Kun metsäntutkijat ja kartoittajat kiertelevät maastossa, he saavat raittiin ulkoilman lisäksi paljon tarkkaa tietoa metsistä, niiden puista ja koko kasvustosta.
Mutta hekään eivät pääse yhtä tarkkaan tietoon kuin Tampereen teknillisen yliopiston 3D-kartoittajat. Heidän tekniikallaan pystytään luomaan kolmiulotteinen malli metsän jokaisesta yksittäisestä puusta. Entistä tarkempi tieto siitä, millaisia puita Suomen metsissä kasvaa, helpottaa metsänhoidon suunnittelua ja parantaa metsäteollisuuden kustannustehokkuutta.
|
Suomessa metsät ovat merkittävä luonnonvara, ja ne kasvavat yli 100 miljoonaa kuutiota vuodessa. Jos me tiedämme tarkasti millaista puuta metsissämme kasvaa, voimme tehostaa metsänhoitoa ja tehdä tarkempaan tietoon perustuvia päätöksiä puuvarojen käytöstä.
TTY:n matematiikan laitoksella on kehitetty uusi metsien 3D-mallinnusmenetelmä. Sen avulla pystytään nopeasti tuottamaan valtava määrä yksityiskohtaista, metsänomistajille ja metsäteollisuudelle rahan arvoista tietoa metsän jokaisesta yksittäisestä puusta.
Tarkka, kolmiulotteinen malli jokaisesta puusta
Puiden mallinnuksessa käytetään hyväksi laserskannauksella kerättyä dataa. Metsässä tuhannet puut laserkeilataan kymmenistä eri paikoista kameran kaltaisella laitteella, jonka pyörivä peili heijastaa lasersäteitä. Jokaisesta puusta kertyy miljoonia pikseleitä mittauspistedataa, joista muodostuva pistepilvi käsitellään digitaalisesti. Ensimmäistä kertaa pistepilvestä voidaan nyt tehdä kolmiulotteinen rakennemalli jokaiselle puulle. Se kertoo tarkasti millaista puumateriaalia metsässä on, ja mihin tarkoitukseen sitä voi käyttää.
"Kyseessä on ensimmäinen operatiivisesti tehokas, teollisessa mittakaavassa toimiva 3D-mallinnus", kertoo professori Mikko Kaasalainen matematiikan laitoksen inversio-ongelmien tutkimusryhmästä.
"Kukaan muu maailmassa ei pysty tekemään mallinnusta kokonaisesta metsästä tässä mittakaavassa. Parista hehtaarista metsää voidaan tuottaa mallinnus saman päivän aikana."
"Datan analyysi ja siitä saatu informaatio on tässä menetelmässä viety aivan uudelle tasolle. Metsän omistajat, viranomaiset ja kansalaisjärjestöt voivat jatkossa hyödyntää puiden mittaustuloksia myös hiilijalanjäljen laskemisessa."
"Tämä on ainoa tapa, jolla hiilijalanjälki voidaan laskea tarkasti", Kaasalainen sanoo.
Uusi 3D-mallinnusmenetelmä on herättänyt paljon kiinnostusta suomalaisten metsäalan toimijoiden ja yritysten keskuudessa.
Kaasalaisen tutkimusryhmä on kehittämässä myös 4D-mallia, jonka avulla voi ennustaa miten metsä kasvaa. Sen avulla voisi katsoa mitä tapahtuu, jos metsästä hakattaisiin pois tietty määrä puita.
Big dataa kerätään metsistä
TTY on mukana kehittämässä kansallista metsäalan infrastruktuuria Forest Big Data -hankkeessa. Siinä tehostetaan menetelmiä, joilla hankitaan ja käsitellään tietoa Suomen metsien puustosta ja niiden kasvuolosuhteista.
Professori Risto Ritala TTY:n systeemitekniikan laitokselta on mukana Forest Big Data -hankkeessa. Siinä kehitetään menetelmiä, joilla saadaan tarkempaa tietoa Suomen metsien puista ja niiden kasvuolosuhteista.
"Hankkeessa luodaan perustaa uudelle ja kattavalle metsävarojen tietojärjestelmälle, jolla saataisiin entistä tarkempaa ja ajantasaisempaa tietoa metsäomaisuuden hallintaa, puukauppaa, puun korjausta ja kuljetusta, metsänhoitotyötä ja metsäntutkimusta varten", toteaa Ritala.
"Tietoa Suomen metsistä kerätään jo nyt sekä satelliittikuvauksella että lentokoneilla, jotka mittaavat puustoa skannaamalla sitä laserkeilauksella ilmasta käsin. Metsävaratietoa voisi myös kerätä älykkäillä metsätyökoneilla istutetun metsän ensiharvennuksen yhteydessä. Näin saataisiin tietoa puustosta 16 x 16 metrin kokoisen ruudukon tarkkuudella."
TTY:n tehtävänä Forest Big Data -hankkeessa on kehittää menetelmiä, joilla yhdistetään ja ajantasaistetaan metsien laserkuvausdataa, metsäkoneiden tuottamaa dataa sekä Metsäntutkimuslaitoksen laajoissa alueellisissa tietokannoissa olevaa dataa.
Tämä TTY:n tiedotuksessa Leena Koskenlaakson kirjoitama juttu on julkaistu TTY:n Rajapinta-lehdessä 1/2015.