jälkeen heti ylöspäin, turvalliselle radalle - mutta siten, että se pystyy olemaan suoraan yhteydessä laskeutujaan.

Itse laskeutuminen tulee kestämään seitsemän tuntia se, miten nopeasti pinnalta saadaan signaali, on hieman epävarmaa. ”Mutta kun se tulee, niin se on merkkipaalu avaruustutkimuksessa ja käynnistää taas uuden jakson lennossamme.”

Taylor oli luonnollisesti mukana valitsemassa laskeutumispaikkaa, mutta hän ainakin väittää, ettei hänellä ollut erityistä suosikkia. ”Minusta jo se, että pääsemme jonnekin alas komeetan pinnalle on erinomaisen hieno asia, ja alue ’J’ on siihen paras.”

”Tai siis se on vähiten huono paikka. Se on suhteellisen tasainen laakea alue, siellä on selvästikin useita pintakerroksia ja hyvin todennäköisesti pinnan alla jotain kiinnostavaa, mitä voimme porata.”

Alue ’J’ ei ole aktiivinen, eikä sillä näytä olevan paikkoja, jotka todennäköisesti muuttuisivat aktiivisiksi lähiaikoina. Sen sijaan sen vieressä on aktiivisia alueita, joita laskeutuja voisi siten tutkia läheltä, mutta ollen itse samalla turvassa. Etäisyys Philaesta pinnan alta suihkuaviin kaasupurkauksiin voi olla vain muutama sata metriä!

Pinta noilla seutuvilla on hienojakoisen soran ja hiekan peittämää, ja siinä on todennäköisesti noin sentin kokoisia kappaleita sekä joitain isompia murikoita sekä muutamia pinnanmuotoja. Pinta on väriltään hyvin mustaa, mustempaa kuin sysimusta hiili, ja on mahdollista, että väri johtuisi ajan myötä muhineista orgaanisista aineista - tästä väitellään kovasti ja onkin äärimmäisen jännittävää nähdä marraskuussa lähikuvia pinnasta ja katsoa mitä pinnan alta löytyy!

Churyn seuralainen

Laskeutumispaikan valinnassa oli suuri joukko kriteereitä, joista yksi tärkeimmistä oli se, että Aurinko paistaa siihen pitkään ja esteettä. Näin laskeutuja pystyy toimimaan toivottavasti kuukausienkin ajan aurinkopaneeliensa tuottamalla sähkövirralla sekä pystyy seuraamaan pinnalta komeetanytimen muuttumista aktiivisemmaksi.

Itse Rosetta tarkkailee tapahtumia joka tapauksessa komeetan ympäriltä. Sen toimintaa suunniteltaessa on komeetan aktiivisuudella luonnollisesti suuri rooli - kaikki oikeastaan määräytyy sen mukaan. Niinpä toimia suunniteltaessa on pohjana ollut mallit siitä miten komeetta tulee käyttäytymään. Sitä ja vastaavia komeettoja on tutkittu jo pitkään ja tiedetään, milloin ja miten ne syöksevät kaasua ympärilleen keskimäärin ollessaan tietyllä etäisyydellä Auringosta.

”Johtolankamme on aktiivisen komeetan malli, ja sen mukaisesti luotaimen rata pidetään koko ajan tietyn, turvallisen etäisyyden päässä ytimestä. Mikäli komeetta onkin rauhallisempi, voimme tulla lähemmäksi ja tehdä tarkempia havaintoja. Juuri nyt näyttää siltä, että komeetta on vain hieman aktiivisempi kuin matala-aktiivisen komeetan mallimme sanoo. Voimme siis lähestyä nyt komeettaa turvallisesti ja tämä on otettu huomioon, kun valitsimme laskeutumispaikkaa.”

Mikäli komeetta muuttuukin yllättäen aktiivisemmaksi, joudutaan suunnitelmaa tarkastelemaan uudelleen ja kenties laskeutumista lykätään. Nyt kuitenkin ennusteen mukaan aktiivisuus pysyy suhteellisen matalana ainakin parin kuukauden ajan.

”Sen jälkeen aiomme pysyä ainakin 11 viikon ajan hyvin lähellä komeettaa, koska se ei todennäköisesti ole mahdollista enää myöhemmin, kun komeetta muuttuu aktiivisemmaksi.”

”Ongelma tässä suunnittelussa on se, että emme ohjaa Rosettaa joystickillä reaaliajassa, vaan luotain on puoliksi automaattinen. Ohjelmoimme sen olemaan tietyllä radalla, mutta jos sen varolaitteistot huomaavat esimerkiksi vaarallisen kaasupurkauksen tai jotain muuta sellaista, niin se nousee automaattisesti korkeammalle radalle turvaan. Se tarkoittaa sitä, että tutkimukset keskeytyvät emmekä voi tehdä yhtä yksityiskohtaisia havaintoja korkeammalta. Meidän siis pitää osata arvioida koko ajan aktiivisuus juuri oikein, jotta voimme olla tarpeeksi lähellä, mutta emme niin lähellä, että hätäpelastustoiminnot käynnistyvät.”

Osin juuri tästä syystä osa tutkijoista seuraa koko ajan luotaimen navigointikameran kuvaa. Se tarkkailee koko ajan komeettaa ja näissä kuvissa näkyy ensinnä mahdolliset uhkaavat purkaukset. Mikäli kohti Rosettaa tuleva purkaus nähdään ajoissa, rataa ennätetään nostamaan sopivasti ja hallitusti.

”Nämä purkaukset ovat minun näkökulmastani kaikkein kiinnostavimpia, sillä olen plasmafyysikko. Komeetan ympäristö on todella jännittävä paikka, koska se on paljon monimutkaisempi kuin esimerkiksi Maan lähitienoot, missä aurinkotuuli puhaltaa ja vuorovaikuttaa ilmakehän kanssa. Siellä plasman, siis varattujen alkeishiukkasten ja atomiydinten seassa on pieniä pölyhitusia, jotka varautuvat sähköisesti ja vaikuttavat siten edelleen plasmaan. Ja lisäksi siellä on ’tavallisia’ plasmailmiöitä, mutta erittäin epätavallisessa ympäristössä. Koko komeetan lähitienoo on todella jännittävä plasmafysiikan koekenttä!”

Taylor henkäisee huomattuaan puhuneensa jälleen lähes tauotta puolisen tuntia.

”Tämä on seksikkäin avaruushanke ikinä, enkä pysty kuvittelemaan mitään jännempää kuin tämä työ juuri nyt!”

Huom: Tiedetuubissa käytämme komeetasta sen virallista IAU:n vahvistamaa nimeä 67P/Churyumov-Gerasimenko, emmekä lähemmäksi suomea venäjästä translitteroitua kirjoitusasua Tshurjumov–Gerasimenko, mihin törmää joissain suomalaisissa tiedotusvälineissä. Muutoin toki pyrimme noudattamaan suomalaisia kirjoitusversioita nimistä ja paikoista.

Naisjohtaja on hyödyllinen

Naisjohtaja stereotyyppisessä kuvassa
Naisjohtaja stereotyyppisessä kuvassa

Naisten johtamat yritykset ovat taloudellisesti vakaammalla pohjalla kuin miesten johtamat. Tämä käy ilmi Vaasan yliopiston professorin Sami Vähämaan johtamasta tutkimushankkeesta. Siinä selvitetään Suomen Akatemian rahoituksella, miten yrityksen toimitusjohtajan, talousjohtajan ja tilintarkastajan sukupuoli sekä naisedustus yrityksen hallituksessa vaikuttavat yritysten taloudelliseen päätöksentekoon.

Tutkimushankkeen tähänastiset tulokset osoittavat muun muassa, että naisten johtamissa yrityksissä on paremmat hallinto- ja valvontajärjestelmät ja että sukupuolten väliset erot esimerkiksi riskinottohalukkuudessa ja konservatiivisuudessa heijastuvat yrityksen riskisyyteen ja taloudellisen raportoinnin laatuun.

Tutkimushankkeessa käytetyt naisjohtajiin liittyvät tutkimusaineistot on kerätty pääasiallisesti Yhdysvalloista, koska esimerkiksi Suomessa on tällä hetkellä naistoimitusjohtaja vain yhdessä pörssiyrityksessä. Tilintarkastajia koskeva aineisto on puolestaan kerätty Pohjoismaista, koska näissä maissa on mahdollista selvittää yrityksen vastuullisen tilintarkastajan sukupuoli, toisin kuin esimerkiksi Yhdysvalloissa.

Tutkimushankkeessa on tutkittu esimerkiksi naisjohdon vaikutuksia yhdysvaltalaisissa pankeissa. Yhteistyössä Yhdysvaltain valtionvarainministeriön pankkivalvonnan kanssa toteutetussa tutkimuksessa havaittiin, että naisten johtamat pankit ovat vakavaraisempia ja ne selviytyivät miesjohtoisia pankkeja paremmin kriisivuosina 2008–2010.

Tutkimushankkeessa on myös selvitetty, miten yrityksen toimitusjohtajan, talousjohtajan ja tilintarkastajan sukupuoli vaikuttaa tilinpäätösinformaation laatuun. Tulosten mukaan naisjohtoisissa yrityksissä tilinpäätösinformaatio on laadukkaampaa ja naistilintarkastajat lisäävät tilinpäätösraportoinnin konservatiivisuutta.

Pitempi, Leena Vähäkylän kirjoittama juttu aiheesta on Akatemian Tietysti.fi -svustolla.

Teksti on Suomen Akatemian 27.6.2014 julkaisema tiedote.

Pihkalääkkeitä ja pajuvaatteita

Suomen metsäteollisuudella meni aivan liian kauan liian hyvin. Se tyytyi tuuppaamaan maailmalle sellua ja paperimassaa, kunnes huomasi, että muualla näitä tehdään edullisemmin ja näppärämmin. Lisäksi kysyntä pienenee koko ajan, kun papererin sekä selluloosan käyttö muuttuu: painopaperia kaivataan yhä vähemmän, mutta pakkauksiin paperia menee aiempaa enemmän.

Eikä kyse ole enää pelkästä paperista: puu, sekä muut biomateriaalit ovat tulevaisuudessa kuin öljy nyt. Niinpä Suomella voisi olla öljyaikakauden jälkeisessä biotaloudessa suuri rooli – jos vain haluamme ja mikäli alamme (viimeinkin) panostaa alan tutkimukseen.

VTT julkaisi tänään erityisen mielenkiintoisen raportin siitä, millainen tulevaisuuden bio-Suomi voisi olla. Eri alojen asiantuntijat kertovat People in the bioeconomy 2044 -julkaisussa kolmesta arkielämän tapauksesta, joiden raportti toivoo herättävän kiinnostusta ja herättävän keskustelua tulevaisuuden ratkaisuista.

Ikääntyminen, väestönkasvu, ilmastonmuutos ja resurssipula ovat haasteita, joihin päättäjiltä odotetaan ratkaisuja maailmanlaajuisesti. Haasteiden ja riskien lisäksi kyseessä on myös mahdollisuus kehittää uudentyyppinen yhteiskunta, joka toimii nykyistä järkevämmin ja ympäristöarvoja kunnioittaen.

Tutkijoiden mukaan tulevaisuus näyttää Suomessa nykyistä täydellisemmältä, jos uudentyyppisen, biotalouteen perustuvan yhteiskunnan kehittäminen otetaan tosissaan. 20–30 vuotta kestävä siirtyminen biotalouteen edellyttää kuluttajilta sopeutumista ja yrityksiltä riskinottokykyä ja merkittäviä investointeja. Valtionhallinnon päätöksentekijöiltä muutos vaatii pitkäjänteistä tukea.

Biotalous perustuu luonnonvarojen järkevään, kestävään käyttöön ja se liittyy tulevaisuudessa lähes kaikkeen toimintaamme. Biotalous on käsite, josta ollaan monta mieltä. Raportissa se nähdään laajana, sosio-teknisenä järjestelmänä, joka sitoo yhteen erilaiset teknologiat, markkinat, ihmiset ja toimintatavat. Se yhdistää tulevaisuudessa erilaisia teollisuudenaloja tavalla, jota ei ole ennen nähty. Se myös yhdistää kestävän kehityksen ajattelutavan liiketoimintaan ja tuo tullessaan biomassasta valmistetut kuluttajatuotteet.

Suomelle biotalous on mahdollisuus sen suurien metsävarojen ansiosta. Puun jalostusastetta voidaan nostaa valmistamalla siitä muovinkaltaisia tuotteita, joista valmistetaan komposiitteja, pakkausmateriaaleja, tekstiilejä ja jopa elintarvikkeiden ainesosia ja lääkeaineita. Myös muiden raaka-aineiden käyttö muuttuu tulevaisuudessa radikaalisti. Tietotekniikalla on myös nykyistä merkittävämpi rooli tulevaisuudessa esimerkiksi valmistusteollisuuden, energiantuotannon ja liikenteen tehostamisessa.

”Biotalouteen siirtyminen edellyttää, että meidän on opittava käyttämään luonnonvarojamme viisaasti ja säästeliäästi. Biomassan tehokas käyttö teollisuudessa ei kaikilta osin ratkaise ongelmia ja tarvitaan muitakin raaka-ainelähteitä. Yksi sellainen on ilmakehän ja savukaasujen hiilidioksidi. Tämä kehitysvaihe on kuitenkin vielä hyvin pitkän tutkimuspolun päässä”, toteaa VTT:n tieteellinen johtaja Anne-Christine Ritschkoff.

Etunojassa kohti hienoa tulevaisuutta

Siinä missä yleisesti monet kuvaavat Suomen tulevaisuutta synkäksi teollisuuden hiipumisen, väestön vanhenemisen, ilmaston muuttumisen ja taloustilanteen tiukkenemisen vuoksi, on VTT:n raportti erinomaisen mukavaa luettavaa positiivisuutensa vuoksi. Kyse ei ole vain hymistelystä, vaan myönteiseen sävyyn on olemassa perusteet – uusi aika tarjoaa mahdollisuuksia, joista kannattaa ottaa koppi välittömästi.

Visiossa esiintyy joukko fiktiivisiä henkilöitä, jotka elävät biotalouden aikakaudella vuonna 2044: Helmi perheineen Taavetissa, Andersonin perhe Helsingin metropolialueen laitamilla ja kansainvälinen keksijä Jonas ”Brad” Salmi Oulussa.

Suomen maatalous kukoistaa, koska osa maailman perinteisistä viljelyalueista on tuhoutunut erilaisten katastrofien myötä. Kaikille ei riitä työtä yhteiskunnassa, koska robotit hoitavat osan tehtävistä. Elinolot muualla heikkenevät, ja maahanmuutto Suomeen kasvaa. Lääketiede on edennyt pitkälle ja sairauksien puhkeamista ennakoidaan elintoiminnoista saatavan datan avulla. Lääkitys on henkilökohtaisesti räätälöityä. Sensorit mittaavat kansalaisten elintoimintoja ja lähettävät dataa lääkäreille. Lomamatkoja tehdään edelleen lentäen kaukomaille: bioenergiavarannot otettiin laajalti käyttöön 20 vuotta aiemmin, joten lentoliikenteen aiheuttama hiilijalanjälki ei ole enää puheenaiheena. Tietotekniikka palvelee yhteiskuntaa monipuolisesti. 3D-printtaus on arkipäivää. Ravinto on muuttunut lähes täysin kasvispohjaiseksi. Härkäpapu on jälleen tärkeä proteiinilähde. Kasveista saadaan kehittyneiden prosessointimenetelmien avulla nykyistä paremmin talteen niiden arvokkaat ja terveyttä edistävät ainesosat. Elintarvikkeet pakataan biopohjaisiin pakkausmateriaaleihin. Puun ainesosia vaahdottamalla valmistetaan muun muassa tekstiilejä ja muovia korvaavia materiaaleja.

Maalaiselämää robottien kanssa Taavetissa

Maalaiselämää viettävän Helmin perhe saa elantonsa pitkälle jalostetuista maataloustuotteista: marjapohjaisia herkkuja ja kosmetiikkaa myydään Venäjälle, puuvillakuituja tekstiiliteollisuudelle ja entsyymien avulla kasvatetusta metsästä saatua kuitua teollisuuden kuitumateriaalien tuotantoon. Maatilalla käytetään biopohjaisia lannoitteita, varastoitua aurinkoenergiaa ja biokaasulla tuotettua sähköä. Työ on hyvin pitkälle automatisoitua, ja robotit huolehtivat rutiineista.

Andersonit asuvat nollaenergiatalossa ja pukeutuvat pajuvaatteisiin

Andersonin perhe asuu Helsingin metropolialueella nollaenergiatalossa. Perhe matkustaa vuosittain Thaimaahan lentokoneella, jonka polttoneste on valmistettu mikrobien avulla. Thaimaassa perhe on tottunut syömään hyönteisiä ja toukkia. Perheen isä on erikoistunut eliniän pidentämiseen ja äiti kehittää Otaniemessä puubiomassasta tuotteita. Perhe on vähentänyt lihansyöntiä ja välttelee kalliin synteettisen lihan ostamista. Kaukana asuva isoäiti pitää yhteyttä lapsenlapsiinsa hologrammitekniikan avulla. Lapset voivat etäsilittää isoäidin kissaa kosketuskäsineillä.

Monitoimimies Jonas ”Brad” Salmi testaa uusimmat tekniikat

Tekniikkaa, filosofiaa, muotoilua ja markkinointia opiskellut Jonas on aina ensimmäisten joukossa kokeilemassa uusia tekniikoita. Hän on ollut mukana perustamassa liikeyrityksiä ympäri maailman. Liikeideat vaihtelevat pihkapohjaisista lääkkeistä hologrammipalveluihin. Jonas viettää paljon aikaansa kotilaboratoriossaan Oulussa. Uusin menestysidea on valoon ja ravinteisiin reagoiva kasvi, jolla voi tuottaa erivärisiä ja makuisia tomaatteja. Hän harrastaa lisättyä tuotantoa eli esineiden valmistaminen 3D-printterillä. Kun Jonas muuttaa viime viikolla käytössä olleen vierassängyn seuraavalla viikolla ruokailuryhmäksi, säästyy tilaakin.

Teksti perustuu pitkälti VTT:n tiedotteeseen. Piirrokset: Jutta Suksi

People in Biotechnology 2044 –julkaisu verkossa: http://www.vtt.fi/inf/pdf/visions/2014/V4.pdf

Tohtori Kelloggin terveyslastut

Hyvää syntymäpäivää, kuuluisat maissihiutaleet!

Tänään 117 vuotta sitten Michiganissa Battle Creek -kylän mielisairaalassa työskennellyt tohtori John Kellogg tarjoili potilailleen ensimmäistä kertaa kehittämäänsä voimaruokaa. Kellogg oli vakuuttunut siitä, että tiukka kasvispohjainen ruokavalio ja runsas liikunta olivat hyväksi potilailleen, joten hän kehitti maidon kanssa nautittavat sokeroimattomat maissihiutaleet, jotka olivat paitsi ravitsevia, niin myös tarjosivat runsaasti energiaa.

John Kelloggin veli Will Keith Kellogg maistoi myöhemmin niitä ja ajatteli, että sokerin kanssa ne olisivat parempia. Hän alkoikin markkinoida vuonna 1906 runsaalla sokerilla höystettyjä maissilastuja aamiaisruokana, ja näin klassikko oli syntynyt. John-veli tosin oli pöyristynyt tästä ja koitti saada veljensä jopa oikeustoimin lopettamaan epäterveellisten maissilastujen markkinoinnin ja perheen nimen käyttämisen siinä yhteydessä.

Todennäköisesti tohtori Kellogg ei olisi kovin ilahtunut muistakaan kyseisen yhtiön tekemistä aamiaismuroista, vaikkakin nykyisin tuotevalikoimaan – niin hänen nimeään edelleen kantavalla yhtiöllä kuin sen kilpailijoillakin – on ilahduttavan paljon terveellisempiäkin vaihtoehtoja.

Battle Creekin sanatorio oli Adventtikirkon hoidossa ja John Kellogg oli paitsi uskonnollinen, niin myös puritaaninen. Silti hän oli edellä aikaansa monissa asioissa ja muun muassa varoitteli jo aikanaan tupakan polton vakavista seurauksista. Hän oli eniten innostunut kuitenkin ravinnon osuudesta terveydessä ja meni siinä toisinaan liian pitkällekin: esimerkiksi hänen mielestään liha, erityisesti sianliha saastuttaa ihmisen elimistöä.

Kelloggin mielestä 90% sairauksista johtuu vatsasta ja ruoansulatuselimistöstä, ja mikäli niitä hoitaa hyvin, pysyy terveenä. Siksi lihan lisäksi oli parasta kieltäytyä alkoholista, kahvista ja suuresta osasta mausteita. Myös seksi oli kiellettyjen listalla. Sen sijaan runsaskuituinen ruoka oli erittäin hyväksi, ja juuri siksi Kellogg kehitti maissilastunsa: litteäksi prässätyt, paahdetut maissinjyvät olivat runsaskuituisia ja niissä oli energiaa.

Koska Kellogg oli vakuttunut jogurtin erinomaisuudesta ihmiselle, olivat maissilastut erityisen terveellisiä sen kanssa nautittuna. Ja siis ehdottomasti maustamattoman jogurtin ja ilman sokeria!

Kellogg suunnitteli myös kuntoiluvalineitä, kuten alla olevan mekaanisen kamelin, eräänlaisen kuntopyörän ja keinutuolin risteytymän.

Fuusioreaktio Jamien tapaan

Jamie Edwards
Jamie Edwards
Fuusorin periaate

Englantilainen 13-vuotias Jamie Edwards on maailman nuorin ydinfuusion aikaan saanut henkilö. Edellinen ennätys oli Taylor Wilsonilla Nevadasta; hän onnistui tässä ollessaan 14 vuotta vanha.

Siis nykyisin teini voi onnistua siinä, mihin muutama vuosikymmen sitten tarvittiin suuri tutkijaryhmä ja iso laboratorio. Kyseessä ei luonnollisestikaan ole suuri ja vaarallinen ydinpommi tai sähköä voimaverkkoon laittava reaktori, vaan pienikokoinen demonstraatio – tosin erittäin vaativa sellainen. Koejärjestelyssä tuotetaan vedystä heliumia ydinfuusiolla periaatteessa samaan tapaan miten Aurinko tuottaa energiaansa.

Jamie oli kiinnostunut asiasta ja ehdotti fuusioreaktorin tekemistä koululleen Leicestershiressä, Englannissa, ja sai sitä varten 2000 punnan apurahan viime marraskuussa. Sen jälkeen hän ryhtyi hommiin ja tilasi pääosin internetin kautta kaikkea, mitä koe tarvitsee. Hän raportoi koko ajan hankkeen edistymisestä kaikkine vastoinkäymisineen ja onnistumisineen blogissaan. Kun reaktori oli lopulta valmis, hänen täytyi osallistua vielä säteilyturvakurssille ennen kuin reaktori sai käynnistysluvan.

Alla on BBC:n Jamiesta ja hänen projektistaan tekemä juttu.

"Fuusioreaktorin" periaate

Kyseessä oleva reaktori ei ole luonnollisestikaan samanlainen fuusioreaktori, mistä toivotaan uudenlaista energianlähdettä. Se ei toimi myöskään samalla tavalla kuin vetypommi – muutoin tuskin koulu olisi antanutkaan Jamien toteuttaa haavettaan.

Reaktori on niin sanottu fuusori, jonka kehitti 1960-luvulla fysikko Philo T. Farnsworth. Hänen toiveenaan oli saada laitteistolla aikaan energiaa kuten "oikealla" fuusiorekatorilla, mutta lopulta laitteistosta tulikin suosittu fysiikan demonstraatio.

Fuusorissa on tyhjökammiossa kaksi sisäkkäistä sähköäjohdinverkkoa, joista sisempään johdetaan negatiivinen varaus ja ulompaan positiivinen varaus.

Kammion sisältä pumpataan lähes kaikki ilma pois, mutta sinne laitetaan vähän deuteriumia, eli vedyn raskasta isotooppia kaasuna. Suurjännite sähköverkoissa saa kaasun ionioitumaan, eli sähkökenttä potkaisee molekyyleistä eletronin pois, ja näin positiivisesti varattu deuterium alkaa liikkua sähkökentän kiihdyttämänä kohti tyhjökammion keskustaa. Osa ioneista törmää toisiinsa, ja ne jotka menevät ohitse, liikkuvat pian kammion ulkoreunalle, jolloin sähkökenttä hidastaa niiden menoa ja kääntää liikesuunnan takaisin kohti keskustaa.

Mikäli fuusorin energia on varsin pieni, hohtaa sisällä oleva plasma kauniina pilvenä. Näyttää siltä, että kammion sisällä olisi pieni Aurinko.

Korkeampienergisissä fuusoreissa deuteriumionit yhtyvät heliumiksi ja tritumiksi, vedyn deuteriumiakin raskaammaksi isotoopiksi. Deuteriumissa on vetyatomin ytimessä protonin lisäksi yksi neutroni ja tritiumissa kaksi. Kun kaksi deuteriumatomia fuusioituu helium-4 -atomiksi, syntyy reaktiossa lisäksi protoni (vety-ydin), neutroni ja gammasäde. Ylimääräistä energiaa reaktio ei tuota, joten tällaista fuusioreaktoria voi käyttää turvallisesti fysiikan demonstraationa.

Fuusorin periaate

Tee itse oma fuusorisi!

Periaate on siis hyvin yksinkertainen ja kuka tahansa voi tehdä fuusioreaktorin. Pitää kuitenkin muistaa, että laitteistossa on vaarallinen korkeajännite ja se tuottaa röntgensäteilyä, joten varotoimet ovat tarpeen. Sähköasennuksia tulee tehdä huolella ja säteilyä vastaan tulee suojautua lyijyllä. Polttoaineena käytettävä vety on erittäin räjähdysherkkää, vaikka tarkoituksena ei olekaan polttaa, vaan fuusioida sitä. Tuotoksena oleva helium sen sijaan ei ole haitallista – sitä käytetään muun muassa ilmapalloissa.

Rahaa osien hankkimiseen kuluu noin 800 euroa, kenties vähemmänkin, jos löytää esimerkiksi käytettyjä mittareita.

Lista on tällainen:

- Tyhjösäiliö, mieluiten pyöreä tai pallomainen. Tämän valmistaminen on hankkeen suurin työ.
- Tyhjöpumppu, joka pystyy imemään säiliöstä ilman pois siten, että tyhjön taso on vähintään 75 mikronia eli noin 99,95% tyhjä
- Toinen, paremman tyhjön saamiseen sopiva pumppu
- Suurjännitevirtalähde, vähintään 40kV ja 10mA (negatiivinen napaisuus)
- Suurjännitevolttimittari
- Painemittari tyhjötason mittaamiseen
- Neutronisäteilyilmaisin
- Geigermittari (röntgensäteilyn mittaamiseen, turvallisuusvaruste)
- Deuterium-kaasua (deuterium on vedyn raskas isotooppi). Tätä voi ostaa tai tehdä itse elektrolyysillä.
- Suuri kuormitusvastus, vähintään 30 cm pitkä ja 50-100K
- TV ja kamera, joilla nähdään reaktorin sisälle
- Lyijyä kameran näköreiän suojaksi
- Normaaleita työkaluja ja porakone.

Hyvät ohjeet laitteiston tekemiseen löytyvät mm. Discovery-lehden sivuilta.

Islantilaisissa on intiaaniverta

Maalaus: Leifr Eiriksson löytää Pohjois-Amerikan. (Christian Krohg, 1893)
Maalaus: Leifr Eiriksson löytää Pohjois-Amerikan. (Christian Krohg, 1893)
Suuntaa-antava kartta ihmisten liikkeistä ja äitilinjan polveutumisesta mtDNAn perusteella.

"Kolumbus löysi Amerikan", opetetaan yhä kouluissa. Niin hän löysikin - länsieurooppalaisille valloittajille. Mutta ei ihmiskunnalle.

Ensinnäkin, alueella eleli valmiiksi ihmisiä. Tunnemme heidät intiaaneina.

Toiseksi, viikingit olivat käyneet siellä jo lähes 500 vuotta aiemmin. Tästä on sekä arkeologisia että geneettisiä todisteita.

Mitokondrio-DNA:ta vertaillut tutkimus on osoittanut, että ainakin 11 nykyisin elävällä islantilaisella (neljästä eri sukulinjasta) on sama kantaäiti. Hän oli amerikkalainen intiaani ajalta ennen Kolumbusta.

Kun eurooppalaiset löysivät Amerikan

Islantilaisten historiallisissa kertomuksissa eli saagoissa Amerikan löytö kuvataan varsin tarkasti. Ikävä kyllä eri saagojen väliltä löytyy jonkin verran ristiriitoja. Yleiskuva on kuitenkin selkeä.

Ensimmäinen Pohjois-Amerikan nähnyt eurooppalainen lieni norjalainen kauppias Bjarni Herjólfsson.

Bjarnin kerrotaan matkanneen laivallaan Norjasta Islantiin isänsä luo. Perillä hänelle selvisi, että isä oli muuttanut Grönlantiin paremman elämän toivossa. Bjarni lähti oitis perään, mutta eksyi myrskyn vuoksi kurssista. Tämä tapahtui luultavasti joskus vuosien 985 ja 990 välillä.

Pitkän harhailun jälkeen Bjarni miehistöineen näki viimein lännessä maata. Seutu oli kuitenkin täysin toisenlaista kuin millaiseksi Grönlannin rannikko oli kuvailtu. Jäätiköiden sijasta täällä oli metsäisiä maita, vuoria ja matalia kukkuloita. Bjarni käänsi laivansa takaisin koilliseen eikä laskeutunut maihin - uusien alueiden tutkiminen kun ei häntä kiinnostanut. Lopulta hän saapui Grönlantiin ja kertoi näkemästään. Tarinat oudoista läntisistä maista alkoivat kiertää viikinkien keskuudessa.

Leifr Eiríksson oli muutamia vuosia myöhemmin myös matkaamassa Norjasta kohti Grönlantia. Bjarnin lailla hänkin eksyi kurssista, ja saapui oudoille metsäisille rannoille. Hän muisti Bjarnin kertomukset. Käännyttyään kohti Grönlantia hän pelasti matkalta kaksi haaksirikkoutunutta. Nämä lienivätkin ensimmäisiä tiedettyjä eurooppalaisia Pohjois-Amerikassa - tosin tahtomattaan. Leifr toi Grönlantiin näytille mukanaan outojen puiden oksia. Ne toimivat todisteina niistä uusista maista, joista oli tähän mennessä kerrottu vain tarinoita.

Pian, noin vuonna 1000, Leifr osti Bjarnin laivan ja lähti tämän matkakuvauksen ja omien kokemustensa perusteella takaisin kohti länttä. Hän kulki ainakin Baffininsaaren ja Labradorin kautta Vinlandiin. Vietettyään talven siellä hän palasi Grönlantiin, mukanaan lasteittain viinirypäleitä ja puutavaraa. Paluumatkalla hän pelasti lisää haaksirikkoutuneita, ja sai tästä lisänimen "Onnekas". Ilmeisesti useampikin viikinkiretkue oli eksynyt liian pitkälle Grönlantia kohti matkatessaan.

Vinland on usein tulkittu nykyiseksi Newfoundlandin saareksi Labradorin edustalla. Sen pohjoispäästä löytyy ainoa tunnettu viikinkien asutuspaikka Pohjois-Amerikasta, nykynimeltään L'Anse aux Meadows. Kukaan ei kuitenkaan tiedä, kuinka kauas etelään Amerikan rannikkoa viikingit seilasivat. Vinland voi myös tarkoittaa mantereen Uutta Englantia.

Seuraavien muutamien kymmenien vuosien kuluessa viikingit koettivat asuttaa Vinlandia, ehkä muutamien satojen ihmisten voimin. Intiaanit kuitenkin ajoivat uudisasukkaat tiehensä tehokkaasti. Asutushalu lopahti tykkänään.

Kaupankäynti alkuperäisväestön kanssa kuitenkin ilmeisesti jatkui. Samoin puutavaran hankkiminen läntisistä metsistä. Muutamat arkeologiset löydöt ja historialliset tekstit vihjaavat, että viikingit saattoivat jatkaa kauppamatkojaan Viinimaahan jopa 100-400 vuoden ajan.

Esiäidin tarina

Mitokondrio-DNA:n perusteella voidaan määrittää vain äidin sukulinja. Isältä tulevien siittiöiden mitokondriot palavat loppuun kisatessaan munasolun hedelmöittämisestä. Miehen mitokondriot eivät siis periydy.

Mitokondrioiden perimässä tapahtuvat mutaatiot ovat varsin pysyviä. Äidillä tapahtunut satunnainen mtDNA-mutaatio siis periytyy sekä pojille että tytöille, mutta vain tytöt jatkavat sen levittämistä. Tutkimalla ihmisryhmän mtDNA:n eri muotojen levinneisyyttä voidaan siis rakentaa selkeä äitilinjan sukupuu.

Perimätutkimuksissa on havaittu, että Aasiassa tapahtui mtDNA:n mutaatio noin 60000 vuotta sitten. Sen kaikki jälkeläiset asuvat joko Siperiassa tai Amerikassa. Ja lisäksi ainakin 11 ihmistä Islannissa.

Sukututkimuksen perusteella tätä erikoista mtDNA:ta kantavilla islantilaisilla ei ole ollut yhteistä esiäitiä ainakaan 1700-luvun jälkeen. Todennäköisin ajankohta on paljon kauempana, noin 1000-luvulla.

Vaikka asia ei olekaan täysin varma, sitä pidetään varsin todennäköisenä. Viikingit Vinlandista toivat mukanaan useita intiaaninaisia vaimoiksi tai orjiksi. Ainakin yksi tuoduista naisista sai lapsia viikinkimiehen kanssa, ja ainakin yksi näistä lapsista oli tyttö. Tälle tytölle syntyi ainakin yksi tyttö, ja tälle... sukulinja jatkuu yhä.

Johtuiko intiaanien vihamielisyys uudisasukkaita kohtaan siis naistenryöstöistä? Sitä emme varmaan saa koskaan tietää.

Suuntaa-antava kartta ihmisten liikkeistä ja äitilinjan polveutumisesta mtDNAn perusteella.

Ketkä sitten löysivät "Uuden mantereen" ensimmäisenä?

Viikingit kävivät Amerikassa 500 vuotta ennen länsimaisia löytöretkiä. Myös muiden kansojen on ehdotettu ehtineen sinne meritse ennen Kolumbusta. Näille väitteille ei kuitenkaan ole löytynyt tieteellistä tukea. Kiinalaisten, arabien tai polynesialaisten Ameriikan reissuja ennen 1500-lukua ei ole tiedossa.

Pohjois-Amerikka on ollut asuttuna varmasti jo ainakin 10000, todennäköisesti ainakin 13500 vuotta. Tuolloin Pohjois- ja Keski-Amerikassa liikkui metsästäjä-keräilijöitä, jotka edustivat ns. Clovis-kulttuuria.

Clovisin ihmisten alkuperästä ei ole varmaa tietoa. Perinteisen selitysmallin mukaan heidän esi-isänsä vaelsivat Aasiasta Beringin maasillan kautta Alaskaan jääkauden maksimin tienoilla. Merenpinta oli nimittäin laskenut samalla kun jäätiköt kasvoivat. Muuttoliike alkoi ainakin 14000 vuotta sitten. Jään vetäydyttyä kansat jatkoivat eteenpäin uusille alueille.

Toisen teorian mukaan ainakin osa Amerikan asuttajista tuli Atlantin yli. Perusteena on käytetty kiisteltyä geneettistä yhteyttä muutamien nykyisten intiaaniheimojen ja baskien välillä, sekä näiden tarve-esineiden samankaltaisuutta Pyreneitten niemimaan vastaavien kanssa.

Mikäli jotkut intiaanien esi-isät tulivat Euroopasta, he taittoivat matkansa jäätä pitkin. Voi kuitenkin olla, ettei minkäänlaista pintayhteyttä Atlantin yli sittenkään ollut, ja geneettinen yhteys onkin myöhempää perua.

Myös palljon vanhempia jälkiä Uuden mantereen ihmisasutuksesta löytyy. Etelä-Amerikan länsirannikolla on muutamia paikkoja, joissa on asuttu ainakin 1000 vuotta ennen Clovisia. Hurjimmat (mutta myös tieteellisesti hatarimmat) väitteet sijoittavat ne yli 30000 vuoden ikäisiksi.

Japanin rannikolta pääsi meriteitse Etelä-Amerikkaan helposti. Jopa pienillä veneillä olisi voinut suhteellisen turvallisesti hyppiä Kuriileilta Kamtsatkan kautta Aleuteille, ohittaa Kanadan rannikon jäätiköt, ja seilata aina Peruun ja Chileen asti. Idean todistaminen on kuitenkin vaikeaa: silloiset rannat ovat nykyään satakunta metriä merenpinnan alla.

Oli vanhimman muuttoaallon ikä ja reitti mikä tahansa, näiden kulttuurien jatkumisesta ei juuri ole merkkejä. Kyse oli todennäköisesti epäonnistuneesta kolonisaatiosta. Suurin osa Amerikan alkuperäiskansoista tuli Aasiasta Beringin sillan yli.