Luonto

"Nyt toimintaa, idiootit!"

Ma, 10/08/2018 - 16:33 Toimitus

Tänään julkistetun hallitustenvälisen ilmastopaneelin tuoreen raportin tiimoilta voisi sanoa kuten Greenpeacen Kaisa Korhonen totesi BBC:n jutussa: "Tutkijat kenties haluaisivat kirjoittaa isoilla kirjaimilla 'TOIMIKAA NYT, IDIOOTIT', mutta heidän täytyy sanoa sama tosiasioin ja numeroin".

Hallitustenvälisen ilmastopaneelin (Intergovernmental Panel on Climate Change) IPCC:n tuoreen Global Warming of 1.5 °C -erikoisraportin mukaan maapallon lämpötila on jo noussut noin asteella esiteollisesta ajasta. Mitä tulevaan tulee, niin viesti on hyvin selvä: jos lämpeneminen jatkuu nykyistä vauhtia, 1,5 asteen raja ylitetään vuosisadan puoleen väliin mennessä.

Rajan ylittäminen aiheuttaisi merkittäviä riskejä sekä ihmisille että luonnolle.

Vaaditaan nopeita päästövähennyksiä, jotta maapallon lämpötilan nousu voidaan rajoittaa 1,5 asteeseen. Globaalit päästöt on käännettävä uralle, jossa nettopäästöt laskevat nollaan vuosisadan puoliväliin mennessä.

Näin todetaan raportissa, joka viimeisteltiin viime viikolla Etelä-Koreassa järjestetyssä viikon mittaisessa kokouksessa, johon osallistui IPCC:n jäsenmaiden hallitusten edustajia ja raportin laatineita tutkijoita.

"Fossiilisen hiilen päästöt ja ilmakehän hiilidioksidipitoisuuden kasvu ei ole taittunut. Mikäli emme tee nopeita toimenpiteitä kaikilla toimialoilla, 1,5 asteen kriittinen raja ylitetään vuosisadan puoleen väliin mennessä, jolloin myös lämpenemisen aiheuttamat vaikutukset ovat vakavampia", sanoo Ilmatieteen laitoksen pääjohtaja ja Suomen IPCC-työryhmän puheenjohtaja Juhani Damski Ilmatieteen laitoksen tiedotteessa.

1,5 asteen tavoitteen saavuttamiseksi tarvittavan muutoksen mittakaava on ennennäkemätön: päästövähennyksiin tähtääviä toimia on tehtävä kaikkialla yhteiskunnassa ripeästi ja kauaskantoisesti.

Päästövähennykset eivät yksin riitä lämpötilan nousun taltuttamiseksi, vaan hiilidioksidia on pystyttävä poistamaan ilmakehästä muun muassa hiilinielujen sekä hiilidioksidin talteenoton keinoin. Hiilidioksidin poistamista ilmakehästä tarvitaan sitä enemmän, mitä hitaammin päästöjä vähennetään. Hiilidioksidin poistokeinoihin liittyy kuitenkin suuria epävarmuuksia ja riskejä.

Raportti antaa selkeän viestin siitä, että ilmastopolitiikan kunnianhimoa on nostettava, mikäli halutaan Pariisin ilmastosopimuksen mukaisesti pyrkiä kohti 1,5 asteen tavoitetta ja vähentää ilmaston lämpenemiseen liittyviä riskejä. Tähän mennessä Pariisin sopimuksen alla annetut kansalliset päästövähennyslupaukset eivät riitä rajoittamaan lämpötilan nousua 1,5 asteeseen.

Raportin tulokset ovat tärkeä tieteellinen näkökulma Katowicen ilmastoneuvotteluihin joulukuussa, käynnissä olevaan Talanoa-vuoropuheluun sekä Pariisin sopimukselle annettujen päästövähennyssitoumusten päivittämiseen vuoteen 2020 mennessä.

Ilmastonmuutoksen hillitseminen tukee monia kestävän kehityksen tavoitteita, esimerkiksi makean veden saatavuutta. Hillintätoimet on kuitenkin suunniteltava paikalliset olosuhteet huomioiden, jottei esimerkiksi maankäyttö vaaranna ruokaturvaa tai puhtaan veden saantia.

Taustatietoa IPCC:stä ja 1,5 asteen raportista

Keskilämpötilan 1,5 asteen nousulla verrattuna esiteolliseen aikaan on merkittäviä vaikutuksia elämään maapallolla. Raportissa käydään läpi näitä vaikutuksia verraten niitä kahden asteen keskilämpötilan nousuun. Raportissa käsitellään päästöpolkuja ja keinoja, joilla lämpeneminen on mahdollista rajoittaa 1,5 asteeseen. Lisäksi arvioidaan ilmastotavoitteiden ja YK:n kestävän kehityksen tavoitteiden yhtymäkohtia.

Raportti vastaa Pariisin ilmastokokouksessa IPCC:lle esitettyyn pyyntöön tarkastella 1,5 asteen tavoitteeseen liittyviä seikkoja. Maailman maat sitoutuivat Pariisin ilmastosopimuksessa tavoitteeseen pitää maapallon keskilämpötilan nousu selvästi alle kahdessa asteessa verrattuna esiteolliseen aikaan ja pyrkiä toimiin, joilla lämpeneminen saataisiin rajattua alle 1,5 asteen.

IPCC tukee ilmastopoliittista päätöksentekoa

IPCC:n eli hallitustenvälisen ilmastonmuutospaneelin tavoitteena on analysoida tieteellisesti tuotettua tietoa ilmastonmuutoksesta kansallista ja kansainvälistä päätöksentekoa varten.

Ilmastopoliittisen päätöksenteon tueksi IPCC valmistelee ilmastonmuutosraportteja tutkijaryhmissä. Ryhmät keräävät ja arvioivat julkaistua tieteellistä tietoa ilmastonmuutoksesta, sen vaikutuksista ja hillitsemismahdollisuuksista sekä siihen sopeutumisesta. IPCC ei siis tee uutta ilmastonmuutostutkimusta, vaan analysoi ja kokoaa yhteen olemassa olevaa tieteellistä tietoa. Se ei myöskään ehdota ilmastopoliittisia vaihtoehtoja.

Suomessa IPCC-työstä vastaa ympäristöministeriön asettama IPCC-työryhmä, joka kokoaa yhteen alan tutkijat ja eri ministeriöiden edustajat.

IPCC:n kuudennen arviointiraportin (Sixth Assessment Report, AR6) sarjaan kuuluvat nyt julkaistun Global Warming of 1.5° C -erikoisraportin (SR15) lisäksi kaksi erikoisraporttia, menetelmäraportti, kolmiosainen 6. arviointiraportti ja sen synteesiraportti.

*

Juttu on Ilmatieteen laitoksen tiedote vain hieman edioituna. Kuvat ovat Ilmasto-oppaasta, paitsi otsikkokuva, joka on WMO:n Flickr-arkistossa oleva Romeo Ibriševićin kaunis otos auringonlaskusta Bobovicajärvellä Samoborissa.

Islannin Katla-tulivuori valmistautuu purkaukseen - ilmassa ennätysmääriä hiilidioksidia

Pe, 09/14/2018 - 06:12 Jarmo Korteniemi
Kuva: Inga Vitola / Flickr

Tutkijat havaitsivat erään Islannin etelärannikon suurimman tulivuoren tupruttelevan yllättävän suuria määriä erilaisia kaasuja. Käytöksen arvellaan ennakoivan purkausta lähitulevaisuudessa. Alueella liikkuvia kehoitetaan erityiseen varovaisuuteen.

Ryhmä islantilaisia ja brittiläisiä geologeja on perehtynyt Islannin etelärannikolla sijaitsevan Katla-tulivuoren kaasupäästöihin.

"Huomasimme jotain, mikä yllätti meidät täysin. Vuoresta pursuaa koko ajan aivan valtavia määriä hiilidioksidia. Katla pääsee näin maailmanlaajuisesti kolmannelle sijalle niiden tulivuorten joukossa, joiden kaasupäästöjä on mitattu", kertoi Leedsin yliopiston vulkanologi Evgenia Ilyinskaya Islannin yleisradiolle.

Vuori on aiheuttanut tutkijoille päänvaivaa jo jonkin aikaa. Sen aktiivisuus on kasvanut (kirjoitimme aiheesta vuonna 2016 parissakin jutussa), mutta purkausta ei merkeistä huolimatta ole vielä kuulunut.

Vapautuvan hiilidioksidin määrä on noin 20 000 tonnia vuorokaudessa. Sekunnissa sitä siis vapautuu 230 kilogrammaa ja tällä tahdilla vuodessa 7,3 miljoonaa tonnia. Tutkijat havaitsivat myös merkittäviä määriä metaania sekä mädältä kananmunalta haisevaa rikkivetyä. Havainnot tehtiin vuoren yllä kaasujen keräämiseen tarkoitetulla lentokoneella lokakuussa 2016 ja lokakuussa 2017.

Löytö varmistaa viime vuosien uumoilut siitä, että Katla varustautuu merkittävään purkaukseen. Kaasun määrä on niin suuri, etteivät tutkijat usko sen voivan olla peräisin esimerkiksi hydrotermisestä aktiivisuudesta, eikä lähde voi toisaalta olla mikään lähivuorikaan. "Kaasun täytyy olla peräisin juuri vuoren alla hiljalleen sulalla kivellä täyttyvästä magmasäiliöstä", Ilyinskaya kuvailee.

Vuoren alle kerääntyy siis magmaa, johon on sitoutunut merkittäviä määriä erilaisia kaasuja. Nyt ilmoille päässeet määrät ovat tuosta kaasusta kuitenkin vain murto-osa. Loput tuprahtavat ilmaan purkauksen myötä.

Kaasuja voi olla vaarallisen suurina pitoisuuksina myös vuorelta alas valuvissa joissa, erityisesti Emstruá luoteessa ja Múlakvísl kaakossa Vikin kylän itäpuolella. Ihmisiä kehoitetaankin noudattamaan erityisen suurta varovaisuutta vuoren lähettyvillä. Fimmvörðuhálsin suosittu retkeilyreitti kulkee aivan Katlan länsipuolelta. Varovaisuus on tarpeen eritoten Katlaa peittävällä Mýrdalsjökull-jäätiköllä, etenkin sen luolissa seikkaillessaan. Sulavesien kovertamiin luoliin järjestetään joskus vaarallisiakin turistiretkiä, vaikka luolat voivat jopa vuoren lepoaikana täyttyä yllättäen vedestä tai myrkyllisistä kaasuista.

Tutkijat painottavat, että Katlaa täytyy nyt seurata entistä tarkemmin. Vielä ei esimerkiksi tiedetä, onko määrä tasaantunut vai kenties yhä kasvussa. Useiden tulivuorten kaasupäästöjen on havaittu kasvavan hieman ennen purkausta. Aikajänne riippuu vuoresta ja sen kulloisestakin käytöksestä.

Huimista lukemista huolimatta kannattaa muistaa, että Katlan tapauksessa kyse on lopulta varsin lyhytaikaisesta episodista. Purkauksen loputtua se palaa todennäköisesti tapojensa mukaan kymmeniä vuosia kestävään hiljaiseloonsa.

Vertailun vuoksi Suomen kasvihuonekaasupäästöt vastasivat vuonna 2017 noin 56 miljoonaa CO2-ekvivalenttitonnia. Niiden voi siis katsoa olevan noin kahdeksankertaiset Katlan nykytahtiin verrattuna. Ihmiskunta tuottaa fossiilisten poltollaan noin 60 - 100 kertaa enemmän hiilidioksidia kuin kaikki maailman tulivuoritoiminta yhteensä.

Otsikkokuvan taustalla näkyvä Katla on eräs Islannin suurimmista tulivuorista. Saaren runsaan tuhatvuotisen asutushistorian aikana se on purkautunut tyypillisesti 20 - 50 vuoden välein ja yleensä varsin räjähtävällä tavalla. Pisin väli oli 190 vuoden paussi 960 - 1150, jota edelsivät tuhoisa Eldgjá-purkaus ja sen jälkimainingeissa tapahtuneet pari pienempää purkausta.

Viimeinen kunnon purkaus tapahtui vuonna 1918. Tuolloin vuorelta valuneet muta- ja tuhkavyöryt toivat alangolle niin paljon kiviainesta, että meren rantaviivaa siirtyi viitisen kilometriä kauemmas. Tuota seurannutta hiljaiseloa ovat häirinneet vain maanjäristykset, ajoittaiset jäätikkötulvat sekä kolme mahdollista erittäin pientä purkausta vuosina 1955, 1999 ja 2011. Yksikään niistä ei kuitenkaan onnistunut edes sulattamaan reittiä vuorta peittävän jäätikön läpi.

Katlan seuraava purkaus tapahtunee piakkoin, ja vuori onkin purkausvälejä tuijottaen jo hieman "myöhässä" (vaikkei luonto tasaisesti toimikaan). Purkaus aiheuttaa etelärannikolla hyvin todennäköisesti sekä tulvia että terveydelle vaarallisia kaasu- ja tuhkapäästöjä. Vielä ei kuitenkaan voida sanoa onko siihen aikaa vain viikkoja vai jopa muutamia vuosia.

Lähde: Islannin yleisradio

Otsikkokuva: Inga Vitola / Flickr

Lehtiapinoille ei maistu makea

Ma, 09/10/2018 - 12:21 Markus Hotakainen
Apina syö lehtiä

Japanilaisryhmän tutkimustulos on kuin huono vitsi. ”Miksi lehtiapinat syövät mauttomia lehtiä? Ne eivät tiedä niiden olevan mauttomia.”

Nisäkkäillä on yleensä erinomainen kyky maistaa makeaa – kuten me kaikki suklaa-addiktit hyvin tiedämme. Syynä on geeni nimeltä TAS1R2/TAS1R3, joka ohjaa makeaa aistivien makusilmujen toimintaa.

Samainen geeni löytyy myös Jaavan saarella asustavilla mustalangureilla, mutta se on epäkunnossa. Emiko Nishin johtamassa tutkimuksessa todettiin, että sen kummemmin sakkaroosi, maltoosi kuin fruktoosi eli hedelmäsokeri eivät saa sikäläisten lehtiapinoiden makusilmuissa aikaan minkäänlaista reaktiota.

Jo aiemmin sama ryhmä on todennut, että lehtiapinoilta puuttuu kyky aistia karvasta makua.

Makeasta piittaamattomuus näkyy paitsi solutasolla myös lehtiapinoiden ruokailutavoissa. Nishin ryhmä tarjosi töyhtölangureille ja hanumaaneille, kahden lehtiapinalajin edustajille, kahdenlaista hilloa. Toiseen oli lisätty sokeria, toiseen ei.

Apinat söivät kumpaakin versiota yhtä suurella ruokahalulla.

Tutkijoiden mukaan sokerivälinpitämättömyys johtuu siitä, että lehtiapinat eivät juurikaan syö hedelmiä, joissa on luontaisesti sokeria. Niiden ruoansulatuselimistö on sopeutunut sulattamaan lehtien sisältämää selluloossaa bakteerien avittaman käymisprosessin avulla.

Lehdistäkin apinat valikoivat niukasti tärkkelystä sisältävät, sillä runsas hiilihydraattien nauttiminen aiheuttaa niillä ruoansulatusongelmia.

Tutkimus on julkaistu Primates-tiedelehdessä

Kuva: Yamato Tsuji

Superhelteen jännä seuraus: polttavan kuuma sade

Pe, 08/10/2018 - 18:05 Jari Mäkinen
Sadetta Joshua Treen luonnonpuistossa

Lämpötilaltaan 50°C oleva vesi ei saa aikaan palovammoja, mutta kuumalta se tuntuu. Miltä tuntuisi saada niin kuumaa vettä sateena niskaan?

Netissä kiersi alkuviikosta juttu siitä, että Kaliforniassa olisi mitattu 24. heinäkuuta kuumin koskaan havaittu sade: Imperial-nimisessä kylässä San Diegon itäpuolella mittarit osoittivat sadepisaroiden lämpötilan olleen 119°F, eli 48°C.

Tuo päivä oli eräs kuumimmista Kaliforniassa koskaan havaituista, sillä Kuoleman laaksossa virallinen mitattu lämpötila oli 52°C ja jopa sitä lähimmässä kaupungissa, Palm Springsissä, oli lukema 50°C. Imperialissa jäätiin hieman alle 50°C:n, sillä sikäläisittäin lämpötila oli 121°F.

Mittaustieto lämpötilaltaan tarkalleen 48,3°C olleesta sateesta paljastui myöhemmin viallisesta sensorista johtuneeksi virheelliseksi havainnoksi, mutta kuumin koskaan oikeasti ja todistetusti mitattu sade ei ole paljoa viileämpi. Needlesissä, samoin Kaliforniassa, Mohaven autiomaan kupeessa, satoi 13. elokuuta 2012 lämpötilaltaan 47,8°C ollutta vettä.

Sade kuumassa ja hyvin kuivassa on harvinainen ilmiö, mutta joskus olosuhteet ovat juuri sopivat sadepisaroiden muodostumiseen. Esimerkiksi Needlesin ennätyssade tapahtui ilman kosteuden ollessa vain 11 % ja tilanteessa, missä tuuli puhalsi varsin nopeasti paikalle kosteampaa ilmaa, joka nousi saman tien ylöspäin ja siitä tiivistyi pisaroita, jotka satoivat alas.

Sade tosin haihtui hyvin nopeasti ja alas maan pinnalle päätyi vain muutamia pisaroita. Mutta ne todellakin paitsi olivat, niin myös tuntuivat kuumilta.

Sitä aikaisempi sateen kuumuusennätys oli kesäkuun 7. päivältä 2012, jolloin Saudi Arabiassa lähellä Mekkaa syntyi mereltä kuumalle aavikolle nopeasti tulleesta meriusvasta ukkosmyrskyjä, jossa sateen lämpötila oli 45°C. Sitä aikaisemmin Marrakechissa, Marokossa satoi 43-asteista vettä heinäkuussa 2010.

Ilmastonmuutos vaikuttaa tähänkin siten, että todella kuumat päivät tulevat yleisemmiksi ja olosuhteita, missä kosteampaa ilmaa pääsee tunkeutumaan kuumaan ja kuivaan paikkaan, syntyy aiempaa useammin.

Suomessa polttavan kuuman sateen mahdollisuus on kuitenkin vielä varsin pieni. Sen sijaan rajuja ukkosia ja rakeita on tiedossa aiempaa useammin.

*

Otsikkokuvassa on pilviä Joshua Treen kansallispuistossa Kaliforniassa hyvin lähellä Imperialia. Kuva on otettu 19. heinäkuuta 2017, jolloin olosuhteet olivat hyvin samanlaiset kuin nyt heinäkuussa: ilma oli hyvin kuivaa ja lämpötila 38°C. Kuva: National Park Service.

Seksiä kesäyössä – lähetä havaintosi kiiltomatoryhmälle

Ti, 08/07/2018 - 18:51 Toimitus
Kiiltomatonaaras loistaa kesäyössä. Kuva: Gautier Baudry.

Kesäyössä vihreää valoa hohtava tuikku on kiiltomatonaaras, jonka pariviikkoisen aikuiselämän ainoa tarkoitus on lisääntyä. Anna-Maria Borshagovski tutkii näitä valolla puolisoa houkuttelevia kovakuoriaisia ja reissaa pitkin eteläistä Suomea mittaamassa niiden valaisutehoa.

Kiiltomadoilla naaras koreilee eikä uros, toisin kuin eläinmaailmassa yleensä. Naaraan takapäässä on valoelin, jossa kelmeänvihreä valo syntyy entsymaattisesti niin, että lusiferaasientsyymi hapettaa lusiferiiniyhdisteen oksilusiferiiniksi. Kiiltomatonaaras sytyttää lamppunsa kesäöinä.

”Väitöskirjani aiheena on tutkia valaistusolosuhteiden vaikutusta kiiltomatojen loisteeseen ja koiraiden näkökykyyn”, Anna-Maria Borshagovski kertoo.

”Olen kasvattanut sekä suomalaisia että englantilaisia kiiltomatoja, koska haluan verrata valaistusolosuhteiden vaikutusta kiiltomatojen ominaisuuksiin. Jos kahden eri populaation yksilöillä, jotka kasvatetaan samanlaisissa ympäristöoloissa, on eroja, niin voidaan ehkä vetää johtopäätös, että erot ovat geneettisiä. Jos taas erot johtuvat vain ympäristöolosuhteista, niin kasvatetuissa yksilöissä ei olisi eroja. Tätä lähden pian analysoimaan.”

Tohtorikoulutettava Anna-Maria Borshagovski tutkii, kuinka kiiltomatonaaraan loiste ja koiraan näkökyky ovat kehittyneet ympäristön valo-olosuhteiden mukaan. Kuva: Antti Yrjölä.

Tohtorikoulutettava Anna-Maria Borshagovski tutkii, kuinka kiiltomatonaaraan loiste ja koiraan näkökyky ovat kehittyneet ympäristön valo-olosuhteiden mukaan. Kuva: Antti Yrjölä.


Kiiltomato on hyödyllinen peto

”Toukat syövät kotiloita. Pienet toukat pystyvät ryhmässä tappamaan lehtokotilon, ja isommat toukat tappavat lehtokotilon kertapuraisulla. Toukka erittää myrkkyä, jolla se lamaannuttaa saaliinsa, ja sitten se pihtimäisillä puruelimillä haukkaa palasia kotilosta. Vahvat ruuansulatusentsyymit sulattavat kotilon hyvin nestemäiseksi ravinnoksi”, Borshagovski kertoo.

Lehtokotilot ovat harmillinen riesa puutarhoissa, sillä ne lisääntyvät vauhdilla ja syövät nopeasti suuriakin kasvustoja. Kiiltomadot ovat siis puutarhurin hyödyllisiä apulaisia.

Kiiltomatojen toukkavaihe kestää pitkään, kahdesta neljään vuotta. Aikuiset kiiltomadot eivät syö mitään.

”Toukkien tehtävä on syödä ja kasvaa isoksi. Aikuisen kiiltomadon ainoa tehtävä on löytää parittelukumppani ja lisääntyä.”

Kiiltomatojen levinneisyysalue kattaa Kokkolan ja Kuhmon eteläpuolisen Suomen. Runsaiten kiiltomatoja tavataan etelärannikolla.

”Kiiltomadot viihtyvät parhaiten lähellä vesistöjä kosteilla paikoilla eli siellä, missä on ravintoa niiden jälkeläisille.”

Rajoittaako kiiltomatojen pohjoista levinneisyyttä valon määrä, lämpötila vai jokin muu tekijä?

”Todennäköisesti rajoittavia tekijöitä ovat lämpötila ja kasvukauden pituus ja sitä kautta myös ravinto. Kotiloita on vähemmän ja ne ovat pienempiä pohjoisessa, ja lehtokotiloita esiintyy vain eteläisimmässä Suomessa.”

”Olemme saaneet monilta ihmisiltä havaintoja kiiltomadoista mökeiltä ja kotipihoilta. Monilla on kiiltomadoista tarinoita, jotka liittyvät lapsuuteen. Kiiltomatoja kerättiin ja ripustettiin lippalakkeihin, ja näin yritettiin tehdä vaikutus kylän tyttöihin”, Borshagovski nauraa.

Kitkeränmakuisia kasvatteja

”Olemme kasvattaneet kiiltomatoja tutkimustarkoituksiin laboratoriossa. Naaras hedelmöitetään ja se munii todella nopeasti, jo parin päivän sisällä parittelusta. Naaras laskee munat mullan suojaan. Mullan pitää olla sopivan kosteaa, ja pitääkin olla tarkkana, ettei se kuivu tai homehdu. Noin kuukauden kuluttua munista kuoriutuu pikkuruisia, parin millin mittaisia toukkia”, Borshagovski kertoo.

”Annamme toukille ruoaksi kotiloita. Toukat syövät ahkerasti ja luovat nahkansa kasvaessaan. Usein nahanluonti on toukille kova paikka ja osa toukista kuolee.”

Kiiltomadon toukkia on kasvatettu tutkimustarkoituksiin laboratoriossa. Kuva: Anna-Maria Borshagovski.


Kiiltomatotoukka mönkii ja kiemurtelee purkissa, jossa Borshagovski pitää muutamia kasvattejaan. Parin sentin mittaisella mustalla toukalla on molemmilla sivuillaan kymmenkunta keltaista tai oranssia pistettä.

”Toukat sukivat itseään sukasillaan, emmekä ole varmoja, pesevätkö ne itseään vai levittävätkö ne sukasilla itseensä ainetta, joka tekee niistä pahanhajuisia ja -makuisia.”

Kiiltomadoilla ei ole luontaisia vihollisia, sillä linnut ja muut saalistajat karttavat niitä pahan maun vuoksi. ”Pahaa makua en tosin ole vielä rohjennut todentaa maistamalla”, Borshagovski naurahtaa.

Kokeilla selvitetään parinvalintaa

”Meillä on Tvärminnen tutkimusasemalla Hangossa laitteisto, jolla mitataan naaraiden loistetta eli valon voimakkuutta ja väriä. Tämän vempaimen kanssa kierrän Hankoniemestä Konnevedelle mittaamassa naaraita, joten saan pohjois-etelä -akselilla hyvät havainnot vertailuja varten.”

Anna-Maria Borshagovski haluaa selvittää, mitkä asiat vaikuttavat loisteen voimakkuuteen, miten koiraat havaitsevat valon ja miten ne tekevät valinnan naaraiden välillä.

”Konneveden korkeudella kesäyöt ovat valoisampia kuin Hangossa, joten elinympäristö on aika erilainen pohjois-eteläsuunnassa. Minua kiinnostaa se, kuinka naaraan loiste ja koiraan näkökyky ovat kehittyneet ympäristön valon vaikutuksesta.”

”Itä-länsisuuntaista vaihtelua olisi myös mielenkiintoista tutkia. Kollegani on verrannut Suomen ja Ruotsin populaatioiden geneettistä vaihtelua ja näyttää siltä, että erot maiden välillä ovat todella suuria. Myös se kiinnostaa, mistä päin kiiltomadot ovat aikojen alussa Suomeen tulleet.”

Valosaaste vaikeuttaa kiiltomatojen pariutumista. Koiras ei huomaa katulampun alla loistavaa naarasta, vaan valitsee valokeilan ulkopuolella näkyvän naaraan.

Ledilamput, varsinkin vihreät, muistuttavat erehdyttävästi kiiltomatonaarasta.

”Me käytämme vihreitä ledejä koiraiden pyydystämiseen”, Borshagovski kertoo. ”Kiiltomatoansa on yksinkertainen: isosta limupullosta leikataan yläosa irti ja se käännetään nurinpäin suppiloksi pullon alaosaan. Ansan päälle asennetaan vihreä ledi, jonka houkuttelemat lemmenkipeät koiraat tipahtavat ansaan.”

”Koirailla tehdään muun muassa parinvalintakokeita. Hypoteesina meillä oli, että koiras valitsee ison naaraan, jolla on näkyvä valo ja joka tuottaa paljon munia. Yllättävää oli, että koolla ei ollutkaan väliä, vaan koiras valitsi sekä isoja että pieniä naaraita. Ehkä koiraan ei tarvinnut olla kovin valikoiva, kun naaraita oli ulottuvilla useampia. Koiras pystyy nimittäin hedelmöittämään ainakin kaksi naarasta kerrallaan.”

Luonnossa koiras ohjautuu kuitenkin sen suurimman ja kirkkaimman naaraan luo.

*

Artikkeli on Oulun yliopiston tiedotuksen julkaisemaSatu Räsäsen kirjoittama juttu suoraan kopioituna. Otsikkokuvan kesäyössä loistavasta kiiltomatonaaraasta on ottanut Gautier Baudry.

Kiiltomatojen tutkimuksesta on lisätietoja Ötökkäakatemian sivuilla. Kiiltomatoryhmä -niminen ryhmä Facebookissa kerää havaintoja kiiltomadoista!

Ensilöytö: hurrikaanien aiheuttama luonnonvalinta kasvatti liskojen varpaita

Pe, 07/27/2018 - 15:53 Jarmo Korteniemi
Kuva: Rian Castillo

Tutkijat havaitsivat, että lyhytjalkaiset ja isovarpaiset anolisliskot selviytyvät hirmumyrskyistä pitkäkoipisia paremmin. Tämä on ensimmäinen konkreettinen esimerkki siitä, kuinka myrsky on aiheuttanut suoraan valintapainetta johonkin eläimen ominaisuuteen niin että se on voitu mitata.

Tutkijat mittasivat Anolis scriptus -lajin liskojen ominaisuuksia Länsi-Intian saaristossa juuri ennen kahta voimakasta hirmumyrskyä. Myrskyjen laannuttua he palasivat saarille takaisin jatkaakseen analysointia. Mittausten välillä oli kulunut vain kuusi viikkoa.

Myrskystä selvinneet liskot olivat keskimäärin pienempiä kuin aiemmin. Mikä mielenkiintoisinta, niiden reisiluut olivat suhteessa aiempaa lyhyempiä ja tarttumista edesauttavat varvasanturat taas suuremmat. Pienet, lyhytreitisemmät ja isovarpaiset selvisivät siis hurrikaanista paremmin.

Ennen myrskyjä otettiin mitat 71 liskon kehoista, mukaan lukien kokonaispituus ja raajojen luiden pituudet. Myrskyjen jälkeen samat mitat otettiin 93 yksilöltä. Vaikka sekä näytemäärät että muutokset eivät olleet erityisen suuria, tiettyjen kehon kokosuhteiden muuttuminen populaatiossa erottui tilastoanalyysissä merkittävänä.

Käytännön kokeet osoittivat, että lyhyet reidet ja suuret varpaat auttavat liskoja pysymään paremmin kiinni oksissa kovalla tuulella. Tutkijat asettivat liskot ohuen kepin päälle ja altistivat ne alati kovenevalle ilmavirralle. Eläimet vetäytyivät kepin tyynemmälle puolelle, vetivät etujalkansa lähelle kehoa ja asettivat pitkän pyrstönsä kepin pituutta pitkin. Pitkät takajalat jäivät kuitenkin tuulelle alttiiksi ja aiheuttivat lopulta liskon irtoamisen. Siksi suuremmilla varvasanturoilla varustetut ja lyhytjalkaisemmat selvisivät kepeillä pidempään kuin muut.

Yllä kuva, jutun lopussa video koetilanteesta.

Tutkimus julkaistiin vastikään Nature-tiedelehdessä. Kyse on tiettävästi ensimmäisestä kerrasta, kun hurrikaanin aiheuttama valintapaine osoitettiin kiistattomasti. (Jo aiemmin toki tiedettiin, että myrskyt tappavat suuria määriä eläimiä ja aiheuttavat muitakin tuhoja elinympäristöille.)

Tutkittavat liskot asustelevat kahdella kannaksen yhdistämällä pensaikkoisella saarella (Pine Cay ja Water Cay) Turks- ja Caicossaarilla. Voimakkaat hurrikaanit Irma ja Maria riepottelivat aluetta syyskuussa 2017.

Turks- ja Caicossaaret ovat saariryhmä Atlantilla, Floridasta kaakkoon ja Haitista pohjoiseen. Saaret ovat Yhdistyneiden kuningaskunnan erillisalue. Ne eivät maantieteellisesti ole osa Karibiaa, vaan kuuluvat Bahamasaarten ohella Lucayanin saaristoon.

Hurrikaanit eivät ole Lucayanilla mikään uusi asia. Miksi liskopopulaatiossa siis alunperin edes oli pitkäreisisiä yksilöitä - eikö toistuvien myrskyjen olisi pitänyt karsia sellaiset huonot piirteet geenipoolista? Tässä vaiheessa asiasta on mahdotonta sanoa mitään varmaa. Luultavasti hurrikaanit ovat tähän asti olleet vain marginaalinen valintapaineen aiheuttaja, ja muut tekijät vaikuttavat enemmän. Ehkäpä päivittäinen kiipeily tai saalistajia pakoon juokseminen suosivat pidempiä takajalkoja.

Ilmastonmuutoksen myötä yleistyvät hurrikaanit saattavat kuitenkin muuttaa tilannetta, ja kasvattaa lyhytjalkaisten liskojen lisääntymisetua.

Anolis scriptus on pieni 4 - 7 -senttinen liskolaji, jonka esiintymisalue kattaa koko Lucayanin saariston. Suomalaista nimeä eläimellä ei liene, mutta sen englanninkielinen nimi tarkoittaa hopeasaarianolia (Silver key anole; "key" tulee "pientä saarta" tarkoittavasta espanjan cayo-sanasta).

Tutkitun liskon lähisukulaisia esiintyy ympäri Länsi-Intian saaria sekä läheisillä manneralueilla. Tämän monipuolisen liskosuvun lajit tarjoavat darwininsirkkujen ohella eräitä parhaimpia esimerkkejä hyvin nopeasta sopeutumislevittäytymisestä eli ns. adaptiivisesta radiaatiosta. Uusiin elinympäristöihin joutuessaan liskoille kehittyy uusia ominaisuuksia vain muutamissa sukupolvissa, ja näin populaatiot lopulta lajiutuvat erilleen. Liskoilla esiintyy myös paljon konvergenttia evoluutiota: geneettisesti kaukaisetkin lajit voivat kehittää toisiaan muistuttavia piirteitä, jos vain joutuvat samankaltaiseen ympäristöön.

Anolisliskojen suku on runsaslajisin vesikalvollisten (matelijat, nisäkkäät ja linnut) eläinten suku. Useita anolislajeja pidetään myös lemmikkeinä.

Lähteet: Donihue ja kumpp.: Hurricane-induced selection on the morphology of an island lizard" (Nature, 2018, maksumuurin takana); Editorial: "How lizards got their big feet" (Nature, 2018); Losos, Warheitt & Schoener: Adaptive differentiation following experimental island colonization in Anolis lizards (Nature, 1997)

.

Video liskojen kiinnipitelyominaisuuksista kovassa tuulessa.

Otsikkokuva: Rian Castillo

Viimeisimmät geologiset ajanjaksot lyöty lukkoon - antroposeeni ei vielä mukana

Ti, 07/24/2018 - 11:55 Jarmo Korteniemi
Kuva: David Pacey / Flickr

Kansainvälinen stratigrafian komissio on juuri hyväksynyt maapallon kolme nuorinta geologista aikayksikköä. Todisteita niistä löytyy ympäri planeettaa. Samalla Maan geologinen kehitys on jälleen piirun verran selvempi.

Geologinen ajanlasku on saanut uusia etappeja. Kansainvälinen stratigrafinen komitea löi ne lukkoon heinäkuun alussa.

Nuorin vaihe on nimeltään meghalayan, ja sitä on kestänyt viimeiset 4200 vuotta. Sitä edelsivät 8300 vuotta sitten alkanut northgrippian ja 11 700 vuotta sitten eli juuri jääkauden loputtua alkanut greenlandian. Nimet ovat englanniksi, sillä oikeita suomennoksia niille ei tiettävästi vielä ole. Ne hyväksyy aikanaan Suomen stratigrafinen komitea.

Komitea ei kuitenkaan virallistanut ihmisen aikakautta eli antroposeenia, vaikka monien mielestä sellainen on alkanut viimeistään vuonna 1950. Syystä lisää jutun lopussa.

Meghalayanin alkuhetki kuvattiin ensimmäisenä edustavasti Koillis-Intiasta, Meghalayan osavaltiossa sijaitsevan Mawmluh-nimisen luolan stalagmiiteista eli pylväsmäisistä tippukivistä. Kaksi muuta ajanjaksoa taas on sidottu Grönlannin jäätikkökerroksiin ja saavat niistä myös nimensä - NorthGRIP on nimittäin akronyymi sanoista North GReenland Ice core Project. Sekä jääkairausten sydämet että tippukivipylväs ovat näin ollen virallisia kansainvälisiä geostandardeja, jotka on varastoitu turvasäilöön myöhempiä tutkimuksia varten.

Läpileikkaus meghalayan-vaiheen paljastavasta stalagmiitista.

Meghalayan on merkittävä ajanjakso, sillä se alkoi 200 vuoden viileällä ja kuivalla vaiheella, joka vaikutti myös ihmiskulttuureihin ympäri maailmaa. Kuivuus näkyy tuon ajan arkeologisessa aineistossa esimerkiksi ihmisten massamuutoina uusille asuinalueille. Merkkejä tapahtumasta löytyy maatalouteen perustuneiden yhteiskuntien aineistoissa, mm. Jangtse-joen varrella Kiinassa, Indus-joen varrella Pakistanissa, sekä Mesopotamian, Syyrian, Egyptin ja Kreikan alueilla.

Uusien ajanjaksojen nimet ja kestot vahvistettiin Milanossa pidetyssä Kansainvälisen stratigrafisen komitean kokouksessa ja julkaistiin lopulta heinäkuun puolivälissä. Komitea perehtyi useiden vuosien aikana kertyneeseen tutkimusaineistoon. Stratigrafian komission tehtävänä on yhtenäistää geologinen ajanlasku niin, että se kuvaa kattavasti koko planeettaa koskettaneita tapahtumia.

Geostandardit eivät ole ainoita paikkoja joista todisteita kyseisten aikakausien vaihtumisesta löytyy. Tutkijat ovat havainneet merkkejä niistä kaikilta seitsemältä mantereelta, sekä myös merenpohjan pohjasedimenteistä. (Geologisten aikakausien vaihtuminen perustuu aina sedimentteihin tai niistä syntyneisiin kiviin. Kun irtoaineksen kertymisen aikana tapahtuu riittävä muutos, ajanhetki tallettuu kerroksiin niin että se on myöhemminkin havaittavissa. Tämä näkyy joko suoraan sedimenttityypistä, tai erottuu kerrostumista löytyvistä fossiileista tai vaikkapa isotooppisuhteissa.)

Uudesta määritelmästä uutisoi Suomessa ensimmäisenä Tekniikan Maailma.

Geologisen ajanlaskun lyhyt oppimäärä

Geologinen aika jaetaan eripituisiin pätkiin. Nimistössä vilisee outoja sanoja ja monenlaisia ajanmääreitä kuten "jaksoja", "kausia", "vaiheita", "aikoja". On kambrikautta, holoseenia, proterotsooista aikaa ja vaikka mitä. Kun tarkkaankin määritettyjä termejä käytetään vielä jopa ammattilaisten toimesta ristiin, ja ajanjaksojen pituudet ovat tuhansista miljardeihin vuosiin, voi tottumattoman pää mennä sekamelskassa helposti pyörälle.

Geologista aikaa voi kuitenkin ymmärtää kellon ja kalenterin avulla.

Geologiset vaiheet eli kaikkein lyhimmät määritetyt hetket on helppo mieltää ikään kuin "geologisina sekunteina". Nyt hyväksytyt aikajaksot ovat juuri tällaisia: Meghalayan-"sekunnin" pituus kesti ~4200 vuotta, sitä edelsi ~3900 vuoden pituinen northgrippian, ja niitä ennen oli greenlandian (~3400 vuotta).

Meneillään on "tämän minuutin kolmas sekunti".

Useampi sekunti muodostaa tietystikin "geologisen minuutin" eli epookin. Juuri nyt on meneillään 11 700 vuotta kestänyt holoseeni. Tämä epookki on viimeisen jääkauden loppuessa alkanut lämmin kausi, interglasiaali. Sitä edelsi pitkä toistuvien jääkausien ja niiden välisten interglasiaalien värittämä edellinen "minuutti", pleistoseeni-epookki, joka tietystikin jaetaan edelleen omiin "sekunteihinsa".

Meneillään on "tämän tunnin toinen minuutti".

Kuva: www.stratigraphy.org
Viimeisimmät geologiset ajanjaksot.

Seuraava pidempi ajanjakso eli kausi vastaa "geologista tuntia". Holoseeni ja pleistoseeni muodostavat yhdessä näin kvartäärikauden, jota värittävät kylmien jääkausien ja lämpimien välihetkien epäsäännöllisen säännöllinen vaihtelu. Kvartääri alkoi 2 588 000 vuotta sitten, ja sitä edelsivät 20 miljoonan vuoden pituinen neogeenikausi ja 43 miljoonan vuoden paleogeenikausi. (Aiemmin neogeeni ja paleogeeni tunnettiin yhdessä tertiäärikautena, joka on kuitenkin nykyisin vanhentunut termi.)

Meneillään on "tämän päivän kolmas tunti".

Sitten siirrytään "geologiseen päivään" eli maailmankauteen. Nykyinen kenotsooinen maailmankausi alkoi 66 miljoonaa vuotta sitten kuuluisassa mullistuksessa, jossa dinosaurukset kuolivat sukupuuttoon. Maailmankautemme ehkä merkittävin piirre on hidas (joskin hieman sahaava) jäähtyminen ja nisäkkäiden valtakausi. "Eilen" oli siis dinosaurusten hallitsema 185 miljoonan vuoden mesotsoiinen maailmankausi, ja "toissapäivänä" 290 miljoonan vuoden paleotsooinen maailmankausi. Tuolloin elämä monimuotoistui ja levittäytyi maalle.

Meneillään on "tämän kuun kolmas päivä".

Seuraava pidempi aikapätkä on eoni (tai aioni) eli "geologinen kuukausi". Elämme yhä sitä samaa fanerotsooista eonia, jonka aikana dinosaurukset ja trilobiititkin elivät. Se alkoi jo 541 miljoonaa vuotta sitten kambrikauden räjähdyksestä, jolloin elämä monipuolistui muutaman miljoonan vuoden aikana räjähdysmäisesti. Fanerotsooinen on kuvainnollisesti planeetan "huhtikuu". "Maaliskuu" eli proterotsooinen eoni alkoi ilmakehän happipitoisuuden runsastuessa ja kesti noin kaksi miljardia vuotta. Sitä edeltävä "helmikuu" taas oli puolentoista miljardin vuoden pituinen, ja tuolloin syntyivät mantereet. (Suurin osa Suomen kallioperästä on muuten muodostunut "helmi-maaliskuussa".) Planeettamme muodostui "tammikuussa" hadeeisen eonin aikana. Tuolta ajalta on jäljellä lähinnä joitain mineraalikiteitä sekä teoreettisia laskelmia.

Meneillään on siis Maan kehityksen "neljäs kuukausi".

Kuluvaa "geologista vuotta" eli ns. supereonia ei ole määritetty. Fanerotsooista eonia edeltänyttä noin neljän miljardin vuoden pituista aikaa kutsutaan usein prekambriksi, joka olisi siis sen ajan supereoni. Mutta ainoastaan epävirallisesti.

Näin määriteltynä tällä hetkellä on fanerotsooisen "kuun" kenotsooinen "päivä", kello kvartääri"tunti", holoseeni"minuutti" ja meghalayan"sekunti".

Seuraava "sekunti" (tai ehkä jopa "minuutti" tai "tunti") tulee kaikella todennäköisyydellä olemaan antroposeeni. Kansainvälinen stratigrafinen komitea ei kuitenkaan vielä hyväksynyt antroposeenia viralliseksi aikakaudeksi, sillä huimista ympäristövaikutuksistaan huolimatta ihmisen toiminta ei vielä ole kunnolla ehtinyt kerrostua globaaliin geologiseen aineistoon.

Kelloon ja kalenteriin on kuitenkin kaksi merkittävää eroa. Ensinnäkin tietyn tason ajanjaksojen lukumäärät suuremmassa yksikössä vaihtelevat geologiassa joskus paljonkin - eli "sekuntien" määrä "minuutissa", tai "päivien" määrä "kuukaudessa" ei ole ennalta määrätty. Toiseksi myöskään "sekuntien" tai minkään muunkaan ajanjakson pituus ei ole ennalta määrätty, vaan rajat pistetään sinne mistä niitä löytyy.

Lisätietoa geologisesta ajanlaskusta löytyy esimerkiksi geologia.fi-sivustolta. Geologisia aikakausia kuvaava ja uusilla tiedoilla päivitetty taulukko on ladattavissa stratigrafisen komission sivuilta (englanniksi).

Lähde: Kansainvälisen stratigrafisen komitean tiedote.

Kuvat: David Pacey / Flickr (otsikko); www.stratigraphy.org (taulukko); Kansainvälinen stratigrafinen komissio (stalagmiitti)

Päivitys 24.7. klo 20.20: Otsikkoa muutettu.

Tuli kivi tyhjästä

Su, 07/08/2018 - 09:23 Markus Hotakainen
Iso kivi

800… 900… Kilometri. Possakkonevan ja Pehkosaarennevan välistä metsäkaistaletta halkovan hiekkatien laidassa on vanha kyltti, jossa komeilee valkoisella pohjalla iso numero 1. Oikea paikka ei olisi voinut löytyä helpommin.

Metsäisellä kankaalla ei erotu polkua, mutta matka ei ole pitkä ja suunta on selkeä: kohtisuoraan tieltä muutama sata metriä nevalle ja sieltä se löytyy – Halsuan suurin siirtolohkare.

Niin kuin aina näissä "ennätyksissä", asiasta on monia mielipiteitä. Kilpaileva ehdokas löytyy pitäjän toiselta laidalta, Kumpunevan ojitetulta etelälaidalta. Kumpukivikin on ”komia”, kuten paikallisella murteella sanotaan, mutta kyllä Pehkosaarennevan siirtolohkareellakin on kokoa. Sen laella kasvaa pari mäntyäkin.

Ikään kuin maistiaisena tai alkupalana matkan varrella on kivikkoinen metsäsaareke, jonka lohkarevalikoiman kruunaa keskeltä kahtia haljennut iso kivi. Jää on aikojen saatossa tehnyt tehtävänsä ja ottanut voiton kaukaa kulkeutuneesta kallionpalasesta.

Muissakin kivissä on kulumisen merkkejä, suurin osa niistä näyttää olevan haljenneita, monet useampaan osaan, yksi jopa siististi viipaleiksi kuin ruokakaupoissa valitettavan yleisiksi käyneet valmiiksi viipaloidut leivät.

Nevalla kasvaa kituliaita mäntyjä, juuri sen korkuisia, että katse ei yllä kovin kauas. Varsinainen kohde ilmestyy eteen yllättäen ja se yllättää myös koollaan. Lohkare on todella iso. Ja se näyttää kuin taivaasta tipahtaneelta.

Ympäri Suomen on isoja kiviä kummallisissa paikoissa. Erikoisimpia ovat "kiikkukivet", jotka näyttävät tasapainoilevan painovoimaa uhmaten avokallioilla. Muutenkin kivikkoisessa ja kallioisessa maastossa ne eivät kuitenkaan ole olleet välttämättä niin suuria ihmetyksen aiheita kuin siirtolohkareet, jotka näyttävät olevan aivan väärässä paikassa, tässä tapauksessa keskellä hetteikköistä nevaa.

Tällaiset mystiset kivet ovat saaneet entisaikojen ihmiset keksimään erilaisia selityksiä niiden arvoitukselliselle alkuperälle. Niitä ovat valtaisilla voimillaan kuljetelleet milloin metsiä asuttavat hiidet, milloin jättiläiset, milloin itse piru. Jotain yliluonnollista kookkaiden kivien takana täytyi olla.

Jättiläiset ovat muutenkin olleet ahkeria maaston muokkaamisessa. Esimerkiksi matalan Halsuanjärven poikki kulkee karikko, jonka kivet ovat toisen rannan lähettyvillä paljon isompia kuin toisella.

Tarinan mukaan järven vastakkaisilla rantamilla on muinoin asustanut jättiläisiä, jotka syystä tai toisesta riitaantuivat keskenään. Ne alkoivat heitellä toisiaan kivillä, mutta kun toisella rannalla viihtyneet jättiläiset olivat isompia, ne jaksoivat paiskoa kookkaampia kiviä.

Entisaikain tutkijat eivät olleet kovin paljon paremmin perillä asioista, sillä jopa geologiassa uskottiin hiidenkiviksi kutsuttujen lohkareiden päätyneen kummallisille paikoilleen raamatussa kuvaillun vedenpaisumuksen mukana.

Sittemmin on selvinnyt, että syypää on jääkausi. Kallioperää murskanneen, hioneen ja siloitelleen mannerjään sekä siitä irronneiden jäävuorten mukana on kulkeutunut hienojakoisemman maa-aineksen lisäksi valtavia talon, jopa hyvinkin ison talon kokoisia kiviä.

Kun jää on sitten sulanut ja vetäytynyt kohti pohjoista, näitä siirtolohkareita on sirottunut maastoon sinne tänne mitä ihmeellisimpiin paikkoihin, hyvin kauas kallioista, joista jään voima on ne aikoinaan irti murtanut.

Kuvat: Markus Hotakainen

Hyvää aphelia! Miksi Aurinko on tänään kaukana Maasta?

Pe, 07/06/2018 - 17:16 Jari Mäkinen

Aurinko on tänään kaukana, koska Maapallo kiertää Aurinkoa lievästi soikean muotoisella radalla. Tänään ollan radan kaukaisimmassa pisteessä.

Aivan tarkalleen ottaen maapallo on tänään illalla 6. heinäkuuta 2018 klo 19.47 Suomen kesäaikaa ratansa kaikkein kaukaisimmassa pisteessä. Vaikka siis on kesä ja kärpäset, olemme nyt radan kaikkein kauimmaisessa kohdassa ja siten Aurinko lämmittää meitä kaikkein vähiten.

Ero ei kuitenkaan ole kovin suuri, sillä kuuden kuukauden kuluttua, kun Maa on radan läheisimmässä pisteessä, olemme silloin noin viisi miljoonaa kilometriä lähempänä Aurinkoa. Kun keskimäärin etäisyytemme Auringosta on 150 miljoonaa kilometriä, ei tällä ole olennaista merkitystä.

Matka näin kaukaisimpaan aikaan vaihtelee myös hieman. Kun tänään Maan ja Auringon välinen etäisyys on 152 095 566 km, oli se viime vuonna (kun matka oli pisin heinäkuun 3. päivänä) kolmisen tuhatta kilometriä vähemmän, 152 092 504 km.

Numeroista innostuneille voi todeta vielä sen, että tänään Maan ollessa kaukaisimmillaan Auringosta, on Maan ratanopeus 29,5 kilometriä sekunnissa, eli 106 376 kilometriä tunnissa. Keskimäärin nopeus on 30 km/s.

Jos vauhti tuntuu suurelta, niin taivaanmekaniikan yksinkertaisten lakien mukaan laskettuna tämä vauhti ei ole paljoakaan verrattuna lähempänä Aurinkoa kiertäviin planeettoihin. Venuksen nopeus on keskimäärin 35 km/s ja Merkuriuksen yli 47 km/s. Ja samalla Aurinkokuntamme kiitää noin 200 kilometrin sekuntinopeudella (720 000 km/h) Linnunradan keskustan ympäri.

Sisäplaneettojen radat

Kaikkien sisäplaneettojen radat ovat varsin pyöreitä, vain Merkurius on selvemmin soikea. Tarkalleen mikään niistä ei kuitenkaan ole aivan pyöreä.


Vaikka kaikki näyttää siis kesäisen seesteiseltä ja rauhalliselta, kiidämme avaruudessa kovaa vauhtia. Yllättäen siis nyt kesällä olemme siis kaukana Auringosta. Vuodenajathan johtuvat maapallon pyörimisakselin kaltevuudesta, ei kiertoradan lievästä soikeudesta – ja kun sanotaan, että nyt on kesä, niin kannattaa muistaa, että eteläisellä pallonpuolella on nyt talvi.

Radan soikeus vaikuttaa kuitenkin siihen, että laskennallisesti täällä pohjoisella pallonpuolella kesä on viisi päivää pitempi kuin talvi; ratanopeus kun on kaukana ollessa hieman pienempi.

Tätä kiertoradan kaukaisinta pistettä kutsutaan apheliksi. Pohjana on kreikan sanat apo, joka tarkoittaa "kaukana", ja helios, joka puolestaan tarkoittaa Aurinkoa. Aurinkoa kiertävän radan läheisin piste sen sijaan on nimeltään periheli sanan peri, eli "lähellä" mukaan. Näitä sanoja muutetaan aina sen mukaan, mitä kappaletta kierretään: esimerkiksi Maan tapauksessa nämä ovat apoogeum ja perigeum.

Otsikkokuvassa on Aurinko kuvattuna tänään Big Bearin aurinko-observatoriolla GONG-teleskoopilla. Kuva näyttää Auringon näkyvän valon alueella ja kuten näkyy, ei siinä ole juurikaan tänään pilkkuja. Olemme Auringon aktiivisuusminimissä.

Etsintäkuululus: oletko nähnyt tätä jäärää? Ilmoita havaintosi heti!

Ke, 05/23/2018 - 11:29 Toimitus
Aasianrunkojäärä. Kuva: Jaakko Mattila, Luomus

Suomen luonnossa liikkuu haitallisia vieraslajeja. Luonnonvarakeskus pyytääkin kaikkia ilmoittamaan havainnoistaan, jos eteen sattuu joku 37 listatusta lajista. Erityisesti havaintoja kaivataan jättipalsamista ja piisamista.

Otsikossakin mainittu aasianrunkojäärä on eräs listalla olevista lajeista. Se on vaarallinen lehtipuita vioittava kovakuoriainen, joka on kotoisin Kiinasta ja on levinnyt Aasiasta Pohjois-Amerikkaan ja Eurooppaan puisen pakkausmateriaalin välityksellä. Erityisen riskialtista on kivitavaran pakkausmateriaali, koska kivitavara on usein peräisin Kiinasta. 

Tämä kauniille suomalaisille koivikoille uhaksi oleva laji pyritään hävittämään Suomesta ja siksi aasianrunkojääriä havaittaessa tai epäiltäessä on tärkeää ottaa viipymättä yhteyttä Elintarviketurvallisuusvirasto Eviraan.

Kaikista vieraslajeista on tietoa vieraslajit.fi -sivustolla, missä voi myös tehdä ilmoituksen.

 

Tänä kesänä haittalajien tutkijat kiinnittävät erityistä huomiota jättipalsamaan ja kaukasianjättiputkeen sekä piisamiin ja supikoiraan, jotka esiintyvät nykyisin vakituisesti Suomessa.

"Niiden osalta selvitetään erityisesti niiden esiintymistä suojelualueiden ja muiden arvokkaiden luontokohteiden lähistöllä sekä tarvittavia hallintatoimia", kertoo erikoistutkija Erja Huusela-Veistola Luonnonvarakeskuksesta.

Nämä neljä lajia ovat mukana valtioneuvoston maaliskuussa 2018 hyväksymällä haitallisten vieraslajien listalla. Tällä myös EU:n haitallisiksi arvioimien vieraslajien listalla on 37 lajia, ja sitä on täydennetty 12 lajilla.

Luonnovarakeskuksen tutkimushanke tuottaa kahdelletoista vieraslajille hallintatoimenpide­suositukset; vastaavat, jotka on tehty 37 lajille. Suositusten avulla haitallisten vieraslajien torjunta ja leviämisen ehkäisy pyritään kohdentamaan kustannustehokkaasti kiireellisimpiin ja tärkeimpiin kohteisiin.

Sopivien hallintatoimenpiteiden suunnittelun kannalta on tärkeää, että haitallisten vieraslajien levinneisyystiedot ovat mahdollisimman tarkat ja ajantasaiset. Tämän vuoksi vieraslajihavaintojen keräämiseen tarvitaan kansalaisten apua.

​Jättipalsami. Kuva: Erja Huusela-Veistola.
​Jättipalsami. Kuva: Erja Huusela-Veistola.

Jättipalsami on kookkaana ja nopeasti kasvavana kasvina voimakas kilpailija, joka on viime aikoina runsastunut ja levinnyt monin paikoin. Esiintymien runsauden vuoksi torjunnan priorisointi on ensiarvoisen tärkeää ja sen suunnittelun lähtökohdaksi tarvitaan mahdollisimman tarkkoja tietoja lajin esiintymisestä.

Piisami puolestaan on taantunut huippuvuosistaan, ja tarkempaa kuvaa sen nykylevinneisyydestä tarvitaan mahdollisten hallintatoimien suunnittelussa.

Piisami. Kuva: Yhdysvaltain kala- ja villieläinvirasto

Jutun pohjana on Luonnonvarakeskuksen tiedote. Otsikkokuvassa on aasianrunkojäärä. Kuva: Jaakko Mattila, Luomus.