Selviääkö Mars-kulkija Oppy pölymyrskystä? – vaipui jo horrokseen

Otsikkokuva kertoo karun totuuden: Marsin pinnalla paikassa, missä Nasan Opportunity-kulkija on mönkimässä, on meneillään voimakas pölymyrsky ja kulkija ei saa juuri lainkaan sähköä aurinkopaneeleistaan. Onko 15 vuotta kestänyt matka nyt lopussa?

Alkuvuodesta 2004 Nasan kaksi kulkijaa, Spirit ja Opportunity, laskeutuivat Marsin pinnalle ja aloittivat uuden ajan punaisen planeetan tutkimuksessa. Ne olivat ensimmäiset kunnollisen kulkijat naapurimme pinnalla ja ne ylittivät odotukset moninkertaisesti.

Kulkijat löysivät mineraaleja, jotka kertovat eittämättä Marsin olleen aikanaan vetinen, ja erilaisia merkkejä, joita tulkitessa ammoisen elämän mahdollisuutta ei ainakaan voi olla huomioimatta.

Spirit laskeutui ensin tammikuun neljäntenä Gusevin kraatteriin ja aloitti siellä tutkimuksensa, joiden odotettiin kestävän kolme kuukautta ja toki toivottiin jatkuvan vielä jonkin aikaa sen jälkeen. Kulkija kuitenkin toimi ja toimi, ja sillä rullailtiin eteenpäin. Talven ajaksi toimintaa rauhoitettiin ja Spirit ajettiin sopivaan asentoon, jotta matalammalta paistanut Aurinko osuisi paremmin sen aurinkopaneeleihin. Kulkija kun sai tarvitsemansa virran aurinkopaneeleista.

Spirit ja Opportunity ovat samanlaisia, ostoskärryn kokoisia Mars-kulkijoita.


Toukokuussa 2009, yli viiden vuoden ja 7730 metrin kulkemisen jälkeen, Spirit jäi jumiin. Se kuitenkin toimi ja vasta kahta vuotta myöhemmin se oli uudelleen ongelmissa. Koska sen aurinkopaneelit eivät olleet erityisen hyvin suunnattu Aurinkoon, sen lataustaso laski, eikä se pystynyt käyttämään lämmittimiään. Spirit oli jo asettunut uneen, missä se oli sammuttanut kaikki muut laitteensa paitsi kellon, joka herätti sen välillä tarkistamaan mikä tilanne on: onko virtaa saatu enemmän, jotta toiminta voisi jatkua. Samalla se lähetti piippauksen Maahan, jotta sen tiedettiin olevan vielä hengissä.

Samaa menetelmää oli jo käytetty aikaisemminkin, joten kyseessä ei sinällään ollut hätätilanne – vaikka tietysti sai aikaan hermostumista täällä Maassa.

Lopulta, 2210 Marsin päivän jälkeen maaliskuun 22. päivänä 2010 Spirit ei enää ottanut yhteyttä. Nähtävästi sen kellokin oli sammunut.

Nasa lopetti Spiritin kuuntelun toukokuussa 2011, jolloin virallisesti sen toiminnan katsotaan päättyneen.

Selviääkö Oppy?

Nyt hieman samanlainen tilanne on päällä Opportunity-kulkijan kanssa. Opportunity, eli "Oppy" laskeutui Marsiin kolme viikkoa Spiritin jälkeen, eli tammikuun 25. päivänä 2004. Laskeutumispaikka oli Meridiani-tasanko.

Oppy on osoittautunut sitkeäksi veikoksi, sillä se on kulkenut jo yli 45 kilometrin matkan ja kestänyt Marsissa yli 14 vuotta. Se on siis toiminut tähän mennessä 50-kertaisesti pitempään kuin alun perin odotettiin. Jos se ei siis selviä tästä pinteestään, voidaan silti siihen olla hyvin tyytyväisiä.

Toistaiseksi tilanne ei kuitenkaan ole vielä paha. Ongelmana on nyt massiivinen pölymyrsky, josta ensimmäiset havainnot tehtiin Marsia kiertävästä luotaimesta toukokuun 30. päivänä. Sen jälkeen myrsky on siirtynyt ja ilmassa olevan määrän pölyn määrä on kasvanut. Otsikkokuvassa on Aurinko Opportunityn kuvaamana myrskyn päälle tulemisen aikana: viimeisessä kuvassa Aurinkoa ei enää edes näy.

Alla on animaatio myrskystä kiertoradalta kuvattuna 31. toukokuuta alkaen aina 13. kesäkuuta saakka.

Myrsky on kooltaan Euroopan luokkaa ja etenee kohti Curiosity-kulkijaa, joka on merkitty myös kuvaan (kulkijoista Opportunity on vasemmalla ja Curiosity oikealla). Curiosityyn pölymyrsky vaikuttaa vähemmän, koska se saa sähköä ydinparistosta.

Oppy on nyt horrostilassa, missä se on sammuttanut kaikki laitteensa sähkön säästämiseksi. Ainoastaan kello toimii, ja sen tarkoituksena on herättää kulkija aikanaan. Koska kellon hiipuminen nähtävästi koitui Spiritin kohtaloksi, jännitetään nyt luonnollisesti miten tällä kerralla käy.

Toivoa tilanteeseen tuo kolme seikkaa: ensinnäkin lämpötilan ei oleteta laskevan myrskyn aikana niin alas, että siitä olisi haittaa kulkijalle; toiseksi myrsky menee ohitse ja kenties jo viikon päästä taivas on jo läpinäkyvämpi; ja kolmanneksi Opportunityn akut ovat edelleen oikein hyvässä kunnossa. On oikeastaan ihme, että niiden lataustaso on vielä ollut maksimissaan 85 % siitä, mitä sen oli laukaisun aikaan 15 vuotta sitten.

Lisäksi kannattaa muistaa, että Oppylle pölymyrskyltä suojautuminen ei ole mitään uutta. Vuonna 2007 se kyyristeli sellaisen kourissa parin viikon ajan, ja osan tästä ajasta se oli hiljaa.

Me täällä Maassa emme voi tässä tilanteessa kuin odottaa ja kuunnella. Ja toivoa parasta.

Euroopan avaruusjärjestö tilaa Suomesta kokonaisen satelliitin

Vaikka kyseessä onkin "vain" pieni nanosatelliitti, on kyseessä iso asia monessakin mielessä: koskaan aikaisemmin Euroopan avaruusjärjestö ei ole tilannut suomalaisyritykseltä suorasti tai epäsuorasti kuin alijärjestelmiä avaruusaluksiin, ja ESAlle kyseessä on satelliitin kokoa suurempi asia, koska näin avaruusjärjestö alkaa tilata myös nanosatelliitteja. Reaktor Space Labista tulee näin uranuurtaja eurooppalaisessa avaruustoimessa.

Oikeastaan vielä tärkeämpi asia satelliitissa on sen tehtävä, sillä W-Cube -niminen satelliitti tulee testaamaan uutta 75 GHz:n millimetrin radioaaltoalueen käyttöä tuleville tietoliikennesatelliiteille.

Satelliitin tehtävänä on lähettää ensimmäistä kertaa historiassa näin korkean taajuuden signaalia avaruudesta maan pinnalle. Signaalin kulkeutuminen eri ilmakehän kerroksien läpi on selvitettävä, ennen kuin uutta taajuusaluetta hyödyntävät tietoliikennesatelliitit voidaan suunnitella palvelemaan käyttäjiään halutulla tavalla.

Suomesta mukana ovat paitsi satelliittialustan tekevä Reaktor Space Lab, niin myös varsinaisesti kokeen teknisestä puolesta vastaava VTT.

Reaktor Space Lab käyttää satelliitin tekemiseen "Hello World" -satelliittinsa alustaa ja VTT suunnittelee sekä rakentaa siihen kaksitaajuisen (37,5 GHz ja 75 GHz) majakkalähettimen, jonka lähettämää signaalia tullaan kuuntelemaan hanketta johtavan Joanneum Researchin mittausasemalta Grazista, Itävallasta.

Signaalia ei siis käytetä vielä tiedonsiirtoon, vaan sen avulla testataan sitä, miten 75 GHz:n radiolähetys kulkeutuu ilmakehän läpi.

"VTT on ollut edelläkävijä millimetriaaltoalueen tiedesatelliittien laitekehityksessä ja toisaalta maanpäällisissä 5G-tietoliikenneradioissa. W-Cube-nanosatelliitti on hieno mahdollisuus yhdistää huippuosaaminen ensimmäisten joukossa näistä kahdesta eri sovellusalueesta", kertoo johtaja Tauno Vähä-Heikkilä VTT:ltä.

Itse satelliitti on ns. kolmen yksikön cubesat, eli se on kooltaan kuten avaruudessa oleva Aalto-1. Sen massakin on samaa luokkaa; hieman alle viisi kiloa.

W-Cube on tarkoitus laukaista avaruuteen vuoden 2019 aikana. Sen ohjaaminen tulee tapahtumaan Reaktor Space Labin uudesta komentokeskuksesta aivan Helsingin keskustasta.

Hanke kuuluu ESA:n niin sanottuun ARTES-ohjelmiin, jossa testataan uudenlaisia tekniikoita; tämä hanke koskee satelliittitietoliikennenopeuksien kasvattamiseen liittyviä ratkaisuita. Satelliitti on vain osa hanketta – joskin hyvin tärkeä osa sitä.

"Projektin haku avautui viime kesänä ja VTT pyysi meitä osallistumaan konsortioon", kertoo Reaktor Space Labin toimitusjohtaja Tuomas Tikka.

"Yhteistyömme Hello World satelliitin parissa on sujunut erittäin mukavasti, joten halusimme jatkaa sitä myös tämän projektin parissa.

Tikka kertoo, että ESA ilmoitti ennen vuodenvaihdetta, että konsortio on valittu toteuttamaan hanke, joten Reaktor Space Labissa aloitettiin työt saman tien. Hello World -satelliitin pohjilla satelliitin suunnittelutyö eteni nopeasti ja se läpäisi ensimmäisen, hyvin tärkeän ja vaativan arvioinnin toukokuussa.

"Satelliitin suunnittelu jatkuu vielä kesän mittaan jonka jälkeen aloitamme satelliitin rakentamisen laboratoriossamme Otaniemessä. Tähän mennessä kaikki on sujunut aivan suunnitellusti."

Satelliitti tulee olemaan meidän sekä Suomen ensimmäinen kokonainen ESA:lle tehtävä satelliitti. On hienoa päästä mukaan näinkin historialliseen hankkeeseen, jonka tulokset tulevat palvelemaan uusien tietoliikennesatelliittien kehittämistä kautta maailman.

Kun Tikalta kysyy, mitä kaikkea muuta Reaktor Space Lab on tekemässä, on hän mystinen: "meillä on tekeillä on useita demonstraatiomissioita sekä kaupallisia satelliittihankkeita, joita on tarkoitus lähteä toteuttamaan jo lähitulevaisuudessa. Kerromme näistä pian."

Jos Suomi on tullut mukaan satelliittien tekemiseen paljon muita eurooppalaisia maita myöhemmin, on se astunut avaruusmaiden joukkoon hienosti ja muuttumassa kovaa vauhtia nanosatelliittien suurvallaksi.

Tietoliikenneverkot siirtymässä vauhdilla avaruuteen

Viime vuosina maailmalla on julkaistu kymmeniä hankkeita uusille tietoliikennesatelliiteille ja niiden muodostamille useiden satojen, ellei jopa tuhansien satelliittien konstellaatioille eli satelliittiparville, kuten OneWeb ja SpaceX:n Starlink. Satelliitteja käyttämällä voidaan tarjota nopeita tietoliikenneyhteyksiä harvaan asutuille alueille, lentokoneille ja laivoille.

Satelliittien määrän ja tietoliikennenopeuksien kasvaessa sähkömagneettisen säteilyn spektri ruuhkautuu ja korkeammille taajuuksille siirtyminen on jo lähivuosina välttämättömyys. Myös seuraavan sukupolven 5G-tietoliikenneverkot tulevat käyttämään entistä korkeampia radiotaajuuksia kommunikaatioon pitkälti samasta syystä.

Muita ESA:n hankkeessa mukana olevia tahoja ovat Fraunhofer IAF, LC Technologies, University of Stuttgart ja Université catholique de Louvain.

Marsin ja Kuun luolat tarjoavat suojaa astronauteille

Kuva: Jesse Richmond
Kuva: Jesse Richmond

Kuusta ja Marsista on löydetty monia jättimäisiä laavan muovaamia tunneleita. Salaperäisten luolastojen on uumoiltu olevan käteviä suojapaikkoja astronauteille joskus tulevaisuudessa. Millaisia nuo laavatunnelit todella ovat, ja toisivatko ne satunnaiselle avaruusmatkailijalle oikeata turvaa?

Olet hämärässä. Päivänvalo kajastaa kaukana yläpuolellasi olevasta pyöreästä aukosta. Jalkojesi alla on yllättävän tasainen kivipohja. Siellä täällä lojuu katosta pudonnut lohkare. Edessäsi olevassa seinässä on jättimäisiä valumia, joista osa tuntuu rosoisilta, toiset sileiltä, paikoin jopa hieman aaltoilevan lasin kaltaisilta. Seinä jatkuu sekä oikealle että vasemmalle upoten lopulta pimeyteen. Ylhäällä seinä kaartuu katoksi, ja jossain kohdassa valumat muuttuvat rosoisemmaksi. Ikään kuin katosta roikkuisi lukemattomia lepakoita, odottaen yön tuloa. Jos näkisit tarkemmin, huomaisit katon olevan tuhansien tippukivimäisten "laavapuikkojen" peitossa.

Kaikki, mitä näet, on syntynyt samoihin aikoihin kun naapuriplaneetalla oli vasta yksisoluista elämää. Jos sitäkään. Vain valoa tuova aukko on poikkeus, se syntyi asteroiditörmäyksessä muutama miljoona vuotta sitten.

Tervetuloa marsilaiseen laavatunneliin.

Jos, tai siis kun ihmiset joskus ryhtyvät asuttamaan Kuuta tai Marsia, on tukikohdan paikkavalinta tärkeää. Aivan yhtä tärkeää kuin resurssien löytäminenkin.

Pinnalla on vaarallista oleilla voimakkaan ultraviolettisäteilyn, kosmisten säteiden ja mikrometeoriittien vuoksi. Marsinkaan kaasukehä ei paljoa suojaa tarjoa - tiheys kun vastaa omaa ilmakehäämme jossain yli 30 km korkeudella. Pinnalla on myös joka paikkaan tarttuvaa pölyä, joka saattaa pahimmillaan olla jopa myrkyllistä. Lämpötilakin vaihtelee siellä ikävästi. Pitkään moisissa oloissa asustelevat joutuvat etsimään turvallisemman asuinpaikan.

Ratkaisun saattavat tarjota luolat. Laavatunneleita löytyy kummaltakin pallolta, ja paksu kivikatto on hyvä suoja taivaalta tulevia uhkia vastaan.

Missä ja millaisia?

Laavatunnelit sijaitsevat tietystikin vulkaanisilla alueilla.

Kuussa alueet näkyvät paljain silminkin tummina tasankoina eli "merinä". Nuo alunperin jättimäiset törmäysaltaat peittyivät laavalla muutamia miljardeja vuosia sitten.

Etenkin tasankojen reunamilta löytyy useita keskiosia kohti kiemurtelevia uurteita. Niistä osa on syntynyt avoimina laavakanavina, toiset taas laavatunneleina, joiden katot ovat romahtaneet pitkältä matkalta.

Uurteen päättyessä virran jatkoa voi usein seurata pienempien romahdusten avulla. Luotainkuvissa ne näkyvät pyöreinä "kattoikkunoina", eli tummina ja näennäisesti pohjattomilta vaikuttavina reikinä pinnassa. Joskus ne piirtävät pinnalle romahdusten jonoja.

Marsista kattoikkunoita on löydetty lähes yksinomaan Tharsiksen jättimäisten tulivuorten lähettyviltä. Toisinaan kattoikkunat voivat mennä uudelleen tukkoon pinnalta putoavan hiekan ja pölyn vaikutuksesta.

Kuun (ylin) ja Marsin laavatunneleiden kattoikkunoita. (NASA/LRO/HiRISE)

Yksikään laskeutuja ei ole käynyt lähelläkään tunnettuja kattoikkunoiden paikkoja, saati sitten hypännyt tunneliin sisälle. Voimme siis vain arvailla miltä luolassa näyttäisi. Todennäköisesti näkymä olisi jotakuinkin samanlainen kuin Maan laavatunneleissa.

Vain yksi asia Maan tunneleissa on varmasti erikoista - virtaava tai ainakin nestemäinen vesi, jota tihkuu kiven läpi. Moista ei edes Marsissa voisi esiintyä, mutta jäätä saattaisi sekä sieltä että Kuunkin luolista ehkä löytyä. Käsittämättömän hyvällä tuurilla Marsin laavatunneleissa voisi myös olla myös merkkejä eliöistä, jotka ovat paenneet pinnan vaikeammiksi käyneitä olosuhteita.

Laavatunnelit voivat olla hyvinkin suuria, sillä niiden koko riippuu gravitaatiosta. Mitä pienempi painovoima, sen suuremmaksi tunneli voi kasvaa ilman että katto romahtaa omasta painostaan. Kun tunnelin halkaisija Maassa on ehkä kymmeniä metrejä, Marsissa se on reippaasti yli sata. Kuun tunnelit saattavat olla jättimäisiä, jopa lähes kilometrin levyisiä.

Tunnelin kokoa voi arvioida paitsi kattoikkunan halkaisijasta, myös pohjalle syntyvän varjon muodosta.

Asuminen luolassa

Laavatunnelit on jo kauan tiedetty potentiaalisiksi asumuspaikoiksi tuleville miehitetyille Kuu- tai Marskäynneille. Ne voivat toimia myös kätevinä varastoina.

Kaikki alussa luetellut ongelmat ovat tunnelissa historiaa. Kymmenien metrien kivikatto suojaa sekä säältä että säteilyltä. Lämpötila voi tunnelissa olla pakkasen puolella, mutta siedettävämpi kuin kylmimmät ajat pinnalla. Meteoriiteista ei myöskään tarvitse huolehtia, paitsi jos kyse on todella suuresta kivestä, jolta ei muutenkaan voisi helposti suojautua.

Tunnelinpätkän tekeminen kokonaan ilmatiiviiksi lienee vähintäänkin vaivalloista, joten varsinaisen asumuksen täytyisi ainakin aluksi olla erillinen, tunneliin sijoitettava rakennus. Rakenne voi olla kuitenkin kevyempi kuin pinnalla, esimerkiksi vain ilmanpaineella pystyssä pysyvä.

Löytyy tunneleista riskejäkin. Miljardeja vuosia ehjänä pysynyt katto voi yllättäen alkaa rakoilla asutuksen myötä. Riittävä tekijä voi olla rakennustyön tai liikenteen aiheuttama tärinä, tai kosteuden ja lämpötilan muutokset. Sadankin metrin korkeudelta putoilevat irtokivet tekisivät pahaa jälkeä.

Lisäongelmia toisivat myös tunneliin ja sieltä pois pääsy. Kattoikkunan kautta on vaikea ja hyvin vaarallista kulkea. Astronauttien on siksi paikallistettava tunnelin pää tai muu paikka, josta pystyy kävelemään tai mieluiten ajamaan sisään.

Kallion sisässä asuminen taas voi pidemmän päälle aiheuttaa yllättäviä psykologisia haasteita.

Luolan synty

Laavatunnelin syntyprosessi on yksinkertainen. Pinnan alta purkautuu magmaa, joka virtaa laavana alarinteeseen. Etenkin painanteessa virran katto ja reunat jähmettyvät, kuori eristää keskiosan kuuman kiven, ja keskelle syntyy pitkään virtaavan laavan tunneli. Kun purkaus viimein loppuu, tunneli tyhjenee viimeisten pisaroiden liruessa ulos tai jähmettyessä tasaiseksi lattiaksi tunnelin pohjalle.

Muutama vaatimus kuitenkin on. Laavaa täytyy olla riittävästi, sen pitää olla kuumaa ja juoksevaa, ja rinteen on oltava tarpeeksi jyrkkä, jotta laava virtaa loppuun asti tunnelin läpi eikä jämähdä tukkimaan reittiä.

Purkauksen loputtua tunnelit ovat pitkiä kiemurtelevia tyhjiä putkia. Ja nyt, miljardien vuosien kuluttua, ne odottelevat yhä asukkaita.

Lisätietoa, esim. Melville, 1994.

Kirjoittaja on Marsin ja Kuun vulkanismia tutkinut planeettageologi.

Muokattu klo 22.50: Poistettu jutun lopusta jaarittelua muista luolistaö.

Otsikkokuva on Thurstonin laavatunnelista Havaijilta (Jesse Richmond / Flickr)

Muut kuvat: NASA.

Video: Aeolus on satellitti, joka näkee lasersilmällään maailman tuulet

Video: Aeolus on satellitti, joka näkee lasersilmällään maailman tuulet

Hyvää kannattaa odottaa! Euroopan avaruusjärjestön Aeolus -satelliittia on tehty 16 vuoden ajan ja sen piti alun perin lentää jo vuonna 2007, mutta se pääsee vasta ensi elokuussa avaruuteen. Laite tulee havaitsemaan avaruudesta maapallon tuulia ennen näkemättömällä tarkkuudella.


08.06.2018

Jos kysyt säätieteilijältä, mikä on suurin yksittäinen hankaluus sään ennustamisessa, niin vastaus on tuuli.

Tuulta mitataan toki avaruudesta ja maanpäälisin laittein koko ajan, mutta tiedot ovat hyvin paikallisia ja yleensä kertovat tilanteesta vain lähellä pintaa. Jos sääennustusmalleihin saataisiin edes karkeita tietoja tuulitilanteesta laajoilta alueilta pinnasta aina stratosfääriin saakka, niin ennusteet muuttuisivat paljon tarkemmiksi.

Ongelmana on kuitenkin se, että tällaisten tuulihavaintojen tekeminen on hyvin hankalaa. Laajoja alueita voidaan havaita vain avaruudesta, mutta miten havaita tuulta, joka on käytännössä näkymätöntä? Ja kuinka havaintoja voisi tehdä kätevästi eri korkeuksilla?

Vastaus on lidar, eli kuin tutka, joka käyttää radioaaltojen sijaan valoa. Lidar-tekniikkaa on kehitetty pitkään ja sen avulla pystytäänkin tekemään tehokkaasti havaintoja paikallaan olevista havaintoasemista sekä lentokoneista, mutta lidarin asentaminen satelliittiin on osoittautunut todella vaikeaksi. Nasa on heittänyt pyyhkeen kehään jo useampaan kertaan, kun koelaitteet eivät ole toimineet, mutta nyt nähtävästi Euroopan avaruusjärjestö on onnistunut tekemään ensimmäisen, kunnollisen avaruudessa toimivan lidarin.

Se on Aeolus-satelliitin hyötykuorma, joka tunnetaan nimellä Aladin, eli Atmospheric LAser Doppler INstrument. Kyseessä on ultraviolettivalon alueella toimiva laser (itse asiassa kaksi sellaista), joka ammutaan alas kohti Maata. Osa valosta heijastuu ja siroaa takaisin tulosuuntaan (tutkasignaalin tapaan), jolloin se voidaan ottaa vastaan suuren teleskoopin avulla. Kun signaalia analysoidaan, voidaan siitä saada selville tuulen voimakkuus ja suunta eri korkeuksilla.

Täsmälleen ottaen valon aallonpituus on 355 nm, ja laser suunnataan 35° kulmassa alaspäin, jolloin ilmakehästä saadaan sopiva pystyleikkaus.

Valoa otetaan vastaan kahdella vastaanottimella, jotka näkevät ns. Mie- ja Rayleigh-sirontaa. Taivaan sininen väri johtuu niin sanotusta Rayleigh'n sironnasta, jonka keksi John William Strutt, joka tunnetaan paremmin aatelisnimeltään lordi Rayleigh. Hänen nimeään kantana sironta tulee valon osuessa ilmassa oleviin happi- ja typpimolekyyleihin. Saksalaisen fyysikon Gustav Mien mukaan nimensä saanut sironta tulee puolestaan valon osuessa ilmassa oleviin aerosoleihin, pienhiukkasiin ja pilvien yläosiin.

Aeolus siis "näkee" ilmassa tuulen mukana liikkuvia molekyyjejä ja hiukkasia. Apuna tässä on vielä niin sanottu doppler-ilmiö, eli se, kun valon aallonpituus muuttuu pienemmäksi kun kohde liikkuu kohti havaitsijaa ja pitemmäksi etääntyessään. Kyse on samasta asiasta kuin junan pillin äänen muuttumisessa junan mennessä ohitse: kohti tulevan junan pilli kuulostaa korkeammalta ja pois menevän junan pillin ääni on matalampi.

Jos tämä kaikki tuntuu hankalalta, laitteen saaminen avaruudessa toimivaksi oli hyvin haastavaa. Laserit ja valoa ohjaavat linssit ja peilit on kiinnitetty optiseen penkkiin, jonka täytyy kestää laukaisun tärinän ja avaruuden olosuhteet, ja samoin laserien pitää sinällään olla erittäin toimintavarmoja.

Eräs olennaisimmista hankaluuksista liittyi peilien ja linssien pinnoituksiin, sillä käytettävien lasereiden teho on sen verran suuri, että yllättäen laserit höyrystivät käytettyjen nämä pinnoitukset – tätä ei oltu yksinkertaisesti ajateltu kunnolla, koska pinnoitukset eivät olleet koskaan ongelmana maanpäällisissa lidareissa. Uusien pinnoitteiden kehittäminen ja testaaminen vei paljon aikaa.

Aeoluksen peili Tuorlassa. Kuva: Tuorlan observatorio

"Suomalainen" peili

Laser ammutaan ilmakehään ja takaisin tuleva valo kerätään havaintolaitteseen suuren peilin avulla. 1,5 metriä halkaisijaltaan oleva peili on tehty piikarbidista ja se on olemukseltaan hyvin pitkälti samanlainen kuin oli Herchel-avaruusteleskoopissa.

Itse asiassa peilejä tehtiin samanaikaisesti, ja samaan tapaan kuin Herchelin suuri peili hiottiin tarkasti oikeaan muotoonsa Suomessa Tuorlan observatoriolla, sai myös Aeoluksen peili saman puunauksen Turun kupeessa. Hionnan teki Opteon Oy. Peilit tuotiin näyttävästi Airbus Beluga -rahtilentokoneella.

Peilin pinta on vain 2,5 mm paksu ja sen tuorlalaiset hioivat aikanaan niin tarkasti, että peili oli eräs parhaita maailmassa. Nyt yli vuosikymmentä myöhemmin peili ei ole enää ennätyksellinen, mutta erittäin hyvä.

Itse asiassa Aeolusta varten peilin ei olisi tarvinnutkaan olla parempi, sillä muutoin satelliitin alas lähettämä lasersäde voisi olla haitallinen: satelliitista 1,5 metriä leveänä lähtevä säde on nyt Maan pinnalle saapuessaan noin seitsenmetrinen ja voimakkuudeltaan sopiva havaintoihin, mutta samalla tarpeeksi heikko, ettei se aihauta vahingossakaan silmävaurioita. Suunnittelussa on otettu huomioon se mahdollisuus, että joku katsoisi juuri satelliitin suuntaan kiikarilla samaan aikaan kun laserilla sondataan alaspäin.

Suomalainen "sähkökaappi"

Satelliitin aurinkopaneeleista eri systeemeille jakavan laitteiston on tehnyt RUAG Space Finland Oy Tampereella; yhtiö valmisti myös signaalikäsittely-yksikön laserlaitteistoon.

Tutkimuslaite, josta on hyötyä sääennustajille

Aeolus on ennen kaikkea tutkimuslaite, jonka tehtävänä on paitsi testata satelliitissa olevan lidarin toimintaa, niin myös tutkia miten käyttökelpoista tietoa sillä saadaan aikaan. Ainakin periaatteessa se pystyy tuottamaan juuri sellaista tietoa, mitä sääennustajat kaipaavat: kattavan tuulikartoituksen.

Etenkin useamman päivän päähän ulottuvissa sääennusteissa suurin epävarmuus tulee siitä, että suuri osa tuulitiedoista täytyy arvioida varsin harvan havaintoverkoston perusteella. Jos ja kun tietokoneilla tehtäviin mallinnuksiin voidaan pian laittaa tuulitietoja koko maapallon alueelta merenpinnan tasolta aina 30 kilometrin korkeuteen, tulee tuloksista todennäköisesti paljon parempia.

Aeolus tulee kiertämään Maan 15 kertaa vuorokaudessa ja se pystyy kartoittamaan koko maapallon noin viikon kuluessa. Kaikki tuulitiedot eivät ole siis aivan tuoreita, mutta parannus nykyiseen on huomattava.

Tietoa saadaan alas satelliitista kuitenkin nopeammin kuin tutkimussatelliiteista yleensä. Signaali otetaan vastaan Huippuvuorilla, mistä tieto siirtyy Trimsøssä olevaan käsittelykeskukseen, joka jakaa tiedot ympäri Eurooppaa – myös Suomeen Ilmatieteen laitokselle. Tuulitiedot voivat olla parhaimmillaan noin kolmen ikäisiä, eli hyvin tuoreita.

Euroopan avaruusjärjestö ja sääsatelliittijärjestö Eumetsat ovatkin jo eräällä tapaa huolestuneita siitä, että kenties vastaavanlaisia satelliitteja halutaan vastaisuudessa lisää. Jos tuulitiedot tuottavat hyviä kokemuksia, halutaan tietoja luonnollisesti rutiininomaisesti. Sitä varten pitäisi taivaalle lähettää ainakin kaksi uudenlaista sääsatelliittia, jotka olisivat Aeoluksen kokoisia.

Niiden tekemiseen ei kuitenkaan mene 16 vuotta, koska oppirahat on nyt maksettu. Lisäksi hankkeessa jo nyt saatuja teknisiä tietoja voidaan käyttää hyväksi maanpäällisissä lidareissa sekä laseroptiilassa yleisesti.

Laukaisu elokuussa

Aeolus pakataan nyt kuljetuskonttiin ja lähetetään laivalla laukaisupaikalle Ranskan Guyanaan. Sitä ei siis lähetetä sinne rahtilentokoneella, kuten yleensä satelliitteja kuljetetaan, koska laserien kanssa halutaan ottaa varman päälle; suuret, yllättävät paineenvaihtelut voivat olla niille haitallisia. Jos lento menee hyvin, ei ongelmia olisi, mutta lennolla täytyy varautua hätätilanteisiin ja sellainen on esimerkiksi paineen nopea putoaminen koneen sisällä. Siksi merikuljetus on katsottu nyt paremmaksi.

Kouroussa satelliitti testataan perustoimiltaan uudelleen, asennetaan Vega-kantoraketin nokkaan ja laukaistaan avaruuteen näillä näkymin 21. elokuuta. Avaruudessa laitteiden käynnistäminen tapahtuu rauhallisesti, mutta tutkijoille on luvattu ensimmäisiä tietoja lokakuussa – jos kaikki siis tästä eteenpäin menee hyvin.

Elämääkö Marsissa – mitä oikeasti uutta Nasa kertoi tänään?

Aeolis Mons ja Curiosityn paikka siellä

Yhdysvaltain ilmailu- ja avaruushallisto Nasa rummutti jälleen jo useita päiviä etukäteen tänää tulossa olevasta "merkittävästä" uutisesta Marsin tutkimuksen suhteen. Kuten aikaisemmissakin vastaavissa tapauksissa, uutiset olivat kiinnostavia, mutta eivät mullistavia; ei ole epäilystäkään, että Marsissa on voinut olla aikanaan elämää.

Nasa piti tänään illalla Suomen aikaa tiedotustilaisuuden, missä kerrottiin Science-lehdessä perjantaina julkaistavista tutkimuksista, jotka liittyvät Curiosity-kulkijan Marsissa tekemiin löytöihin.

Löydöt ovat monimutkaisia orgaanisia molekyylejä noin kolme miljardia vuotta vanhasta kivestä sekä metaanin määrästä Marsin kaasukehässä. Kyseessä eivät ole siis merkit elämästä, mutta jälleen eräitä merkkejä lisää siitä, että aikanaan Marsissa on voinut olla ainakin alkeellista elämää.

Orgaaniset molekyylit

Marsista on löytynyt jo aikaisemmin orgaanisia molekyylejä, mutta nyt Curiosityn Aeolis Mons -vuoren vieressä olevista mutakivikerrostumista löytämät molekyylit ovat hyvin kiinnostavia. Kerrostumat syntyivät noin kolme miljardia vuotta sitten, kun paikalla olleen järven pohjalle painui sedimenttejä, jotka ajan kuluessa ovat kivettyneet.

Aivan pinnalla Marsissa on liikaa ultraviolettisäteilyä, jotta molekyylit voisivat säilyä. Siksi Curiosity otti porallaan näytteen kiven sisältä ja näyte analysoitiin kulkijan sisällä olevassa minilaboratoriossa. Se kuumentaa näytettä. jotta siitä irtoaa aineita, jotka ohjataan massaspektrometriin. Tulosten mukaan näytteessä oli ainetta nimeltä
tiofeeni. Maan päällä sitä on esimerkiksi kivihiilitervassa.

Havainto tosin voi viitata myös kerogeeniin, samankaltaiseen orgaaniseen yhdisteeseen, missä on myös rikkiä. Rikki voisi auttaa sitä osaltaan selviämään vuosimiljardien ajan käytännössä muuttumattomana.

Kyseessä EI ole siis elämä, tai edes mikään lähellä sitä oleva, vaan ainoastaan monimutkainen orgaaninen yhdiste, jota elämä tarvitsee. Se voi myös olla elämän tuotos: Maan pinnalla kerogeenia on runsaasti kerrostumissa, joissa on puristuneena ammoisia leviä. Kerogeeni voi olla myös peräisin Marsissa aikanaan olleista aktiivisista tulivuorista.

Milton Keynesissä oleva Avoimen yliopiston tutkija Monica Grady toteaa Sciencen jutussa, että "oletan, että aine on geologista perua, mutta toivon, että se on biologista."

Aeolis Mons ja Curiosityn paikka siellä
Curiosity on viisikilometrisen vuoren vieressä olevalla entisellä järvenpohjalla.

Entä metaani?

Toinen Sciencessä julkaistu juttu kertoo siitä, että Curiosity on havainnut Marsin kaasukehässä lähellä pintaa vähäisiä määriä metaania, ja lisäksi metaanin määrä vaihtelee vuodenaikojen mukaan. Curiosity on tehnyt mittauksiaan jo viiden vuoden ajan, joten kyse ei ole enää yksittäisistä tapauksista.

Marsin metaani on ollut suuren kiinnostuksen kohteena aina siitä alkaen, kun ESAn Mars Express löysi sitä ensimmäisen kerran vuonna 2004. Metaanille on oikeastaan vain kaksi mahdollista lähdettä: vulkanismi tai elämä.

Nykytiedon mukaan Marsissa ei ole enää aktiivista tulivuoritoimintaa, mutta on toki mahdollista, että näkymättömissä pinnan alla tapahtuu edelleen jotain. Yhtä lailla mahdollista on se, että vuodenaikojen mukaan aktiivinen ja passiivinen mikrobielämä pinnan alla tuottaa metaania esimerkiksi sään lämpenemisen innostamana.

Tästäkään ei voi havainnon perusteella sanoa yhtään enempää. Onneksi Marsia kiertää nyt ESAn Trace Gas Orbiter, kiertolainen, joka havaitsee kiertoradaltaan varsin tarkasti Marsin kaasukehässä olevia merkkikaasuja (kuten metaania), ja tämän vuoden marraskuussa Marsiin laskeutuu InSight -laskeutuja, joka pystyy toivottavasti seismometrillään havaitsemaan mahdollista pinnanalaista aktiivisuutta.

Varsinaisen elämän etsimisen kannalta parasta olisi kuitenkin saada Marsista näyte maanpäällisissä laboratorioissa tutkittavaksi. Jo pieni määrä marsperää melkein mistä päin tahansa planeettaa voisi pitää sisällään selviä merkkejä elämästä – jos mitään ei löytyisi, olisi sekin selvä tulos.

Apollo-astronautit sekoittivat mittauksia Kuussa ja tutkijat Maassa

Kuva: NASA
Kuva: NASA
Kuva: NASA / LRO

Tuore tutkimus osoittaa, että astronautit muuttivat havaittavasti Kuussa ympäristöä jonka olosuhteita mittasivat. Tapaus muistuttaa myös siitä, kuinka tärkeää kerätyn aineiston tallentaminen myöhempää käyttöä varten on.

Kuussa 1970-luvulla käyneet astronautit asensivat laskeutumispaikkojensa lähelle lämpötila-antureita. Niitä jätettiin paitsi pinnalle, myös kairattiin pinnan alle.

Antureiden avulla haluttiin selvittää, millainen on Kuun sisäosista tuleva lämpövuo. Oli vielä epäselvää, onko Kuun ydin täysin jäähtynyt, vai yhä kuuma, kuten Maalla. (Nykyisin tiedetään, että ydin on ainakin osittain sula, ja siellä vallitsee 1000 - 2000 asteen lämpötila.)

Anturit toimivat vuosikausia kahdella laskeutumispaikalla: Apollo 15 heinäkuusta 1971 tammikuuhun 1977, ja Apollo 17 joulukuusta 1972 syyskuuhun 1977.

Yllättävin havainto kuitenkin oli, että pinnan alle sijoitetut anturit vaikuttivat vuosien varrella lämpenevän 1-2 asteella. Mittaukset tehtiin niin syvällä, ettei Kuun vuorokauden vaikutus enää siellä näy. Pinnalla ei muutosta rekisteröity.

Ilmiön syystä on käyty juupas-eipäs -keskustelua lähes 50 vuoden ajan. Kukaan ei kuitenkaanmolebaiemmin onnistunut selittämään asiaa tyhjentävästi. Kuuta ulkoa lämmittävä Auringon säteily ei ainakaan ollut muuttunut. Syy oli joko astronauttien toiminnassa, ehkä antureissa tai niiden asennuksessa, tai kenties Kuun radan muutoksissa. Myös Maasta tulevan "ylimääräisen" säteilyn uumoiltiin selittävän havainnot.

Lisäongelman aiheutti sekin, ettei kaikki mittausaineisto ollut enää tallella. Raakadata oli alunperin tallennettu Houstonissa magneettinauhoille, jotka luovutettiin tutkijoille analysoitavaksi ja arkistoitavaksi. Mutta mittausten loputtua oli tutkimusdataa kuitenkin talletettu vain vuoteen 1974 asti. Kolme - kenties ratkaisevaa - vuotta uupui.

Apollo 15:n ja 17:n mittauspaikat. (Nasa)

Hypätään nykyaikaan. Mysteeriä alettin ratkoa perinpohjin uudelleen Houstonin Lunar and Planetary Institutessa, joka perustettiin juuri kuulentojen tieteelliseksi tukiasemaksi. Lopulta vuonna 2010 tutkijat kaikeksi onneksi löysivat NASAn teknisen tiimin rutiininomaisesti tallentamat, ilmeisesti aiemmin unohtuneet "ylimääräiset" varastokopiot toisesta arkistosta. Ja niiden joukosta löytyi satoja logeja, jotka kattoivat lämpötila-antureidenkin tiedot. Mukaanlukien kadonneen loppujakson. Vanhojen nauhojen entisöinti alkoi, ja kesti analysoinnin kera yhteensä kahdeksan vuotta.

Lopulta selvisi, että lämpötilan nousu todella jatkui läpi koko mittausjakson. Mikä mielenkiintoisinta, muutos oli suurinta lähempänä pintaa, ja lämpötilagradientti pieneni ajan mittaan.

Ilmiön syy näkyy selvästi luotainten ottamissa kuvissa, kuten alla, kun sitä osaa etsiä. Maasto on nimittäin poikkeuksetta ympäristöä tummempaa siellä, missä on kävelty tai ajettu kuuautolla. Näissä kohdissa pinta myös imee hieman enemmän Auringosta tulevaa säteilyä.

Kuva: NASA / LRO
LRO-luotaimen ottama kuva Apollo 17:n laskeutimispaikasta. (NASA)

Yksinkertainen malli riitti selittämään, että pinnan muutokset olivat syynä tutkijoita askarruttaneeseen lämpötilan nousuun metrin syvyydellä pinnan alla. Asentaessaan mittalaitteita astronautit olivat onnistuneet muuttamaan miljoonia vuosia tasapainossa ollutta pintamateriaa niin, että se havaittiin - jopa tuon ajan tekniikalla.

Tutkimus julkaistaan piakkoin JGR Planets -julkaisusarjassa.

Kyseessä on oiva esimerkki siitä, kuinka helposti havainnointi lähes aina vaikuttaa mittaukseen. Yleensä vaikutus on häviävän pieni, mutta tällä kertaa se oli havaittava ja päänvaivaa aiheuttava. (Ilmiö on kuitenkin hieman erilainen kuin kvanttimaailmassa vallitseva epätarkkuusperiaate.)

Löytö auttaa myös muiden, jo tehtyjen mittausten tulkinnassa, ja antaa vihiä kuinka tulevia kuututkimuksia kannattaa (tai ei kannata) toteuttaa.

Lähde: AGUn blogi ja tutkimusartikkeli (maksumuurin takana)

Otsikkokuvan kaatuminen ei liity mittausvirheisiin. Kuvat: NASA

Neptunuksen takana tapahtuu outoja - yhdeksättä planeettaa ei ehkä olekaan

Kuva: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)
Kuva: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)

Uusi mallinnus vihjaa, että Neptunuksen takana voi olla paljon enemmän jäisiä kappaleita kuin aiemmin on uskottu. Niiden kollektiivinen painovoima selittäisi monia seudun outouksia paremmin kuin aiemmat mallit.

Vuoden 2016 tammikuussa uutisissa jankattiin "yhdeksännen planeetan löytymisestä". Selitimme tuolloin, ettei kyse suinkaan ollut planeettalöydöstä, vaan mallinnuksesta, jonka mukaan Aurinkokunnan ulko-osissa lymyilisi suuri ja vielä tuntematon planeetta.

Oletetun planeetan olemassaololle löytyy vihjaus muutamien kaukana Neptunuksen radan takana kiertävän kappaleiden outo käytös: Ne kiertävät Aurinkoa niin kaukana ja niin elliptisiä ratoja pitkin, ettei asiaa voida nykytiedolla selittää. Niiden kuitenkin oletetaan siirtyneen nykyradoilleen jollain, vielä tuntemattomalla tavalla. Kappaleita, joista kuuluisin on 90377 Sedna, kutsutaan "irronneiksi kappaleiksi" (engl. detached object).

Ongelmakappaleiden radat ovat kaukana Neptunuksen radan tuolla puolen, keskellä aika pitkälti ei mitään. Neptunus ei siis ole voinut tuupata niitä radoilleen. Tähän mennessä paras idea on ollut, että jossain lymyää jotain suurta ja massiivista, joka on saanut ratoja häirittyä.

Vasta julkistettu uusi mallinnus taas osoittaa, että mitään suurta tuntematonta planeettaa ei tarvita. Uuden ajatuksen mukaan alueen kaikki kappaleet yhdessä saisivat itse aikaan ratojen outoudet. Syy olisi niiden kollektiivisessa painovoimassa.

Uusi malli julkistettiin 4.6. American Astronomical Societyn vuotuisessa kokouksessa Koloradossa. Itse tutkimus on vastikään lähetetty vertaisarvioitavaksi the Astrophysical Journaliin.

Tutkimuksessa mukana ollut Ann-Marie Madigan kuvailee mallin antamaa ennustusta: "Siellä on paljon kappaleita, ja mitä niiden kollektiivinen gravitaatio saakaan aikaan. Voimme ratkaista monia ongelmia ottamalla tämän asian huomioon. Oppikirjoihin piirretty kuva Aurinkokunnan ulko-osista joudutaan ehkä tekemään uusiksi. Noilla seuduilla on paljon enemmän tavaraa kuin aiemmin oletimme. Kun päästään Neptunuksesta vähän kauemmas, asioissa ei oikein tunnu enää olevan järkeä, ja se on todella jännittävää!"

Ilmiön huomasi ensimmäisenä opiskelija Jacob Fleisig, jonka tehtävänä oli mallintaa kappaleiden liikkeitä. Hän huomasi, että neptunuksentakaiset jäiset kappaleet kiertävät Aurinkoa kuin kellon viisarit. Jotkin liikkuvat nopeasti ja yhdessä, ikään kuin minuuttiviisarissa. Toiset, Sednan kaltaiset, liikkuvat tuntiviisarin tavoin hitaasti. Ja joskus viisarit myös kohtaavat: Kun nopeammat rykelmänä kulkevat kappaleet pyyhkäisevät hitaamman ja suuremman kohteen suuntaan, niiden yhteinen gravitaatio muokkaa sen rataa. Hitaan kohteen rata muuttuu normaalista irronneeksi. Kappaleiden radat muuttuvat ajan kanssa, sitä mukaa kun ne kohtaavat ja vuorovaikuttavat.

Kun pieniä kappaleita on paljon ja ne pyyhältävät toistuvasti toistensa ohi, tulee vaikutuksesta aikaa myöten hyvin merkittävä.

Malli sopii myös aiempiin havaintoihin ja antaa niille syyn: Vuonna 2012 huomattiin, että mitä suurempi irronut kappale on, sitä kauempana se Aurinkoa kiertää. Sedna on suurin kappale mikä alueelta on toistaiseksi löydetty, ja myös kauimmainen ainakin perihelinsä osalta. Sednan läpimitta on noin 1000 kilometriä. Tämä tekee siitä todennäköisen joskin vielä varmistamattoman kääpiöplaneetan.

Sednan kiertoaika Auringon ympäri on lähes 11500 vuotta. Kauimmillaan se käy 900 AU:n etäisyydellä Auringosta, ja lähimmilläänkin se jää yli 75 AU:n päähän. Neptunus taas viettää kaiken aikansa paljon lähempänä, "vain" 29,8-30,4 AU:n etäisyydellä, Pluto ja muut seudun varmistetut kääpiöplaneetat 30-50 AU:n päässä. (AU tarkoittaa astronomista yksikköä, eli Maan ja Auringon välistä etäisyyttä.)

Malli saattaa myös auttaa ymmärtämään Maassa koettuja joukkotuhoja. Kappaleiden ratojen muuttuessa osa niistä sinkoutuu komeettoina kohti aurinkokunnan sisäosia. Tilastolliset muutokset ovat periodisia ja ennustettavissa. Varmuutta asiaan ei ehkä saa, mutta ajatus on varsin kutkuttava.

Jutun pohjana käytettiin Coloradon yliopiston tiedotetta. Tutkimusartikkelin käsikirjoitukseen voi tutustua ArXiv-palvelussa.

Aiheesta kertoi Suomessa ensimmäisenä Tähdet ja Avaruus.

Otsikkokuvassa taiteilijan näkemys Sednasta ja Auringosta sieltä nähtynä. Pallomaiseksi oletetun Sednan tiedetään olevan pinnaltaan varsin punertava. (NASA/JPL-Caltech/R. Hurt)

Kuu on aina pidentänyt Maan vuorokautta

Vuorokauteen tulee jatkuvasti lisää tunteja, mutta niin hitaasti, että pahimpiin kiireisiin se ei ihan heti tuo helpotusta.

1,4 miljardia vuotta sitten Maan pyörähdysaika oli vain hieman yli 18 tuntia. Syypää löytyy ihan naapurista: oma kiertolaisemme Kuu.

"Kun Kuu loittonee, Maa on kuin piruettia tekevä taitoluistelija, jonka pyöriminen hidastuu, kun hän ojentaa kätensä", havainnollistaa Stephen Meyers.

Uudessa tutkimuksessa Meyers on kollegoineen kehitellyt tilastollisen menetelmän, jolla tähtitieteellinen teoria ja geologiset havainnot pystytään linkittämään toisiinsa. Kiviin ja kallioihin rekisteröinyt tieto kertoo menneistä ajoista, sekä Aurinkokunnan historiasta että muinaisista ilmastonmuutoksista.

"Tavoitteenamme oli soveltaa astrokronologiaa ajanmääritykseen kaukaisessa menneisyydessä ja hahmottaa hyvin vanhoja geologisia ajanjaksoja", Meyers toteaa.

"Pyrimme tutkimaan miljardeja vuosia vanhoja kiviä samaan tapaan kuin selvittelemme nykyisiä geologisia prosesseja."

Maan liikkeeseen vaikuttavat vetovoimallaan muut Aurinkokunnan kappaleet, sekä planeetat että Kuu. Ne muuttavat Maan rataliikettä, pyörähdysaikaa ja pyörimisakselin asentoa. Aikakausien kuluessa tapahtuneet muutokset noudattavat Milankovićin jaksoja, jotka vaikuttavat auringonvalon jakautumiseen maanpinnalla ja sitä kautta ilmaston hitaaseen muuttumiseen.

Pitkät jaksot näkyvät kivissä, joilla on ikää satoja miljoonia vuosia. Sitä kauemmas menneisyyteen on kuitenkin vaikea kurkistella, sillä geologiset ajoitusmenetelmät eivät ole enää riittävän tarkkoja, kun puhutaan miljardeista vuosista.

Tutkimusta vaikeuttaa myös epävarmuus Kuun ja sen rataliikkeen historiasta sekä Aurinkokunnan kaoottisuus. Jacques Laskarin vuonna 1989 esittämän teorian mukaan vähäiset vaihtelut planeettojen radoissa kumuloituvat vuosimiljoonien kuluessa merkittäviksi muutoksiksi, joita on vaikea laskea ajassa taaksepäin.

Jo aiemmin Meyers on kollegoineen pystynyt määrittämään kivikerrostumista Maan ilmastohistoriaa 90 miljoonan vuoden taakse, mutta mitä pidemmälle tähdätään, sitä suurempia ovat epävarmuustekijät.

Esimerkiksi Kuu etääntyy tällä hetkellä Maasta 3,82 senttimetrin vuosivauhdilla. Jos loittonemisnopeus on pysynyt samana, 1,5 miljardia vuotta sitten Kuu olisi ollut niin lähellä Maata, että vuorovesivoimat olisivat repineet sen hajalle. Tiedämme kuitenkin Kuulla olevan ikää noin 4,5 miljardia vuotta. Jokin ei täsmää.

Vuonna 2016 Meyers aloitti yhteistyön Alberto Malinvernon kanssa, ja he onnistuivat kehittämään tilastollisen menetelmän, jolla tähtitieteellinen ja geologinen tieto saatiin yhdistettyä luotettavaksi dataksi.

He testasivat TimeOptMCMC-menetelmäänsä kahdessa kalliokerrostumassa, Kiinan pohjoisosissa sijaitsevassa Xiamaling-muodostelmassa, jolla on ikää 1,4 miljardia vuotta, ja eteläisellä Atlantilla 55 miljoonan vuoden ikäisessä Walvis-harjanteessa.

Uudella menetelmällä he pystyivät määrittämään geologisten havaintojen perusteella sekä Maan pyörimisakselin suunnassa että kiertoradan muodossa tapahtuneet vaihtelut. Samalla selvisi vuorokauden pituus ja Kuun etäisyys Maasta eri aikakausina.

Tutkimuksesta kerrottiin Wisconsinin yliopiston (Madison) uutissivuilla ja se on ilmestynyt Proceedings of the National Academy of Sciences -tiedejulkaisussa (maksullinen).

Kuva: NASA

Yllättävä tulos: paino vaikuttaa astronauttien näkökykyyn

Painottomuuden tai tarkemmin sanottuna mikrogravitaation on todettu heikentävän avaruuslentäjien näkökykyä. Kaikilla niin ei tapahdu ja nyt on löytynyt yksi asiaan vaikuttava tekijä.

SANS-oireyhtymä (spaceflight-associated neuro-ocular syndrome) saa aikaan silmässä näkökykyyn vaikuttavia rakenteellisia muutoksia, kuten turvotusta ja verisuoniston poimuttumista silmän takaosassa.

Maan vetovoimassa ihmisen oma paino aiheuttaa painetta kehon eri puolilla, mikä puolestaan vaikuttaa esimerkiksi verenpaineeseen. Jos elopaino on isompi, on syntyvä painekin luonnollisesti suurempi.

Painottomuudessa samanlaista painetta ei esiinny, jolloin kehon eri osissa ja elimissä voi tapahtua merkittäviäkin muutoksia. Tutkijoiden mukaan nämä muutokset näyttävät olevan sitä isompia mitä suurempi muutos paineessa tapahtuu.

Toisin sanoen painavammilla astro- ja kosmonauteilla fysiologiset muutokset ovat suurempia.

Tutkimusta varten kerättiin tietoja astronauteista, jotka olivat avaruusasemalla pitkiä aikoja, keskimäärin 165 vuorokautta. Pituuden, painon ja muiden kehon mittojen lisäksi tarkasteltiin silmissä tapahtuneita muutoksia.

Tulosten perusteella yksikään naisastronautti ei kärsinyt SANS-oireyhtymästä. Sukupuoli ei kuitenkaan selitä ilmiötä kokonaan, sillä miehillä havaittiin selvä riippuvuus kehon koon ja painon sekä SANS-oireiden välillä: mitä kookkaampi ja painavampi astronautti, sitä todennäköisemmin pitkäaikainen oleskelu painottomassa tilassa aiheutti silmissä muutoksia, jotka vaikuttivat näkökykyyn.

Tutkimuksella on merkitystä paitsi avaruusasemalle tehtävien lentojen myös tulevien Mars- ja mahdollisten asteroidilentojen kannalta, sillä niiden aikana matkalaiset ovat väistämättä pitkiä aikoja painottomuudessa – ellei aluksiin kehitetä keinotekoista gravitaatiota pyörimisliikkeen avulla.

Tutkimuksesta kerrottiin American Physiological Societyn uutissivuilla ja se on julkaistu American Journal of Physiology -tiedelehdessä.

Kuva: NASA

Video: SpaceShip2:n rakettilento reaaliajassa

Video: SpaceShip2:n rakettilento reaaliajassa

Kerroimme keskiviikkona SpaceShip2:n tuoreimmasta lennosta. Tässä on siitä kaunis video.

01.06.2018

VSS Unity teki tiistaina illalla Suomen aikaa Kaliforniassa, Mojaven autiomaan päällä koelennon, jonka aikana sen rakettimoottori käynnistettiin. Moottori ei toiminut vielä täyttä aikaa, vaan sen annettiin toimia vain 31 sekunnin ajan.

Poltto kiihdytti aluksen 1,9 -kertaiseen äänen nopeuteen ja sysäsi laajaan heittoliikkeeseen ylöspäin. Unity nousi 34,9 kilometrin korkeuteen, eli komeasti stratosfäärin puolelle korkeuksiin, jonne yleensä noustaan vain erikoisvalmisteisin ilmapalloin.

Yllä oleva video näyttää tuon lennon. Lennon alusta ja lopusta on vain palasia, mutta koko rakettimoottorin toiminta ja sen jälkeen ollut lento ylös ja alas on videolla reaaliajassa teleskoopin läpi kuvattuna – paljain silmin alus oli vain piste taivaalla.

Lopullisilla avaruuteen saakka yltävillä lennoilla periaate on sama: SpaceShip2 pudottautuu kantoaluksensa alta omille teilleen ja käynnistää moottorinsa, jonka toimiessa se kääntyy lentämään lähes suoraan ylöspäin. Moottorin sammuttua alus jatkaa lentoaan ylöspäin aivan kuten taivaalle heitetty kivi jatkaisi, ja moottorin sammumisen sekä ilmanvastuksen hidastavan vaikutuksen välissä olevana aikana vallitsee aluksessa käytännössä painoton tila – tarkalleen ottaen vapaa pudotusliike, mikropainovoima. 

Näillä lennoilla heittoliikkeen "painottomuusosa" kestää kuutisen minuuttia. Sen aikana matkustajat voivat leijua vapaasti aluksen sisällä ja tuntea olonsa hyvin astronautillisiksi; myös maisemat aluksen ulkopuolella ovat etenkin siellä noin sadan kilometrin korkeudessa upeat, sillä taivas on lähes yhtä musta kuin avaruudessa ja maapallon pinta kaartuu jo selvästi.

Koelennot etenevät nyt nähtävästi hyvin, mutta varsinaisten avaruusturistilentojen alkaminen tämän vuoden lopussa (tai pikemmin ensi vuoden alussa) vaatii sitä, että kaikki sujuu jatkossakin erinomaisesti. Unity saattaa lentää jo seuraavalla koelennollaan avaruuteen, mutta ilmailuviranomaiset vaativat vielä monia lentoja ja testejä ennen kuin koneen annetaan lennättää maksavia matkustajia.

Video on koottu kahdesta Virgin Galacticin julkaisemasta videosta.