Jäätä kaulan alueella Rosetta-komeetassa

Perinteisen selityksen mukaan komeetat ovat likaisia lumipalloja, jotka koostuvat pääasiassa jäänsekaisesta hiekasta tai hiekansekaisesta jäästä.

Rosetta-luotaimen kohteena oleva komeetta 67P/Churyumov-Gerasimenko on sen sijaan paljastunut lähes kokonaan hiekan ja kiven peittämäksi harmaaksi möhkäleeksi, mistä jäätä ei ole nähty missään. Sitä on selvästi runsaastikin pinnan alla, mutta kuvissa ei jäästä ole nähty kuin pienenpieniä aavistuksia.

Nyt luotaimen OSIRIS-kameralaitteiston viime elokuussa ottamista kuvista on havaittu jäältä näyttäviä kohtia kaksiosaisen komeetan “kaulan” alueelta. 

Komeetan kaksiosaisuutta pohdittaessa on esillä ollut kaksi teoriaa: joko kyseessä on kahden kappaleen yhteentörmäys ja sen tuloksena syntynyt omituinen komeettaydin, tai sitten kaula on vain kulunut pois, kun siitä on irronnut enemmän ainetta kuin keskimääräisesti muualta. Jos se koostuu enemmän jäästä kuin muu osa komeetan pinnasta, on tämä jälkimmäinen vaihtoehto todennäköisempi.

Alue, jota kuva esittää, on saanut nimen Hapi. Se sijaitsee kahta osaa yhdistävän kapean kaulan kohdalla ja se on ollut viime aikoina hyvin aktiivinen: sieltä on suihkunnut ulos avaruuteen kaasua ja aktiivisuus näyttää olevan edelleen kasvussa (kuten odottaa sopii, koska komeetta on lähimmillään Aurinkoa vasta elokuussa). 

Epäluonnollinen kuva

Kuva ei ole luonnollinen, sillä ihmissilmin katsottuna Chury näyttää mustanharmaalta, eikä siinä ole suuriakaan värieroja. Jotta pinnan valonheijastuskyvyn pienenpienet erot saataisiin näkyviin, Max Planck -instituutin tutkijat ottivat kameralaitteistolla useita kuvia eri suotimien läpi, jolloin tuloksena oli otsikkokuvana oleva “värikuva”.

Kuvassa on yhdistettynä 989, 700 ja 480 nanometrin aallonpituusalueiden suodattimien kuvat, jotka on on yhdistetty kuvaan ikään kuin punaiseksi, vihreäksi ja siniseksi. Kontrastia on suurennettu ja kuvaa on käsitelty, jotta pinnan ominaisuudet tulisivat paremmin esiin. Kuva ei siis ole luonnollinen.

Koska eri suodattimien läpi kuvia otettaessa komeettaydin on pyörähtänyt ja luotain on mennyt eteenpäin radallaan, on kuvia myöhemmin yhdistettäessä kuvaan tullut pieniä epäluonnollisia kuvioita. Nämä näkyvät tosin vain yksityiskohtaisesti pintaa katsottaessa, ja kiinnostavinta onkin katsoa pintaa laajempien ilmiöiden löytämiseksi.

Ja eroavaisuuksia on! Hapi-alueen pinnan heijastuskyvyssä on vaihtelua, ja koska alue näyttää heijastavan enemmän sinertävää valoa kuin viereiset seudut, on tämä tulkittavissa siten, että alueella on todennäköisesti vesijäätä joko pinnalla tai aivan sen alapuolella.

OSIRIS-kameran kuvien lisäksi aluetta on tutkittu myös Rosettan mukana olevalla VIRTIS-kameralla, joka pystyy näkemään infrapunavalon alueella. Näitä tietoja ei kuitenkaan ole vielä julkistettu.

Toinen merkki jäästä pinnalla tai sen alla on pinnan tasaisuus. Sivummalle Hapista mentäessä pinta muuttuu rosoisemmaksi ja samalla sen valonheijastuskyky muuttuu selvästi.

Koska kuva on jo puoli vuotta vanha, se on otettu tarkalleen 21. elokuuta 2014, olisi jännää nähdä miltä alue näyttää nyt, kun aktiivisuus on suurempaa. Näitä kuvia tosin saadaan odottaa jälleen kuuden kuukauden ajan…

Kuva: 6. maaliskuuta otettu navigointikameran kuva näyttää selvästi, että komeetta on jo varsin aktiivinen.

Saadaanko Philaeen yhteys?

Kun Rosetta-luotaimen pieni laskeutuja Philaen pomppulaskeutui komeetta Chuyumov-Grasimenkon pinnalle viime marraskuussa, se joutui nalkkiin, eikä pystynyt olemaan enää yhteydessä Maahan akkujensa hiivuttua.

Sen jälkeen laskeutujaa on koetettu löytää pinnalta – mutta turhaan. Silti sen likimääräinen sijainti on kuitenkin selvillä noin 40 metrin tarkkuudella ja sen asennostakin on saatu vinkkiä. Periaatteessa näihin aikoihin Aurinko paistaa jo sen verran laskeutumisalueelle, että Philae saa mahdollisesti tarpeeksi virtaa aurinkopaneeleistaan, jotta se voi kerätä akkuunsa sen verran sähköä, että se voisi olla yhteydessä Maahan.

Niinpä yhteyttä yritetään nyt torstaina aamulla ensimmäistä kertaa sitten marraskuun. Olisi kuitenkin erittäin suuri onnenkantamoinen, jos laskeutuja piippaisi vastauksensa iloisesti heti ensimmäisen yrityksen jälkeen; joka tapauksessa ensimmäinen teoreettinen mahdollisuus saada elonmerkki Philaelta on klo 6:00 Suomen aikaa torstaina 12.3. aamulla. 

Yhteyden muodostaminen alkaa kuitenkin jo klo 03.18 Suomen aikaa, jolloin Rosetta alkaa huhuilla laskeutujaa ja kuunnella radiolaitteillaan siltä mahdollisesti tulevaa vastausta. Yhteysyrityksiä jatketaan 20.3. klo 06.00 Suomen aikaa saakka. Kahdeksan vuorokauden aikana on yhteensä 11 aikaväliä, jolloin sekä Aurinko paistaa Philaen aurinkopaneelille että Philae on Rosettan antennin vastaanottosuunnassa.

“Philae saa nyt kaksinkertaisesti auringonvaloa verrattuna siihen, mitä se sai viime vuoden marraskuussa”, sanoo laskeutujan projektipäällikkö Stephan Ulamec Saksan ilmailu- ja avaruuskeskus DLR:sta.

“Laskeutuja on mahdollisesti vielä liian kylmässä herätäkseen, mutta yhteyttä kannattaa jo yrittää. Tästä alkaen mahdollisuus saada yhteys aikaiseksi paranee joka yrityksellä.”

Jotta Philae heräisi, sen sisäosien lämpötilan täytyy olla vähintään –45°C ja sen pitää saada aurinkopaneeleistaan 5,5 wattia energiaa. Muussa tapauksessa se jatkaa olemista horroksessa, mihin se vaipui marraskuussa. Horrostilassa se on ohjelmoitu käyttämään kaiken keräämänsä energian lämpimänä (ja siten toimintakunnossa) pysymiseen.

Komeetta 67P/Churyumov-Gerasimenko, sitä kiertävä Rosetta ja komeetan ytimen pinnalla Abydos-alueella kellellään lepäävä Philae ovat nyt noin 320 miljoonan kilometrin päässä Auringosta. Etäisyys pienenee nyt koko ajan ja lähimmillään komeetta on Aurinkoa ensi elokuussa.

Kun Philae herää…

Heti sen jälkeen, kun Philae huomaa saavansa tarpeeksi virtaa ja olevansa tarpeeksi lämmin, se herää syvästä horroksesta ja alkaa käyttää akkuun kerääntynyttä sähköä lisälämmittämiseen. Se kytkee radiovastaanottimensa päälle 30 minuutin välein ja kuuntelee signaalia Rosettasta. Vastauksen lähettäminen vaatii kuitenkin vielä lisää energiaa, joten on mahdollista, että Philae on jonkin aikaa jo toiminnassa, mutta ei kykene vielä vastaamaan Rosettan huutoon.

“Jos Philaeen saadaan yhteys, 24. maaliskuuta Ranskassa Pariisissa pidettävässä suunnittelukokouksessa päätetään, mitä havaintoja tehdään ja missä järjestyksessä”, kertoo Ilmatieteen laitoksen tutkimuspäällikkö Walter Schmidt.

“Ennen sitä pitää kuitenkin selvittää, onko Philae toimintakunnossa ja mitä tutkimuksia on mahdollista tehdä.” 

Jos yhteys saadaan, havaintojen tekoa voidaan jatkaa syksyyn saakka, koska paikka suojaa Philaelta ylikuumenemiselta Auringon lähestymisestä huolimatta.

Ilmatieteen laitoksen Philae-laskeutujaan toimittamat SESAME/PP-mittalaite ja massamuisti toimivat hyvin laskeutumisvaiheessa ja myös rankan laskeutumisen jälkeen. 

“Toiveet ovat korkealla, että laitteistot ovat valmiina jatkamaan mittauksia, jos yhteys Philaeen saadaan luotua.”

“Kuvien ja muiden analyysien perusteella tiedetään, että Philae on tipahtanut komeetan reunan yli ja alas jonkinlaiselle “parvekkeelle”, joka sijaitsee komeetan sivuseinässä”, Walter Schmidt kertoo. 

Philaen kolmella puolella kuvissa voidaan nähdä kallioseinäke, mutta yksi sen kameroista osoittaa arvioiden mukaan suoraan ulkoavaruuteen. Gravitaatio on kuitenkin sivullepäin. Uusia kuvia pyritään ottamaan herätyksen jälkeen, jotta sijaintipaikasta saadaan tarkempaa tietoa.

Ystävänpäivätanssi komeetan luona (päivitetty)

Komeettaluotain Rosetta teki lentonsa uskaliaimman tempun viime lauantaina, kun se lensi vain noin kuuden kilometrin etäisyydeltä komeetan ytimen pinnasta. Ohilento tapahtui kaksiosaisen ytimen suuremman osan päältä ja sujui suunnitellulla tavalla.

Tarkoituksena oli paitsi tutkia komeettaydintä erittäin läheltä, niin myös käydä vielä kerran sen lähituntumassa ennen kuin luotain jää tarkkailemaan komeetta Churyumov-Gerasimenkoa hieman kauempaa. Komeettaydin on muuttunut viime aikoina olennaisesti aktiivisemmaksi sen (ja Rosettan) lähestyessä Aurinkoa. 

Lähiohituksen jälkeen Rosetta jatkoi kauemmaksi komeetasta ja saavuttaa huomenna tiistaina 255 kilometrin etäisyyden. Tämä siksi, että aikomuksena on nyt saada laajempi kuva siitä mitä komeetan ympärillä on tapahtumassa. 

Sen jälkeen rataa lasketaan jälleen lähemmäksi, ja luotain pysyttelee noin sadan kilometrin päässä ytimestä. Sieltä se tekee toisinaan koukkauksia lähemmäksi ja kauemmaksi, riippuen komeetan aktiivisuudesta ja tutkijoiden tarpeista.

Ongelmana kauempana ytimestä lennettäessä on se, että siellä luotain ei ole enää itse asiassa komeetan kiertoradalla, koska heikkopainovoimainen komeettaydin ei kykene pitämään luotainta enää kahleissaan; siellä lennonjohto “lentää” Rosettaa kuin se olisi planeettainvälisessä avaruudessa komeetan lähellä.

ESA julkisti Rosettan navigointikameran kuvia nyt maanataina ja jopa niissä näkyy huimia yksityiskohtia komeetan pinnasta. Parempia OSIRIS-kameralaitteiston ottamia kuvia saadaan jälleen odottaa kuukausien ajan. Luotaimen lentorata oli suunniteltu sellaiseksi, että Aurinko paistoi komeetan pintaan hetken aikaa täsmälleen päältä, jolloin kuvista saatiin hyvin tarkkoja ja kiinnostavia.

Julkistetut 16 navigointikameran kuvaa on vapaasti ladattavissa ESAn nettisivuilta.

Rutiinia

Ellei lähiohitusta oteta huomioon, on Rosetta-lennojohto siirtynyt viime vuodenhektisten tapahtumien jälkeen toimimaan arkisen tasaisesti. 

Lentosuunnitelmaa tehdään 16 viikon ajalle etukäteen siten, että tutkijat ehdottavat erilaisia tehtäviä ja määrittelevät mitä mittalaitteita ja kuinka he haluaisivat käyttää, minkä jälkeen lentodynamiikkatiimi ja luotaimen kunnosta vastaavat insinöörit tutkivat mikä on mahdollista.

Lisäksi käytössä on kaksi lyhyen aikajakson suunnitelmaa: maanantaisin tehtävä suunnitelma keskiviikosta lauantaihin tehtäviä tutkimuksia varten ja torstaisin päätettävä lista lauantaista keskiviikkoon tehtävistä toimista.

Yleensä suunnittelupäivänä aamulla kerätään kaikki mahdollinen havaintotieto komeetasta ja luotaimen mahdollisesta radasta, joista koostetaan tehtävälista tehtäviksi toimiksi. Näiden perusteella tehdään komentosarja, joka testataan ensin simulaattorilla ja tarpeen mukaan Rosetta-luotaimen kaksoiskappaleella ennen kuin ne lähetetään luotaimelle.

Lennonjohto tarkkailee erityisen huolellisesti luotaimen sijaintia komeetan suhteen niin radiolinkin doppler-siirtymän avulla, luotaimen omilla navigointilaitteilla kuin luotaimen navigointikameran kuvilla. Kuvia saadaan viisi kertaa vuorokaudessa.

Lisäjännitystä toimintaan juuri nyt tuo niin sanottu konjunktio, eli Aurinko osuu jotakuinkin suoraan Maan ja Rosettan väliin. Se haittaa tiedonsiirtoa lähes koko helmikuun ajan.

Yhteys ei ole missään vaiheessa kokonaan poikki, mutta tällä haavaa tietoa saadaan luotaimelta Maahan ESAn 35-metristen antennien kautta vain 14 kilobittiä sekunnissa ja suurempien NASAn 70-metristen antennien kautta 45 kbit/s.

Tämä luonnollisesti rajoittaa luotaimelta saatavien tietojen määrää, mutta tilanne paranee maaliskuussa jo olennaisesti. Erityiden hyväksi tilanne tulee kesäkuussa, jolloin Maa on radallaan paikassa, mistä on hyvä ja suora yhteys komeetalle.

Silloin toivottavasti myös laskeutuja Philae on taas mukana toiminnassa!

9. helmikuuta 2015 otettu kuva näyttää jo selvästi, miten Chury on aktivoitumassa.

Eloi ja Arvid, kaksi komeettapölyhiukkasta Jari Mäkinen Ma, 26/01/2015 - 21:22

Viime torstai-illan komeettauutisten jälkimainingeissa julkaistiin tänään Nature-tiedelehdessä uusia, kiinnostavia Rosetta-luotaimen lähettämiä tietoja – tai jo niiden perusteella tehtyjä päätelmiä.

Tähtinä nyt ovat otsikkokuvassa olevat Eloi (vasemmalla) ja Arvid, kaksi erityisen jännittävää komeetasta irronnutta hiukkasta – niin jännittävää, että niille on annettu nimet.

Pölyhiukkasia on tutkittu COSIMA-mittalaitteella (COmetary Secondary Ion Mass Analyser), joka on yksi kolmesta Rosettan komeetan pölyä tutkivasta mittalaitteesta. Komeetta 67P/Churyumov-Gerasimenkosta irtoavaa pölyä on tutkittu siitä lähtien, kun Rosetta saapui sen läheisyyteen viime elokuussa.

Ensimmäisissä julkaistuissa tutkimuksissa on käyty läpi analyysejä, jotka kattavat viime vuoden elokuun ja lokakuun välisen ajan, jolloin Rosetta oli noin 30 kilometrin päässä komeetan pinnasta.

Ilmatieteen laitos, missä on tehty COSIMA:n ohjelmistot, osallistuu aktiivisesti tutkimuksiin, ja siten suomalaistutkijat ovat mukana myös nyt julkistetuissa artikkeleissa.

"COSIMA on pienoislaboratorio, jolla voidaan mitata yksittäisten pölyhiukkasten alkuainepitoisuuksia sekä mikroskoopilla kuvata niitä. Alkuaineiden perusteella voidaan määrittää, mitä mineraaleja komeetalta löytyy", kertoo Ilmatieteen laitoksen tutkija Johan Silen IL:n tiedotteessa.

Analyysien mukaan pölyhiukkaset olivat 'pörröisiä' eivätkä ne sisällä jäätä. Sen sijaan niissä on mineraalien ja orgaanisten aineiden lisäksi, paljon natriumia.

Tämä on ollut tutkijoille yllätys, koska natriumia on aiemmin havaittu ainoastaan komeettojen ionipyrstöissä. Isoimmat hiukkaset ovat hyvin hauraita ja särkyvät keräyksen yhteydessä helposti. Tästä havainnosta voidaan arvioida hiukkasten lujuusominaisuuksia.

Näiden "pörröisten" hiukkasten uskotaan olevan peräisin komeetan pinnalta, jonne ne kasaantuivat edellisellä kerralla, kun se ohitti Auringon vuonna 2009. Tällöin komeetan kaasupurkaukset eivät enää riittäneet puhaltamaan hiukkasia pois sen pinnalta. Tämä nyt komeetan pinnalla ollut viime ohituksen aine pyyhkiytyy nyt ensimmäisenä ylös komeetan pinnalta ensin sitä ympäröivään kaasu- ja pölykehään, komaan, ja sitten muodostamaan komeetalle sen pyrstön.

"Komeetan 67P pinnalla on paksu pölykerros, jota se vähitellen varistaa pois Aurinkoa lähestyttäessä", selittää Silen.

"Tulevat kuukaudet ovat siis hyvin mielenkiintoisia, kun näemme, mitä komeetan paksulle pölylle tapahtuu. Oletus on, että Auringosta tuleva energia kuitenkin jossakin vaiheessa puhaltaa pölyhiukkaset komeetan pinnalta, jolloin syntyy komeetalle tyypillinen pyrstö. Tällöin myös komeetan pinta paljastuu. Vähitellen aktiivisuuden laantuessa komeetan pölyä alkaa jälleen uudelleen muodostua. Näin COSIMAN tekemät havainnot auttavat ymmärtämään komeetan pölyn elinkaarta. Tulevat kuukaudet ovat siis jännittäviä, kun voimme reaaliajassa nähdä komeetan pyrstön muodostumisen".

Kuvan kaksi kiinnostavinta hiukkasta saatiin nalkkiin COSIMAn sisälle 25. – 31. lokakuuta 2014, kun luotaimen etäisyys komeetasta oli 10 – 20 km. Kumpikin hitunen on kuvattu kahdessa erilaisessa valaistuksessa: valo tulee ylimmäisissä kuvissa oikeasta, alimmissa vasemmalta. Kirkkautta on säädetty siten, että kuvista voisi päätellä helpommin hiukkasten koot. Eloi vasemmalla on noin 0,1 mm ja Arvid noin 0,06 mm. 

Suomesta COSIMAn tutkimuksissa on mukana myös Tuorlan Observatorio ja Turun Yliopisto. Nyt julkaistun artikkelin kirjoittajiin kuuluva Turun Yliopiston tutkija Harry Lehto kirjoittaa komeettapölystä myös Ursan sivuilla olevassa blogissaan.

Kuva: COSIMA ennen asentamistaan Rosetta-luotaimeen. Se havaitsee komeetasta irtoavia pölyhiukkasia, joiden nopeus on jopa noin 360 km/h.

Rosettan komeetta uusin silmin

Jo puolen vuoden ajan olemme odottaneet tarkkoja kuvia ja yksityiskohtaisia tietoja komeetta 67P/Churyumov-Gerasimenkosta, jota Rosetta-luotain on kiertänyt elokuun alusta alkaen. Luotain toki aloitti komeetan tutkimisen jo aikaisemmin lähestyessään tätä omituista kaksijakoista komeettaydintä.

Odotuksen aika oli ohitse eilen torstaina illalla, kun ensimmäiset tutkimustulosten perusteella tehdyt artikkelit julkaistiin tänään Science-lehden erikoisnumerossa. Niissä on jo huimaavia kuvia ja erittäin kiinnostavia tietoja, mutta kyseessä on vasta maistiainen: nämä artikkelit perustuvat Rosettan 11 eri instrumentin komeetan luokse saapumisen aikana ja vain vähän aikaa sen jälkeen keräämistä tiedoista. Tarkimmat kuvat ja Philae-laskeutujan tulokset ovat tulossa vasta myöhemmin.

Lisää tuloksia julkaistaan Nature-lehdessä ensi viikolla.

Samalla on julkaistu myös pitkään vain tutkijoiden käytössä olleita OSIRIS-kameran kuvia. Näistä on erimomainen galleria ESAn sivuilla.

Vaikka Rosetta ei ole ollut nyt uutisotsikoissa niin paljon kuin marraskuussa, kun sen laskeutuja Philae pomppi komeettaytimen pinnalle, on lento itse asiassa nyt erittäin jännittävässä vaiheessa.

“Rosetta elää käytännössä komeetan kanssa ja lähestyy sen mukana  Aurinkoa”, selittää lennon tieteellinen johtaja Matt Taylor. 

“Opimme koko ajan lisää komeetan käyttäytymisestä niin pitkän ajan kuluessa, kuin myös päivittäin – miten sen aktiivisuus kasvaa, kuinka sen pinta muuttuu ja millä tavalla se vuorovaikuttaa aurinkotuulen kanssa.”

“Jo nyt näiden muutaman kuukauden aikana olemme tulleet tutuiksi komeetan kanssa, mutta mitä enemmän ja enemmän saamme tietoja ja  tutkimme komeettaa läheltä, sitä paremmin voimme selvittää sitä mistä se on peräisin ja kuinka komeetta oikeastaan toimii.”

“Chury” ja sen pinnanmuodot

Jo aiemmin julkaistut navigointikameran ottamat kuvat ovat näyttäneet komeettaytimen pinnan olevan täynnä jännittäviä yksityiskohtia, ja luotaimen tehokkaan OSIRIS-kameralaitteiston ottamat kuvat vain vahvistavat tätä ennakkokäsitystä. Pinta on erittäin monimuotoinen ja siellä oli jo puoli vuotta sitten käynnissä monia aktiivisia ilmiöitä.

Pienten yksityiskohtien lisäksi komeetan perusolemus tunnetaan nyt paremmin. Kaksiosaisen ytimen pienempi osa on kooltaan 2,6 × 2,3 × 1,8 km ja suurempi 4,1 × 3,3 × 1,8 km. Komeetan kokonaistilavuus on 21,4 kuutiokilometriä ja sen massa on 10 miljardia tonnia. Tästä voi laskea tiheydeksi 470 kg/m3.

Koska suurin osa komeetasta lienee hiekkaa, kiveä ja jäätä, joiden keskimääräinen tiheys lienee välillä 1500–2000 kg/m3, on varsin selvää, että ydin on rakenteeltaan varsin huokoisa. Sen sisällä on suuria höttöisiä alueita ja on mahdollista, että se ei koostu vain kahdesta selvästi erillisestä osasta, vaan nekin koostuvat itse asiassa vain klimpissä olevista palasista, joiden   ulkopinta on tasoittunut ajan kuluessa.

Noin 70% pinnasta on kartoitettu tähän mennessä tarkasti ja vain ns. eteläisellä pallonpuolella olevat, toistaiseksi huonosti päivänvalossa näkyneet alueet ovat tuntemattomia.

Kuvista on voitu erottaa tähän mennessä 19 toisistaan poikkeavaa aluetta, joiden keskinäiset visuaaliset eroavaisuudet ovat selviä. Näille on annettu lennon perinteiden mukaisesti egyptiläiset nimet.

Nämä alueet koostuvat viidestä eri tyyppisestä pintatyypistä: pölypintaisesta, kirkkaasta kuoppia ja pyöreitä muotoja sisältävästä, laajoja painautumia sisältävästä, tasaisesta ja kivenkaltaisesta ikään kuin alta pilkottavasta “peruskalliosta”.

Alueet pohjoisella pallonpuolella ovat pääosin pölyn peitossa, koska muualtakin ytimeltä ylös nouseva kevyt aine näyttää putoavan pääasiassa sinne. Kun Aurinko lämmittää komeettaa, jää muuttuu vesihöyryksi, joka pakenee nopeasti ydintä ympäröivään ohueen kaasukehään, niin sanottuun komaan, sekä sieltä ulos avaruuteen. Tähän virtaan tarttuu mukaan myös kiviperäistä pölyä, mutta suurin osa siitä ei liiku niin nopeasti, että se karkaisi avaruuteen, vaan putoaa takaisin pinnalle. Ja nähtävästi tätä pudonnutta pölyä on enemmän juuri pohjoisessa.

Kuvissa näkyy myös halkeamia ja kuoppia, joista virtaa kaasua ja pölyä avaruuteen. Kaikkein aktiivisin alue pinnalla on kuitenkin  kahden osan välissä oleva “kaula”, jonka tasaiselta pinnalta virtaa koko ajan ainetta ylöspäin. On vielä epäselvää onko kaula muodostunut siksi, että siitä on virrannut aikanaan paljon ainetta pois, vai onko kaula vain paljastanut alla olevia kerroksia, mistä lämpö irrottaa helpommin ainetta.

Pinnalta nouseva kaasuvirta on selvästi myös synnytänyt erikoisen näköisiä pinnanmuotoja. Jo aiemminkin ihmetystä herättäneet dyynit ja muut tuulen aiheuttamilta näyttävät piirteet johtunevat juuri tästä pölyä mukanaan kuljettavasta kaasuvirrasta. 

Pölyä on pinnalla paikoitellen jopa metrien paksuudelta, ja nähtävästi se toimii myös eristeenä. Paikoissa, missä pölyä on selvästi enemmän, on alla oleva jää selvästi viileämpää, koska pöly estää Aurinkon lämmön tunkeutumista syvemmälle.

Siinä missä navigointikameran kuvista ei voinut nähdä paljasta jääpintaa lainkaan, on sitä selvästi havaittavissa VIRTIS-instrumentin ottamissa kuvissa. Nyt tutkimuksissa olevien kuvien resoluution on parhaimmillaan 15 metriä. VIRTIS on näkyvän valon ja infrapunaisen alueella toimiva kuvantava spektrometri, joka pystyy havaitsemään juuri jäätä erittäin hyvin. Sen havaintojen mukaan suurin osa pinnasta on pölyn peittämää, mutta siellä täällä on myös runsaammin jäätä sisältäviä alueita. Nämä ovat tyypillisesti tuoreita halkeamia tai rikkoontumia pinnalla, jolloin alla oleva materiaali on paljastunut. 

VIRTIS on havainnut myös runsaasti hiilipitoisia molekyylejä.

Pinnalla voi nähdä myös runsaasti ytimen lämpenemiseen ja viilenemiseen liittyviä rakenteita. Kun komeetta kiertää Aurinkoa radallaan, jonka yksi kierros kestää 6,5 vuotta, ja kun se pyörii akselinsa ympäri kerran 12,4 tunnissa, se kokee lyhyen- ja pitkän ajanjakson lämpösyklejä, jotka saavat aikaan halkeamia. Suurin tällainen todennäköisimmin lämpösykleistä johtuva halkeama on 500 metriä pitkä, ja se sijaitsee pitkittäin kahta ytimen osaa kiinni pitävässä kaulassa. 

Paikoitellen komeetan pinta on myös kananlihalla; joissain jyrkkäreunaisissa halkeamissa on seinämissä noin kolme metriä halkaisijaltaan olevia muodostelmia, jotka saavat pinnan näyttämään hieman samalta kuin ns. kananlihalla oleva iho. Näiden syntyä ei ole vielä osattu selittää.

Samoin komeetan kaksiosainen olemus on toistaiseksi vielä suuri kysymysmerkki. Osat ovat hyvin samankaltaisia ja teoria siitä, että yksi suurempi komeettaydin olisi ajan kuluessa vain muotoutunut tällaiseksi, on kenties hieman todennäköisempi tähän saakka saatujen tietojen perusteella. Mutta voi yhtä hyvin olla niin, että Chury olisi syntynyt kahden komeetan ajautuessa hiljakseen yhteen ja muodostettua siten yhden, suuremman kappaleen.

Kuva: Churyn ytimen "mantereet" ja niiden nimet

Kaasua ja pyrstö

Chury tulee olemaan lähimpänä Aurinkoa 13. elokuuta 2015, jolloin sen ja Auringon välinen etäisyys on 186 miljoonaa kilometriä. Se on siis kauempana kuin Maa, mutta lähempänä kuin Mars.

Sitä mukaa kun komeetta tulee lähemmäs Aurinkoa, sen lämpötila nousee ja pinnalta alkaa virrata yhä enemmän kaasua ja pölyä avaruuteen. Siksi Rosetta-lennon päähuomio tähän saakka on ollut  komeettaytimen pinnan kartoittamisessa mahdollisimman tarkasti, ennen kuin kasvava aktiivisuus tekee havaintojen tekoa hankalammaksi. Samalla pääkiinnostus on nyt suuntautumassa komeetasta irtoavan kaasun, pölyn ja hitusten tutkimiseen.

Irtoavan aineen ja kaasun määrä on ollut kasvussa jo koko sen ajan kun Rosetta on ollut komeetan luona. Esimerkiksi irtoavan vesihöyryn määrä oli viime heinäkuussa 0,3 litraa sekunnissa, mutta jo elokuun lopussa se oli 1,2 litraa sekunnissa. Suurin osa tästä näytti tulevan kaulan alueelta. Mukana kaasuvirrassa on myös mm. hiidimonoksidia ja hiilidioksidia. Hetkittäin näitä on ollut jopa enemmän kuin vettä.

Kun mitataan ulosvirtauksen massaa, niin eniten ainetta pakenee komeettaytimestä pienten pölyhiukkasten muodossa. Pölyä on noin neljä kertaa enemmän kuin kaasua, kun siis lasketaan massan mukaan. Sitä mukaa kun Chury tulee lähemmäksi Aurinkoa, kasvaa todennäköisesti myös jäähitusten osuus – nyt niitä on ollut erittäin vähän.

Rosetta on tutkinut näitä hiukkasia, ja havainnut, että komeetan lähiympäristössä on itse asiassa pölyä kahdessa paikassa: virtaamassa ulospäin ytimestä sekä kiertämässä sitä ikään kuin ohuena pilvenä komeetan ympärillä noin 130 kilometrin etäisyydellä. On mahdollista, että tämä “pilvi” on jäänne komeetan edelliseltä kierrokselta Auringon lähellä, ikään kuin sen lähelle jääneet pyrstön rippeet, ja se mahdollisesti katoaa kun aktiivisuus taas lisääntyy.

Rosetta tosin ei pysty havaitsemaan nyt tätä 130 km:n päässä olevaa pilveä, koska se itse kiertää ydintä noin 30 kilometrin etäisyydellä.

Sitä mukaa kun ydintä ympäröivä kaasun ja pölyn alue, koma, sekä siitä irtoava pyrstö kasvavat, muodostuu komeetalle myös ionosfääri ja magnetosfääri. Rosetta tutkii myös näitä, mutta näistä ei vielä ole juurikaan tuloksia.

Kuva: Pinnalta eri alueilta nousevan kaasun keskimääräinen koostumus.

Suomalaiset mukana tutkimuksissa

Nyt julkaistuissa artikkeleissa on mukana havaintoja myös tutkimuslaitteista, joiden työhön Ilmatieteen laitos osallistuu. Näitä ovat esimerkiksi pölyhiukkasten koostumusta analysoiva COSIMA ja varattuja hiukkasia tutkiva laite ICA.

"Tällä hetkellä uutta tietoa komeetasta on jo tullut paljon ja osa saaduista tiedoista on yllättänyt tutkijat", kertoo IL:n Rosetta-vastaava, tutkimuspäällikkö Walter Schmidt.

“Jo saatujen tietojen pohjalta on esimerkiksi selvinnyt, että komeetan pölykerros on paksumpi kuin oli arvioitu. Pölyä on saatu analysoitavaksi useammasta paikasta Philaen tekemien laskeutumispomppujen ansiosta.”

Laskeutuja Philaen keräämiä tietoja ei vielä ole nyt julkaistuissa artikkeleissa, mutta ennen kaikkea laskeutujan kanssa työskennellut Schmidt ei malta olla kertaamatta sen saavutuksia. 

Esimerkiksi se, että Philaen ankkurointi pintaa ei onnistunut toivotusta ja se, että Philaen mukana oleva MUPUS-vasara ole päässyt läpi muusta kuin pölykerroksesta, viestii selvästi siitä, että komeetan pinta on paljon kovempi kuin aikaisemmin oli kuviteltu.

"Näin kova materiaali voi sisältää muutakin kuin aikaisemmin oletettua vesijäätä. Komeetan pinnalla on tehty havaintoja orgaanisista aineista, joka voi olla yksi selitys pinnan kovuudelle”.

Lisäksi veden isotooppianalyyseissä on selvinnyt, että veden koostumus on erilainen kuin maassa, joten Maahan vesi ei luultavasti ole tullut komeettojen vaan asteroidien mukana.

Myös professorit Esa Kallio Aalto-yliopistosta ja Hannu Koskinen Helsingin yliopistosta ovat analysoineet Rosetta-luotaimen mittauksia komeetta 67P/Churyumov-Gerasimenkosta elokuusta 2014 alkaen. Ensimmäiset komeetasta lähtevät vesisuihkut havaittiin jo syyskuussa 2014, eli hyvin varhaisessa vaiheessa komeetan syntyvaihetta.

"Olimme hämmästyneitä siitä, että komeetasta suihkunnut vesihöyry pystyi häiritsemään aurinkotuulta merkittävästi, vaikka komeetta on vielä kaukana Auringon lämmöstä", kertoo Esa Kallio. "Komeetan etäisyys Auringosta oli mittausten alkuaikana yli kolme kertaa Maan ja Auringon välinen etäisyys".

Suomalaisryhmä pystyi myös arvioimaan mittausten perusteella, että komeetalta karkasi vettä noin kilogramma sekunnissa. Kallion ja Koskisen tulokset ovat mukana tänään julkaistussa Science-lehdessä.

Kallion ryhmän tutkimus keskittyy luotaimen ICA (Ion Composition Analyzer)-hiukkasinstrumentin antaman aineiston tulkintaan. ICA-hiukkasmittalaite on yksi RPC-instrumentin (Rosetta Plasma Consortium) viidestä anturista ja se mittaa, milloin komeetassa syntyy vesihöyrysuihkuja ja niistä syntyneitä kevyitä sähköisesti varattuja hiukkasia. Ilmatieteen laitos on osallistunut ICA-laitteiston rakentamiseen jo 1990-luvun puolivälistä alkaen Walter Schmidtin johdolla.

ICA-hiukkasmittalaite oli todistamassa Auringon aiheuttamaa jäisen komeetan heräämistä ja höyrystymistä jo ennen Philaen irtautumista ja välitti uutta tietoa komeetan pinnan eroosiosta.

"Pyrstöstä lähtevät hiukkaset kertovat komeetan avaruussäästä eli komeetan avaruusympäristöstä, jossa Auringon valon aikaansaama lämpö ja aurinkotuuli yhdessä saavat aikaan komeetan pinnan eroosion", selventää Kallio, joka analysoi tutkimusryhmineen luotaimen mittauksia kolmiulotteisilla tietokonesimulaatioilla.

"Käyttämämme mallinnus syventää saamamme mittausaineiston ymmärtämistä merkittävästi. Kokonaiskuvaa komeetan tapahtumista ei saada pelkillä yksittäisissä paikoissa tehdyillä mittauksilla eikä myöskään yhdestä mittalaitteesta, vaan analysoimalla ja yhdistelemällä mittaustuloksia ja tekemällä niistä mallinnuksia."

Seuraavaksi Kallio tutkimusryhmineen toivoo saavansa tutkittavaksi raskaita pölyhiukkasia, jotka olisivat peräisin komeetan ytimestä. Tutkimustyön seuraava vaihe on verrata tuloksia muiden mittalaitteiden kanssa.

"Tutkimme erityisesti eroosion voimakkuuden vaihteluja komeetan elinkaaren aikana. Eroosion uskotaan vahvistuvan komeetan lähestyessä Aurinkoa ja aktiivisimmillaan sen oletetaan olevan elokuussa 2015. Siksi odotammekin vesisuihkujen lisääntyvän kesää lähestyttäessä."

Alla on Kallion tutkimusryhmän tekemä animaatio Churyn lähiavaruuden varatuista hiukkasista ja niiden vuorovaikutuksesta aurinkotuulen kanssa. Kuvassa näytetään komeetan ytimestä purkautuvan, Auringon UV-säteilyn ionisoimien vesi-ionien pilvi, jota aurinkotuulen virtaus puhaltaa pois komeetalta. Aurinkotuuli esitetään värillisillä nuolilla, joiden väri kuvaa aurinkotuulen tiheyttä: valkoinen väri kuvaa matalaa, punainen suurta tiheyttä. Osuessaan komeetan ionipilveen aurinkotuulen virtaus kääntyy alaspäin sekä hidastuu lähellä komeetan ydintä.

Herääkö Philae?

Tällä hetkellä Rosetta-lennon johtajat ja tutkijat ovat toiveikkaita sen suhteen, että laskeutuja voisi herätä keväällä uudelleen toimintaan. Se hiipui marraskuussa parin päivän toiminnan jälkeen, kun sen akuissa olleen varauksen taso putosi liian alas, mutta se todennäköisesti kykenee parhaillaan keräämään aurinkopaneeleillaan sen verran energiaa, että se paitsi pysyy toimintakunnossa, niin myös voi herätä uudelleen henkiin, kun auringonpaisteen määrä lisääntyy vähitelleen.

Ensimmäisenä komeetan pinnalle tömähtänyt Ilmatieteen laitoksen valmistama PP-mittalaite, joka mittaa komeetan vesipitoisuutta, sai tehtyä mittauksia. Ilmatieteen laitoksen PP-mittarit ovat optimaalisessa tilassa, joten tarvittava mittaussarja voidaan viedä läpi heti herätyksen jälkeen, sillä PP-mittaukset eivät liikuta Philaeta ja tehtävät mittaukset eivät vie paljon energiaa. Mittausmenetelmää joudutaan kuitenkin muuttamaan, sillä mittaukset oli suunniteltu tehtäväksi eri tavalla alkuperäisessä sijaintipaikassa.

Lisää aiheesta Ilmatieteen laitoksen tiedotteessa ja ESAn artikkelissa.

Heräämisiä

Toisin kuin liki neljännesvuosisadan takaisessa Robert De Niron ja edesmenneen Robin Williamsin tähdittämässä elokuvassa, komeettalaskeutuja Philaen herättämiseen ei ole olemassa lääkkeitä tai mitään muitakaan poppakonsteja. Ainoa mahdollisuus on odottaa.

Euroopan avaruusjärjestön tutkijoilla on lyhyt ja ytimekäs lahjalista jouluksi: yksityiskohtaista kuvamateriaalia Rosetta-luotaimen Philae-laskeutujan nykyisestä olinpaikasta.

Vaikka marraskuisen laskeutumisen vaiheista on olemassa kuvia, kaksi pomppua tehneen aluksen lopullisesta lepopaikasta ei ole täsmällistä tietoa. Pinnalta saatujen kuvien perusteella Philae päätyi varjoisan kallionkielekkeen alle, missä Aurinko ei pääse paistamaan sähköä tuottaviin aurinkopaneeleihin kuin hetkittäin.

 

Tilanne ei silti ole likikään niin epätoivoinen kuin alkuun näytti. Komeetta Churyumov-Gerasimenko lähestyy Aurinkoa, joten Philae-laskeutujan aurinkokennoille lankeavan valon määrä kasvaa kaiken aikaa. Tuoreiden arvioiden mukaan se riittää pitämään laskeutujan hengissä ja hyvin todennäköisesti myös herättämään sen horroksesta ensi kevään kuluessa.

Philaen lähettämien kuvien perusteella on voitu päätellä, että se asettui kahden kalliojyrkänteen väliin. Tällä hetkellä sen sijaintipaikalla paistaa aurinko noin 4,5 tuntia ”päivässä” eli kolmasosan komeetan pyörähdysajasta.

Tutkijoiden mukaan se tuottaa riittävästi sähköä pitämään keskeiset laskeutujan laitteet toimintakunnossa, mutta varsinaisia mittauksia ei vielä tässä vaiheessa pystytä tekemään. Jatkon kannalta olisi oleellista tietää tarkalleen, mihin Philae laskeutui, ja miten valaistusolosuhteet laskeutumispaikalla kehittyvät tulevien kuukausien aikana.

Ratkaisevat kuvat on jo otettu, mutta kestää vielä tovin ennen kuin Rosetta saa siirrettyä keräämänsä datan Maahan asti. Parhaassa tapauksessa Philae saa heräämisen kannalta riittävästi valoa jo tammikuussa, mutta todennäköisemmin vasta myöhemmin keväällä.

Tutkijat odottavat Philaen heräämistä innokkaasti, sillä ennen laskeutujan sammumista saatujen tietojen mukaan sen lähiympäristössä on laajoja jääesiintymiä. Alkuun vaikutti siltä, että komeetan ytimen pinnalla ei ole paljasta jäätä, mutta nyt lopullista ”tuomiota” odotetaan uudelleen heräävältä Philae-laskeutujalta.  

Esimerkiksi pinnan alle poraamista on mahdollista yrittää uudelleen, mikäli alus virkoaa. Sama pätee useimpiin muihin Philaen mittausarsenaalin laitteisiin. Ainoastaan pintaa kolkuttelevaa "vasaraa", jonka oli määrä mitata pinnan lujuutta ja lämpötilaa, ei voida käyttää toistamiseen, sillä se ehti rikkoutua ennen Philaen vaipumista horrokseen.

Chury oikeissa väreissä

67P väreissä
67P väreissä

Julkaisimme joulukuun alussa värikuvan Rosetta-luotaimen komeetasta, 67P/Churyumov-Gerasimenkosta, mutta kuten jutussakin (myöhemmin päivitettynä) todettiin, oli kyseessä innokkaan harrastajan tekemä versio. Värikuvat tehdään koostamalla useista yksivärisistä kuvista, ja tuo aiemmin julkaistu kuva oli tehty mutkan kautta: navigointikameran mustavalkoisia kuvia oli laitettu kuvankäsittelyohjelmassa ikään kuin eri väristen suotimien kautta katsotuiksi, ja näitä koostamalla oli saatu aikaan värikuva.

Parempi kuva saadaan luonnollisesti siten, että kuvat on otettu paikan päällä kamerassa eri väristen (sininen, punainen ja vihreä) suotimien läpi – ja paremmalla kameralla kuin navigointikamera. Rosetta-luotaimen pääkamera on laite nimeltä OSIRIS, ja nyt sen tutkijatiimi on (oletettavasti pienen painostuksen jälkeen) julkistanut ensimmäisen, oikean, virallisen ja todenmukaisen värikuvan komeetasta. Kuten odottaa saattaa, näyttää se hieman tylsemmältä kuin harrastajan tekemä punertava kuva: se on harmaa, eikä sitä heti värikuvaksi huomaakaan. 

Mutta se on, ja siksi se on niin merkittävä. Vaikka värierot pinnalla ovat pieniä, niitä on, ja ne näyttävät komeetan pinnan kaikessa realistisuudessaan. Oikeastaan on yllättävää, miten hyvin värit näkyvät, sillä komeetan pinta on erittäin tummaa ainetta. Se on hiilenmustaa, mutta kuvia on tietoisesti hieman ylivalotettu, jotta pinnanmuodot saadaan paremmin esille.

Värikuvan tekemiseen vaaditut kuvat otettiin OSIRIS-kameralaitteiston kapeakuvakulmakameralla (Narrow Angle Camera, eli NAC) punaisen (keskimääräinen aallonpituus 744 nm), vihreän (536 nm) ja sinisen (481 nm) suotimen läpi jo elokuun alussa, 6.8., kun Rosetta oli vielä 120 kilometrin päässä komeetasta. 

Kun eri suotimien läpi otettuja kuvia on analysoitu, on huomattu, että pinta heijastaa punaista hieman enemmän kuin muita värejä, joten "ensimmäinen" värikuva ei ollut täysin väärässä, vaikka se olikin suhteettoman punainen. Samaa lievää punerrusta on havaittu monissa muissakin aurinkokunnan pienkappaleissa, sillä  niiden pinnalla on hienojakoista hiekkaa ja pölyä, jotka heijastavat enemmän punaista. 

Se, miten ihmissilmä puolestaan havaitsee kohteita, ei vastaa aivan todellista. Auringon valossa on runsaasti kellertävänvihreää, ja siksi ihmisen silmä on herkistynyt sille. Komeetan pinnan tapauksessa tällä ei kuitenkaan ole olennaista eroa, sillä pinta on niin tumma ja värierot hyvin pieniä.

Värikuvassa on kaksi yllätystä. Ensinnäkin siinä ei ole havaittu merkkejä pinnalla olevasta jäästä, minkä pitäisi näkyä sinertävänä värinä. Kuten Rosettan mittalaitteet kertovat, on komeetassa kuitenkin vettä ja siten myös jäätä. Toinen kiinnostavuus on juuri pinnan värivaihtelun pienuus, mikä viittaa osaltaan myös siihen, että näkyvässä pinnassa on rakenteellisestikin myös varsin vähän vaihtelua.

Lisää kuvia ja tietoja saataneen ensi viikolla, kun Rosettan keräämiä ensimmäisiä tieteellisiä tuloksia julkistetaan San Franciscossa Yhdysvaltain geofysiikan unionin vuosikokouksessa.

Kuva: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta-komeetta väreissä

Ensimmäinen värikuva Churystä
Ensimmäinen värikuva Churystä

Huom: ESA tai OSIRIS-tutkijaryhmä ei ole vielä julkistanut lainkaan värikuvia, ja tämä aluksi vahingossa julkisuuteen vilahtaneeksi oletettu kuva paljastui nopeasti harrastajan tekemäksi. Alkuperäistä juttua on päivitetty tämän uuden tiedon mukaisesti.

---

Tässä se on: ensimmäinen julkisuuteen päässyt värikuva komeetta 67P/Churyumov-Gerasimenkosta.

Tähän saakka kaikki julkistetut kuvat komeetasta ovat olleet mustavalkoisia ja suurin osa on ollut peräisin luotaimen navigointikamerasta, jonka resoluutio ei ole kovin suuri. Syynä värikuvien puuttumiseen on luotaimen instrumenttien suunnittelun aikaan tehdyt sopimukset, joiden mukaan kunkin instrumentin – OSIRIS-suurtarkkuusstereokamera on yksi niistä – tutkijat voivat käyttää tietoja ensin itse, ennen kuin niitä annetaan laajempaan käyttöön. Runsaasta kritiikistä huolimatta sopimuksiin ei ole saatu neuvoteltua lievennyksiä, paitsi navigointikameran tapauksessa.

Tämä kuva onkin itse asiassa tehty harrastajavoimin. Kuten täällä Sploid-julkaisussa olevassa artikkelissa kerrotaan, on pohjana kuvassa ollut mustavalkoinen GIF-animaatio,mistä Reddit-käyttäjä on irrottanut vierekkäisiä ruutuja ja käyttänyt niitä värikuvan tekemiseen. Kaikki Rosettan OSIRIS-kameran värikuvat tehdään samaan tapaan koostamalla mustavalkokameran eri väristen suotimien läpi ottamista kuvista. Vaikka värit on tässä kuvassa koitettu saada paikoilleen ja ihmissilmän näkemän kaltaisiksi, ei värejä ole kuitenkaan kalibroitu ja siksi siinä on hyvin todennäköisesti hieman liikaa punaista.

Lisää värikuvia tullaan näkemään nyt joulukuun puolivälissä olevassa Amerikan geofysiikan unionin vuosikokouksessa, missä tullaan esittelemään paljon Rosettan ensimmäisiä tieteellisiä tuloksia: esimerkiksi esityksessä "Color Variegation on 67P/Churyumov-Gerasimenko", joka pidetään 18. joulukuuta. Myös Tiedetuubi on paikalla ja käy varmasti kuuntelemassa kyseisen esitelmän.

Parempaa on vielä tulossa, sillä tämä kuva ei ole vielä kovin tarkka – mutta jo ensimaku Churystä väreissä tuntuu niin hyvältä!

Tulosta oma Churyumov-Gerasimenkosi

Kuvakaappaus Churyn printtausvideolta
Kuvakaappaus Churyn printtausvideolta

ESAn komeettaluotain Rosettan kohde 67P/Churyumov–Gerasimenko on todella jännittävän näköinen möhkäle. Emme toistaiseksi tiedä onko se muodostunut kahden kappaleen liityttyä toisiinsa kiinni vai onko sen keskellä vain sen verran höttöisempää ainetta, että komeetan ydin on yksinkertaisesti kulumassa halki siitä kohtaa. Toivottavasti tästä saadaan pian lisätietoa, kun esimerkiksi Philaen laskeutumisen aikana saadut tiedot saadaan analysoitua; erityisesti komeetan sisustaa kaikuluotaimen tapaan sondannut CONECRT on tässä mielessä erityisen kiinnostava.

Lisää tietoa asiasta saadaan todennäköisesti joulukuussa pidettävässä Amerikan geofysikaalisen seuran kokouksessa, missä Tiedetuubikin on paikalla kärkkymässä tiedonmuruja.

Sitä odottaessa voi komeetan ytimeen tutustua tosin ihan konkreettisestikin, sillä Dassault Systèmesin 3DS Fablab -tutkimuslaboratorio on tehnyt ESAn avulla 3D-mallinnuksen komeetasta Rosetta-luotaimen ottamien kuvien perusteella. Kolmiulotteista, tarkkoihin OSIRIS-stereokameran kuviin perustuvaa mallia käytettiin hyväksi mm. Philaen laskeutumispaikkaa valittaessa.

Nyt tämän 3D-mallin voi ladata ilmaiseksi Dassault Systèmesin <Communities of Innovators -keskustelufoorumilta: ESA_Rosetta_OSIRIS_67P_SHAP2P.obj. Foorumilla (joka vaatii ilmaisen kirjautumisen) on myös muuta hyvin kiinnostavaa keskustelua komeetasta, sen mallintamisesta ja kuvista, joita ei ole vielä julkistettu laajemmin.

Alla on vielä projektista tehty video:

Philae: komeetalla on orgaanisia molekyylejä

Siinä missä Rosetta-luotaimeen havaintolaitteita tehneet tutkijaryhmät panttaavat tuloksiaan ja kuviaan, julkistivat sen Philae-laskeutujan tutkijat ensimmäisiä havaintojaan jo keskiviikkona.

Röntgenspektrometriä lukuunottamatta kaikki laskeutujassa olleet instrumentit toimivat sen noin 60 tunnin aikana, jonka Philae oli toiminnassa 67P/Churyumov-Gerasimenkon pinnalla ennen sähkövirran hiipumista. Oikeastaan ainoan pettymyksen tuotti spektrometri, jonka linssiluukku ei avautunut. Laitteista kaikkein suurin mielenkiinto kohdistui kenties kahteen laskeutujan minilaboratorioon, jotka tunnetaan lyhennenimillään COSAC ja PTOLEMY. Valitettavasti näyttää siltä, että näille näytteen pinnalta toimittamaan tehty poralaitteisto ei onnistunut tehtävässään, eivätkä laitteet ole saaneet analysoitua pintanäytteitä.

Sen sijaan COSAC-tiimi kertoi laitteensa analysoineen Philaen ympärillä olleen hyvin harvan kaasun koostumusta: se havaitsi siitä varmuudella orgaanisia molekyylejä. Tuloksia tutkitaan parhaillaan tarkemmin ja lähiaikoina selviää missä määrin nämä ovat yksinkertaisia orgaanisten molekyylien rakennuspalikoita (esim. alkoholia ja ammoniakkia) tai monimutkaisempia yhdisteitä (kuten aminohappoja). Alustavakin tulos on jo kiinnostava, sillä aiemmista komeettojen koostumusta kartoittaneista spektrihavainnoista on löydetty viitteitä siitä, että komeetoissa olisi orgaanisia aineita, mutta nyt siitä on varmistus komeetan pinnalta.

Toinen vastaava aiemmat oletukset varmistava havainto tuli MUPUS-laitteelta, joka nakutti pienen piikin komeetan pintaan ja tutki siten sen kovuutta. Ja se on jäänkovaa, aivan kuten kuvaamme komeetoista ”likaisina, jäisinä lumipalloina” sopii hyvin. MUPUS onnistui vasaroimaan päänsä vain pari millimetriä pinnan alle, ennen kuin se koitti lisätä iskuvoimaa niin paljon, että se rikkoontui: komeetan pinta oli itse asiassa kovempaa kuin oletettiin.

Toisaalla pinta tosin näyttää olevan yllättävänkin paksun hienojakoisen aineen peittämää. Kuvien mukaan alue, mihin Philae osui ensimmäisenä ja mistä se pomppasi uudelleen ilmaan, oli hiekkamaisen aineen peitossa, sillä kuvissa näkyy selvästi sen pinnalle jättämät jäljet. Ainakin siis pinnan koostumusta tutkivien kannalta pomppaus ja päätyminen kraatterin reunalle nalkkiin oli hyvin kiinnostava: pinta on yhtäällä tosi kovaa jäätä ja toisaalla niin hienojakoisen aineen peittämää, että pinnalle saattaa muodostua jopa dyynejä samaan tapaan kuin hiekka-aavikoilla Maan päällä (tosin dyynit ovat komeetalla paljon pienempiä).

Joillain paikoilla höttöistä pölyä ja hiekkaa saattaa olla jäisen pinnan päällä jopa 20 cm.

Myös pinnan sähköisiä, seismisiä ja akustisia ominaisuuksia tutkinut SESAME vahvistaa havainnon pinnan kovuudesta. Laitteen mukaan pinnalta höyrystyi hyvin vähän kaasuja ja aine laskeutujan alla oli tosiaankin jäätä. Tässä havainnossa mukana oli suomalaistekoinen SESAME-pakettiin kuuluva laite.

Jää on erityisen kovaa kylmässä. MUPUS-laitteen mukaan lämpötila laskeutujan alla oli laitteen käyttämisen aikaan -153°C ja sen puolen tunnin aikana kun laite toimi, sen mittausarvo putosi vielä kymmenellä asteella. Keskimääräisesti komeetan pinnan lämpötilaksi on arvioitu noin -75°C, mutta viimeisen laskeutumispaikan varjoisa alue oli ymmärrettävästi selvästi viileämpi kuin keskiarvo. Lämpötilan putoamiseen vaikutti todennäköisesti myös Philaen vieressä ollut jäinen seinämä.

Philaen radiolaitteistoa apunaan käyttänyt CONSERT-instrumentti lähetti laskeutujan toiminta-aikana 7500 lyhyttä radiosignaalia, joiden avulla koitetaan muodostaa kuva komeettayhtimen sisustasta. Laite toimi kuin kaikuluotain: Rosetta lähetti radiosignaalin laskeutujaan ollessaan komeetan toisella puolella ja Philae lähetti toisen signaalin takaisin Rosettaan komeetan ytimen läpi. Viimeiset näistä sondauksista tehtiin Philaen jo vaivuttua horrokseen, kun radiolähetin oli vielä toiminnassa. Signaalien tutkimiseen menee aikaa, mutta alustavien arvioiden mukaan ytimen pinta on kova, mutta sen sisusta on huokoisempi ja koostuu ikään kuin kasaan painautuneista palasista. Tämäkin havainto vastaa pitkälti sitä kuvaa, mikä komeetoista on muodostunut epäsuorien tutkimusten perusteella.

Suurin osa Philaen kameralaitteistojen kuvista on vielä julkaisematta, mutta tutkijoiden mukaan niin sivusuuntaan kuvannut CIVA kuin alaspäin katsonut ROLIS saivat runsaasti hyviä kuvia. Julkaisuissa kuvissa näkyy kuitenkin jo varsin paljon maisemaa laskeutujan ympärillä ja alkuperäinen laskeutumispaikka Philaen alla.

Parhaat kuvat ja tiedot ovat kuitenkin siis vielä edessäpäin.

Edessä saattaa olla vielä myös uusia, kiinnostavia havaintoja, sillä jo nyt mittausten mukaan Philaen aurinkopaneelit tuottivat hetkellisesti sen verran energiaa, että laskeutuja olisi voinut toimia sen voimin. Mitä lähemmäksi komeetta tulee Aurinkoa, sitä enemmän valoa lankeaa sen pinnalle, joten on hyvinkin mahdollista, että noin puolen vuoden kuluttua Philae voisi herätä taas toimintaan. Komeetta on lähimmillään Aurinkoa elokuussa.

Silti Philae tarvitsee auringonvalon lisäksi onnea. Sen täytyy kestää odotettua kylmempää lämpötilaa usean kuukauden ajan, ja lämpötilan laskeutumispaikalla pitää myös nousta, jotta Philae voisi toimia. Lisäksi pitää toivoa, että Aurinko ei saa aikaan liikaa aktiivisuutta komeetan pinnalla juuri laskeutumispaikalla, sillä mikäli pöly peittää aurinkopaneeleita edes osittain, ei lisääntyneestä päivänpaisteesta ole mitään iloa. Ja on myös täysin mahdollista, että pinnan alta purkautuva kaasusuihku saisi Philaen lennähtämään vielä uuteen paikkaan komeetalla – mikä olisi itse asiassa hienoa, mikäli laskeutuja heräisi uudella paikallaan vielä toimimaankin!

Rosetta-luotain on siirtymässä puolestaan laskeutumisen jälkeiseltä kiertoradaltaan kauemmaksi komeetasta, missä se jatkaa tutkimuksiaan tästä eteenpäin rutiininomaisesti. Se pitää komeettaa silmällä, mittaa sitä, tutkii siitä irtoavia kaasuja ja seuraa, kuinka se muuttuu tästä alkaen koko ajan aktiivisemmaksi tullessaan lähemmäksi Aurinkoa.

Rosetta-luotaimen rata laskeutumisen jälkeen: se asettuu jouluun alkuun mennessä 20 km korkealla olevalle kiertoradalle Churyn ympärillä.

Otsikkokuvana on havainnepiirros Philaesta laskeutumispaikallaan päältä katsottuna.