Maapallon vartijat

Maapallon vartijat

Vain muutamaa kuukautta Gaian laukaisun jälkeen on jälleen vuorossa ESAn uuden satelliitin laukaisu: nyt matkaan lähteen Sentinel 1, uuden sukupolven kaukokartoitussatelliitti.

Sentinel 1 on tutkasatelliitti ja eräällä tapaa maailman suurimman ympäristösatelliitti Ensivatin seuraaja. Siinä missä vuonna 2002 laukaisu Envisat oli suuri ja varustettu kymmenellä tehokkaalla eri tavoin Maata ja sen ympäristöä havainneella mittalaitteella, on Sentinel 1 pienempi ja siinä on mukana vain tutka: pilvien läpi näkevä, mantereita, meriä ja jäätiköitä kartoittanut tutka oli kenties Envisatin tärkein havaintolaite.

Nyt tutka on paitsi parempi, lähetetään niitä peräti kaksi avaruuteen, sillä Sentinel 1 koostuu kahdesta satelliitista. Niistä ensimmäinen, Sentinel 1A on lähdössä nyt ja sen sisarsatelliitti, samanlainen Sentinel 1B seuraa sitä ensi vuonna. Näin satelliitit pystyvät keräämään havaintoja yhdessä tuplanopeudella ja vaikka toinen satelliiteista sammuisi, olisi toinen käytössä senkin jälkeen.

Sentinel 1 laukaistaan lähes Maan napojen kautta kulkevalle ns. aurinkosynkroniselle kiertoradalle, joka korkeus on keskimäärin 693 km. Itse satelliitti on 2,8 metriä pitkä, 2,5 m leveä ja 4 metriä korkea laatikko, mistä sojottaa sivuille kaksi kymmenmetristä aurinkopaneelia sekä alaosassa 12 metriä pitkä tutka-antenni.

Tutka on niin sanottu SAR-tutka, Synthetic Aperture Radar, eli suuren laskennallisen läpimitan tutka. Tämä tarkoittaa sitä, että tutkamittauksissa käytetään hyväksi satelliitin liikkumista ja matematiikkaa: kun satelliitti kulkee eteenpäin radallaan ja se kuvaa koko ajan allaan olevaa maastoa, voidaan useiden satojen metrien päässä toisistaan otettujen tutkamittausten kaiut käsitellä yhdessä aivan kuin ne olisi tehty yhdellä suurella, satoja metriä halkaisijaltaan olevalla antennilla. Näin tutkan tarkkuus on paljon parempi kuin olisi yhden 12-metrisellä antennilla varustetun perinteisen mikroaaltotutkan.

Parhaimmillaan tutkakuvat ovat tarkkuudeltaan viiden metrin luokkaa, jolloin kuvauskaista satelliitin alla on 250 km leveä. Sentinel 1 voi myös kartoittaa laajasti, noin 400 km leveää siivua Maan pinnalta allaan, jolloin resoluutio on 40 m.

Satelliitin tietoja voidaan ottaa vastaan Huippuvuorilla, Italian Materassa ja Maspalomasin antennilla Gran Canarian lomasaarella. Samoin Kiirunassa, Ruotsissa, oleva ESAn maa-asema voi ottaa vastaan sen kuvia, mutta Kiirunan päätehtävä on toimia Sentinel 1:n lennonjohtona.

Sentinel 1:n uutuus on laserlinkki, jonka kautta se voi lähettää tietojaan rutiininomaisesti ESA:n EDRS-järjestelmän kautta. European Data Relay System, eli Eurooppalainen tietojenvälitysjärjestelmä tulee koostumaan neljästä vastaanotin-lähettimestä, jotka asennetaan geostationaariradalle laukaistaviin tiedonvälityssatelliiteihin. Ensimmäinen EDRS-laite on mukana Eutelsat 9B -satelliitissa, joka laukaistaan avaruuteen ensi vuonna. Laitteiden avulla ESAn satelliitit voivat lähettää tietojaan laserlinkillä johonkin kolmesta laservastaanottoasemasta, jotka sijaitsevat Weilheimissä, Saksassa, Redussa, Belgiassa ja Harwellissä, Iso-Britanniassa.

Tässäkin mielessä Sentinel 1 on uuden ajan avaus.

ESA palkitsee ensimmäiset Galileo-paikantajat Anonyymi (ei varmistettu) Su, 16/03/2014 - 14:23
ESA palkitsee ensimmäiset Galileo-paikantajat

Uuden eurooppalaisen Galileo-paikannussysteemin neljä ensimmäistä satelliittia laukaistiin avaruuteen vuosina 2001 ja 2012. Tämä oli minimimäärä satelliitteja, mikä vaaditaan paikantamiseen, mutta silti tuolloin Galileo oli vielä pienen askeleen päässä käyttöön ottamisesta.

Noin vuoden kestäneen työn jälkeen Galileon maalaitteistotkin olivat viimein käyttökunnossa, joten maaliskuun 12. päivänä 2013 tehtiin Galileo-systeemin ensimmäinen kunnollinen paikannus. Tämä tapahtui ESAn navigaatiolaboratoriossa ESTECissä, Alankomaissa, ESAn tekniikkakeskuksessa. Siitä tuli historian ensimmäinen paikka, joka tarkka sijainti tiedettiin myös Galileon määrittämänä.

Sen jälkeen systeemiä on testattu intensiivisesti. Nyt mukana työssä oli ESAn paikannusväen lisäksi myös navigoinnista kiinnostuneet tutkimuslaitokset ja teolliset yritykset, jotka ovat tuomassa markkinoille Galileo-paikannuslaitteita.

Niinpä ensimmäiset Galileo-paikantimet ovat nyt jo saatavilla ja ESA juhlistaa tätä antamalla kunniakirjat ensimmäisille, jotka onnistuvat nappaamaan taivaalta signaalin neljästä Galileo-satelliitista ja määrittämään niiden avulla sijaintinsa.

Tarkemmat tiedot vaadittavasta sijainninmäärityksestä ja kunniakirjakampanjasta on ESAn nettisivuilla.

Parempaan käyttöön Galileo tulee myöhemmin tänä vuonna, kun uusia satelliittia laukaistaan avaruuteen. Suunnitelmissa on laukaista kaksi Soyuz ST-B -kantorakettia vuoden toisella puoliskolla Kouroun avaruuskeskuksesta, ja kumpikin laukaisu veisi mukanaan kaksi satelliittia. Näin avaruudessa olisi vuoden lopussa jo kahdeksan satelliittia – näistä kaksi on ensimmäisiä testisatelliitteja ja kuusi jo lopullisia satelliitteja.

Lopulta Galileo-konstellaatioon kuuluu 30 satelliittia, joiden avulla järjestelmä toimii kaikkialla maapallolla. Jos kaikki sujuu hyvin, on Galileo täysin valmis vuonna 2020, mutta se olisi siis käytettävissä jo tästä vuodesta alkaen.

Testilaitteiden lisäksi kaupan hyllyille normaaliin myyntiin tarkoitettuja Galileo-paikannuslaitteita tulee myös markkinoille tästä vuodesta alkaen. Monet eri laitteisiin asennettavat satelliittipaikannuspiirit ovat jo teknisesti valmiita ottamaan vastaan Galileo-signaalia, mutta ne vaativat vielä ohjelmistopäivitykset toimiakseen.

Lue myös hyvä tietopaketti Galileosta!

Keksi nimi Andreasin lennolle!

Keksi nimi Andreasin lennolle!

ESAn tanskalainen avaruuslentäjä Andreas Mogensen nousee kansainväliselle avaruusasemalle ensi vuonna, mutta hänellä on ongelma: hänen avaruuslennollaan ei ole vielä nimeä.

Eurooppalaisilla avaruuslennoilla on aina ollut virallisen koodin lisäksi jokin erityinen, lennon henkeä kuvaava nimi. Esimerkiksi Luca Parmitanon puolivuotinen lento avaruusasemalle viime vuonna kantoi nimeä Volare, koska Luca on lentäjä ja hänelle lento avaruuteen oli äärimmäisin lentämisen muoto. Samantha Christoferettin tuleva lento on Futura ja Alexander Gerstin lento on Blue Dot, eli "sininen piste".

Lista edellisistä ESAn lentojen nimistä on ESAn miehitettyjen avaruuslentojen sivulla.

Jotta pohjoismaalaiselle astronautille saataisiin hyvä lennon nimi, pyytää ESA myös suomalaisilta ehdotuksia. Andreasin lento tulee kestämään kymmenen vuorokautta – eli kyseessä ei ole tällä kertaa pitkäkestoinen lento – mutta senkin aikana tehdään runsaasti tutkimusta. Lennon pääpaino on teknologian testaamisesssa. Lennosta kerrotaan suomeksi mm. tässä Tiedetuubin artikkelissa.

Andreas on koulutukseltaan insinööri ja hän on ollut mukana myös esimerkiksi ESAn kuulaskautujaa tutkineessa hankkeessa sekä Swarm-lennossa. Hänet valittiin astronautiksi vuonna 2009.

Rugbyä, koripalloa, vuorikiipeilyä sekä laskuvarjohyppyjä harrastava tanskalainen on ollut aina kiinnostunut tieteistä, etenkin astrofysiikasta ja eksobiologiasta.

Millainen nimi lennolle?

Nimelle ei aseteta moniakaan ennakkovaatimuksia. Sen tulisi olla lyhyt ja iskevä, ja mikä tärkeintä, nimi ei saa olla tai siinä ei saa olla osana mikään tekijänoikeussuojattu nimi tai merkki. Siinä ei saa siten olla henkilöiden tai asioiden nimiä, elleivät ne ole esimerkiksi mytologisia tai yleisesti tunnettuja symboleja. Se voi koostua myös useammasta sanasta. Nimen lisäksi ehdotuksessa tulisi olla lyhyt selitys siitä, miksi nimi on hyvä.

Kilpailu on avoin vain ESAn jäsenmaiden asukkaille.

Ehdotukset tulee lähettää viimeistään 24. maaliskuuta 2014 klo 13 Suomen aikaa (12:00 Keski-Euroopan aikaa).

Tarkat tiedot kilpailusta ja osallistumislomake ovat ESAn nettisivuilla (englanniksi).

Vaivaa aivojasi ja keksi Andreasin lennolle hyvä nimi!

 

Luolamiehet keksivät lämpösuojan aurinkoluotaimelle

Luolamiehet keksivät lämpösuojan aurinkoluotaimelle

ESA ja NASA ovat tekemässä yhdessä luotainta, jonka tehtävä on lähes itsemurha: lähestyä kuumaa Aurinkoa vain noin 42 miljoonan kilometrin etäisyydelle ja kuvata sekä mitata sitä tältä lähietäisyydeltä.

Solar Orbiter -luotain on tarkoitus laukaista matkaan vuonna 2017, mutta sen tekemisessä on edelleen monia haasteita. Yksi suurimmista on sen lämpökilpi, jota luotain tarvitsee suojautuakseen Auringon polttavalta paahteelta.

Koska tarkoituksena on lähennellä Aurinkoa, ei luotaimella ole mitään paikkaa viilentymiseen. Esimerkiksi Merkuriusta kierrettäessä luotain pääsee hetkeksi vilvoittelemaan planeetan varjoon. Solar Orbiter joutuu kestämään 13 kertaa voimakkaampaa Auringon säteilyä verrattuna Maata kiertäviin satelliitteihin ja sen pintalämpötila tulee nousemaan yli 520°C:n.

Lämpökilpi luo luotaimelle omatekoisen varjon.

"Luotain itse on suojassa tämän 3,1 metriä leveän ja 2,4 metriä korkean monikerroksisen kilven takana", selittää Pierre Olivier, Solar Orbiterin turvallisuudesta vastaava insinööri. 

“Luotain on piemen matkan päässä kilvestä ja sen kamerat sekä tutkimuslaitteet katsovat kohti Aurinkoa kilvessä olivien kurkistusreikien kautta. Jotkut näistä on suojattu berylliumilla tai lasilla.”

Opiskelijat! Saisiko olla mikro- tai hyperpainovoimaa?

Opiskelijat! Saisiko olla mikro- tai hyperpainovoimaa?

Elämä ja koko luonto ympärillämme on tottunut elämään normaalipainovoimassa, Maan vetovoimassa. Jotta voisimme ymmärtää paremmin elämää maapallolla tai erilaisia kemiallisia tai fysikaalisia prosesseja, olisi mielenkiintoista suorittaa kokeita vetovoimassa, joka on joko suurempi tai pienempi kuin tämä normaali 1g.

Tiedetään, että kasvit käyttäytyvät kummallisesti ja esimerkiksi metallit sekoittuvat yllättävillä tavoilla mikropainovoimassa, eli enemmän tai vähemmän täydellisessä painottomuudessa. Samoin hypergravitaatio saa aikaan omalaatuisia ilmiöitä.

Suomessa ei ole käytettävissä laitteita, joilla eri tasoisia kiihtyvyyksiä voidaan luoda keinotekoisesti, mutta myös suomalaiset tutkijat voivat käyttää hyväkseen monia Euroopassa sijaitsevia laitoksia. Monet näistä tutkimusohjelmista tapahtuu Euroopan avaruusjärjestön koordinoimina - onhan painottomuus sekä suuret kiihtyvyydet sille arkipäivää.

ESA tarjoaa myös mahdollisuuksia opiskelijoille ja opiskelijaryhmille päästä tekemään tutkimusta näissä laitoksissa. Myös suomalaiset ovat tervetulleita mukaan ESAn koulutustoimiston Spin Your Thesis! ja Drop Your Thesis! -ohjelmiin. Tämän vuoden haku on käynnissä ja määräpäivä tutkimusehdotuksen jättämiseen on 3. maaliskuuta 2014.

Itse asiassa suomalaisryhmillä on hyvät mahdollisuudet päästä mukaan, koska tieteellisen kiinnostavuuden lisäksi opiskelijaohjelmassa otetaan huomioon se, kuinka paljon kustakin maasta on ollut osallistujia.

Spin Your Thesis! käyttää hyväkseen ESTECin, Alankomaissa olevan ESAn avaruustutkimus- ja teknologiakeskuksen suurta sentrifugia. ESTECin LDC-tutkimussentrifugissa (Large Diameter Centrifuge) koejärjestelyjä voidaan pyörittää pitkänkin aikaa, jolloin keskihakuisvoima, eli niin sanottu keskipakovoima, saa aikaan keinotekoisen voimakkaan painovoiman. Voiman taso voidaan valita välillä 1-20g.

Valitut ryhmät saavat sentrifugin ja sen henkilökunnan käyttöönsä viiden päivän ajaksi.

Drop Your Thesis! -tutkimukset tapahtuvan Bremenissä, Saksassa, olevassa Sovelletun avaruustekniikan ja mikropainovoiman keskuksessa, ZARMissa, missä on eräs maailman korkeimmista pudotustorneista. Kyseessä on 146 metriä korkea torni, jonka sisällä on suuri tyhjöputki, jonka sisällä koejärjestelyjä voidaan pudottaa erityisessä kapselissa. Kun kapseli putoaa vapaasti, sen sisällä vallitsee mikropainovoima, ja kun pelkän pudottamisen lisäksi kapseli singotaan alhaalta vapaaseen heittoliikkeeseen ylöspäin, saadaan aikaan maksimissaan 9,3 sekuntia painottomuutta.

Täälläkin valitut opiskelijaryhmät saavat koko pudotustornin henkilökuntineen käyttöönsä kokeen tekemiseen ja toistamiseen tarvittavaksi ajaksi. Kummassakin tapauksessa ESAn henkilökunta on myös paikalla, ja he avustavat jo aikaisemmin koejärjestelyjen suunnittelussa ja tekemisessä.

Lisätietoja kummastakin ohjelmasta on ESAn koulutustoimiston (ESA Education Office) nettisivuilla, missä on myös tarkemmat ohjeet, kriteerit sekä ehdot tutkimusehdotuksille.

Nettisivuilla kannattaa kirjautua hakijaksi, vaikka hakemus ei olisi vielä valmis; sitä voi täydentää myöhemmin ja sen tulee olla valmis 3. maaliskuuta, jolloin se tulee toimittaa hakuun.

Lisätietoja kummastakin ohjelmasta saa ESAn koulutustoimistosta, missä näistä vastaa Natacha Callens. Hänelle voi lähettää sähköpostia osoitteisiin spinyourthesis@esa.int ja dropyourthesis@esa.int.

Muista komeettagladiaattori Giotto!

Muista komeettagladiaattori Giotto!

Kun Rosetta lähestyy nyt komeetta Churyumov-Gerasimenkoa ja herää maanantaina toimintaan, ei kyseessä ole ensimmäinen kerta, kun Euroopan avaruusjärjestö tekee huimapäistä komeettatutkimusta. Maaliskuun 13. ja 14. päivien välisenä yönä vuonna 1986 tehtiin historiaa, kun ESAn pieni Giotto-luotain teki uhkarohkean ohilennon läheltä Halleyn komeetan ydintä.

Kyseessä oli paitsi ensimmäinen lähikohtaaminen pyrstötähden kanssa, niin myös ensimmäinen kerta, kun eurooppalainen avaruusalus oli toiminnassa maapallon lähitienoita kauempana.

Ohilentoa seurattiin silmä kovana kautta maailman, ja muistan itsekin olleeni tuolloin korva kiinni radiossa. Tapahtumaa ei silloin voinut seurata reaaliajassa netissä, mutta onneksi YLEn kirjeenvaihtaja oli paikan päällä Saksassa, missä Darmstadtin lennonjohdosta oli suora lähetys radiossa ja televisiossa.

Vain lennonjohdossa nähtiin tuolloin välittömästi Giotton lähettämät kuvat, joten sinne oli kokoontunut suuri määrä tutkijoita.

Eräs heistä oli saksalainen Gerhard Schwehm, joka toimii nyt Rosetta-lennon tieteellisenä johtajana. Koska Rosetta-hanke on kestänyt pitkään, nuorena tutkijana Giotto-ryhmässä mukana ollut Schwehm olisi normaalisti jo eläkkeellä, paitsi että ei ole. On hyvä, että hankkeen toteuttanut henkilö vie sen loppuun saakka.

"Jo ensimmäiset komeetan ytimestä otetut kuvat tekivät lennon perustelluksi, ne olivat niin tarkkoja ja hyviä", muistelee Schwehm Giotton ohilentopäivää. "Monet kollegamme kritisoivat lentoa etukäteen siksi, että heidän mielestään ohilennolla ei saataisi tarpeeksi tuloksia ja sen hyöty olisi mitätön, mutta kuvat osoittivat toisin."

Luotain kulki komeetan ytimen ympärillä olevan aurinkotuulen iskurintaman (shokkiaaltojen alue, joka syntyy suurella nopeudella kulkevien Auringon hiukkasten hidastuessa alle äänennopeuteen) läpi ja saapui komeetan pölyisen koman tiheimpään osaan, jolloin kamera alkoi seurata näkökenttänsä kirkkainta kohdetta: Halleyn ydintä.

Utuisat kuvat piirtyivät ESOCin suuren lennonvalvontahuoneen seinälle ja näyttivät miten jättimäiseltä maapähkinältä näyttänyt kappale tuli lähemmäksi ja lähemmäksi.

Paitsi kaasua, on komeetan ympärillä paljon hiukkasia ja pieniä kappaleita, jota irtoavat ytimestä komeetan ympärille ja näkyvät lopulta komeana pyrstönä. Mitä lähemmäksi Giotto tuli komeettaa, sitä enemmän näitä hitusia törmäsi luotaimeen. Ensimmäinen isku tuli pari tuntia ennen hetkeä, jolloin luotain oli lähimpänä komeetan ydintä. Noin 2000 kilometrin päässä ytimestä Giotto kulki läpi ytimestä ulos avaruuteen syöksyvän materiasuihkun läpi, jolloin se joutui voimakkaan pommituksen kohteeksi.

Vajaat kahdeksan sekuntia ennen hetkeä, jolloin luotain oli lähimpänä komeettaa, törmäsi Giottoon noin gramman painoinen hitunen, joka heitti 244 800 kilometrin tuntinopeudella eteenpäin syöksyneen Giotton huimaan pyörimisliikkeeseen. Yhteys Maahan katkesi, kun luotaimeen kiinteästi asennetun antennin keila alkoi pyöriä majakkamaisesti ympäriinsä. Kuvavirta katkesi ja lennonjohdossa uskottiin, että luotain oli mennyttä – mutta ei, hetken päästä lennonjohdossa kuultiin satunnaisia datapurskeita luotaimesta, kun antennin keila pyyhki lyhyesti Maan suuntaan. Giotto oli hengissä.

Eikä vain hengissä, vaan se koitti epätoivoisesti vakauttaa lentoaan, ja onnistuikin seuraavien 32 minuutin aikana saamaan pyörimisen loppumaan ja palauttamaan yhteyden Maahan normaaliksi.

Luotain oli ohittanut Halleyn ytimen vain 596 kilometrin etäisyydeltä ja oli jälleen matkalla kohti planeettainvälistä avaruutta. Kaikkiaan siihen osui noin 12 000 enemmän tai vähemmän suurta hiukkasta, mutta ainoa olennainen vaurio oli kameran rikkoutuminen. Onneksi se ennätti kuitenkin lähettämään tärkeimmät, huimat lähikuvat komeetan ytimestä.

"Saatoimme ensimmäisen kerran nähdä, että komeetan ydin on kiinteä, kompakti kappale, minkä lisäksi sen pinnalla olevat aktiivisuusalueet olivat selvästi paikallisia alueita, eikä koko pinta ollut suinkaan tasaisesti aktiivinen", Schwehm kertoo. Tätä ei voitu aikaisemmin varmuudella sanoa.

"Giotto vahvisti myös sen, että komeetasta lähtevässä kaasussa on paljon erilaisia orgaanisia molekyylejä. Mukana oli myös pölyn analysointilaitteet, jotka saivat selville millaisista mineraaleista komeetasta irtoavat pölyhiukkaset koostuvat ja kuinka suuria ne ovat."

Giotton avulla voitiin tutkia myös tarkasti sitä, miten komeetasta suihkuava kaasu vuorovaikuttaa Auringosta koko ajan ulospäin virtaavaan kaasuun, aurinkotuuleen. "Komeetan ytimen ympärillä on kaasusta ja pölystä koostuva pilvi, koma, johon aurinkotuuli törmää ja venyttää siitä komeetalle sen pitkän pyrstön. Pystyimme mittaamaan hyvin aurinkotuulen ja koman vuorovaikutusta, mikä on kiinnostavaa myös siksi, että komeetalla ei ole magneettikenttää, joka vaikuttaa esimerkiksi Maan ympärillä olevan kaasun ja aurinkotuulen vuorovaikutukseen", kertoo Schwehm edelleen ja toteaa, että komeetta on itse asiassa kiinnostava plasmafysiikan laboratorio.

Tarkalleen ottaen Giotton havaintojen mukaan Halleyn komeetan ytimestä ulospäin virtaava kaasu oli 80-prosenttisesti vettä, 10-prosenttisesti hiilidioksidia ja 2,5 % sitä oli metaania ja ammoniakkia. Lisäksi mukana oli muita hiilivetyjä, rautaa ja muita aineita pieninä pitoisuuksina. Komeetan ydintä peitti tumma, hiiltäkin mustempi aine, ja pinta oli huokoista, rosoista ja hyvin kevyttä ainetta.

Myös teknisesti Giotto onnistui erinomaisesti. Tutkittuaan ensin Halleytä, nuorta ja aktiivista pyrstötähteä, se kävi mittaamassa (kamera ei enää toiminut) sen jälkeen vanhempaa Grigg-Skjellerupia, jonka läheltä se uskaltautui lentämään vain noin 200 km:n päästä. Se oli myös ensimmäinen ihmisen tekemä luotain, joka palasi Maan luokse planeettainvälisestä avaruudesta ja käytti Maan painovoimaa hyväkseen lentoratansa muuttamiseen. Lisäksi Giotto testasi ensimmäisenä horrostilan käyttöä lennon monotonisen vaiheen aikana: se lähes sammutettiin ja herätettiin uudelleen ennen toiminnan uudelleen alkamista.

"Mutta kuten aina, jokaista Giotton lennolla saatua kysymystä kohden saimme paljon uutta ihmeteltävää."

Rosetta jatkaa siitä mihin Giotto aikanaan jäi: edessä on huiman kiinnostava vuosi!

Tiedetuubi kertoo tarkemmin Rosetta-lennosta, itse luotaimesta ja tämän vuoden tapahtumista. Giottosta, kuten komeettatutkimuksesta laajemmin, kannattaa lukea vaikkapa Avaruusluotaimien ABC -kirjasta.

F1-moottoreiden 3D-tulostusta ja palavereissa istumista

F1-moottoreiden 3D-tulostusta ja palavereissa istumista

Euroopan avaruusjärjestön teknologinen keskus ESTEC (European Space Technology and Research Centre) on noin 3000 ihmisen työpaikka Atlantin rannalla Noordwijkissa, Hollannissa, runsaan puolen tunnin ajomatkan päässä Amsterdamista lounaaseen.

ESTECissä koordinoidaan pääosa Euroopan avaruusjärjestön teknillisistä toiminnoista, joten sijainti keskellä Eurooppaa hyvien liikenneyhteyksien varrella on mitä sopivin keskuksen toiminnalle.

Sen rooli euroopalaisessa avaruusohjelmassa on ollut vaikuttava, sillä käytännössä kaikki ESAn avaruuteen laukaisemat luotaimet ja satelliitit ovat joko kulkeneet ESTECin kautta tai niiden tekemistä tai testaamista on valvottu sieltä.

Hyvin kansainvälisessä ESTECissä on edustettuna useita kymmeniä eri kansallisuuksia, ja heidän joukossaan on tällä haavaa 17 suomalaista. Itse siirryin avaruuspuolelle suomalaisen ilmailun parista 15 vuotta sitten monen sattuman summana, joskin ESTECin ja kansainvälisen avaruustoiminnan tavat olivat osin jo tuttuja aikaisempien ESAn hankkeisiin liittyneiden työtehtävien kautta.

Vaikka ESTEC oli siten periaatteessa tuttu, oli sen erilaisten toimintojen määrä aluksi kuitenkin suuri hämmästys. Keskuksen alueella on toimistoja ja teknillistä infrastruktuuria, missä kehitetään, toteutetaan ja verifioidaan projekteja yksinkertaisista, keveistä koesatelliiteista kunnianhimoisiin, kauas avaruuteen lentäviin luotaimiin.

Monipuolista työtä monikansallisessa ympäristössä

Sulautumiseni monikansalliseen ilmapiiriin tapahtui nopeasti. Kansallisuudet häviävät isojen teknologiahaasteiden kanssa työskennellessä; nyt divisioonassani työskentelee yli kymmenestä eri maasta olevia henkilöitä.

Päivittäiset rutiinini sisältävät varmasti samoja asioita kuin vastaavan tason tehtävät muualla teollisuudessa: on teknisiä ongelmia, projektien aikatauluttamista ja resursointia, henkilöstöhallintoa ja strategiatyötä. Vain konteksti on hieman eksoottisempi, sillä yhden päivän aikana saatan olla palavereissa, joissa aiheina ovat esimerkiksi Merkuriuksen luokse lentävän BebiColombo-luotaimen lämmönkesto tai jo laukaisualustalla Ranskan Guayanassa seisovan ATV-kuljetusaluksen sisäilman laatu.

Matkustaminen on olennainen osa työtä, sillä ajastani noin 70% kuluu operatiivisten toimien parissa. Kun kyseessä ovat hyvin usein isot budjetit ja niiden aikataulut, on silloin parasta kohdata teollisuuden edustajat heidän kotikentällään. On tärkeää nähdä konkreettisesti teknologia, jonka parissa työskennellään, ja tavata samalla henkilökohtaisesti koko teollinen tiimi insinööreistä resursseista vastaavaan johtajaan. Tehtävät millä tahansa tasolla Euroopan avaruusjärjestössä mielenkiintoisen näköalapaikan Euroopan avaruusteollisuuteen, sillä olemme mukana monessa!

Tämän voi nähdä konkreettisesti esimerkiksi ESTECin sydämessä, sen testauskeskuksessa, missä avaruuslaitteita koetellaan avaruuden ja laukaisun simuloiduissa olosuhteissa. Näin halutaan varmistaa se, että ne toimivat oikeasti myös avaruudessa; parhaimmassakin monimutkaisessa laitteistossa on aina joitain suunnitteluvirheitä, ja ne on parempi löytää ennen laukaisua testauksessa kuin vasta avaruudessa. Mikäli satelliitista tai luotaimesta ei ESTECin grillauksessa ja täristämisessä löydy mitään pientäkään, on syytä olla huolissaan.

Juuri parhaillaan ESTECin halleissa on Galileo-navigointijarjestelmän ensimmäisiä tuotantosatellitteja sekä Bepi-Colombo -luotaimen insinöörimallit. Galileo-systeemin ensimmäiset satelliitit ovat jo taivaalla, mutta nämä ensimmäiset poikkeavat hieman tästä eteenpäin lähetettävistä satelliiteista, joita tehdään kolmisenkymmentä kappaletta sarjatuotantona. Nämä muodostavat itse navigointijärjestelmän satelliittiverkoston. BepiColombon insinöörimalli on puolestaan täsmälleen samanlainen kuin lopullinen, huimalle matkalle kohti aurinkokunnan sisintä planeettaa lähtevä luotain. Mallilla varmistetaan se, että laitteistot toimivat kuten on aiottu; nykyisin tietokonesimulaatioilla voidaan "koekäyttää" luotaimia jo erinomaisesti, mutta niillä ei voi korvata vielä oikean mallikappaleen tekemistä ja sen oikeissa olosuhteissa tapahtuvaa testaamista.

ESTECin kautta ovat kulkeneet myös parhaillaan joulukuussa tapahtuvaa laukaisuaan odottava GAIA ja juuri kiertoradalle lähetetty Maan magneettikenttää mittaava SWARM-satelliittikolmikko.

Suomalaisia on mukana kaikissa edeltävissä hankkeissa ja muut ESTECin suomalaiset ovat moninaisissa tehtävissä hallinnosta terveyspalveluiden kautta tieteeseen ja tekniikkaan. Siis myös muut kuin avaruusalan henkilöt voivat päätyä ESTECiin.

Omaa tehtäväni materiaali- ja komponenttidivisioonan johtajana on varmistaa, että avaruusmateriaaleihin ja sähköisiin komponentteihin liittyvä laatu on riittävää ja että alan teknologiakehitystä viedään ESAn tulevien tarpeiden mukaan eteenpäin. Avaruuslaitteita kehitettäessä katseen pitää olla pitkällä tulevaisuudessa, sillä teknologiat, joita kehitämme tänään, saattavat olla laukaisualustalla vasta vuosikymmenen päästä. Siksi teemme työtä laajasti ja käytämme hyväksi jokaisen jäsenmaan korkeakoulujen ja instituuttien parhaita resursseja.

Kuuminta hottia juuri nyt: 3D-tulostus

Viime aikoina suurimmat otsikot perusteknologioiden on saanut 3D-tulostus, mitä ESAssa on tutkittu ja kehitetty jo vuosikymmenen ajan. Nyt tekniikka on tulossa myös yleisempään käyttöön, mutta erityisesti avaruusalalla se tarjoaa uskomattomia mahdollisuuksia. Uskon, että se on merkittävä tekijä myös rakentaessamme tulevaisuuden avaruusalusarkkitehtuuria. 3D-tulostus tekee mahdolliseksi nopean tuotekehityksen suunnitelmasta lopputuotteeseen ja sen avulla voidaan tehdä uusia optimoituja geometrioita, jotka vähentävät merkittävästi painoa ja aina ongelmia tuottavia materiaaliliitoksia.

Esimerkiksi kuvassa oleva Kansainvälisellä avaruusasemalla käytettävä vesiventtiili on 3D-tulostettuna 40% kevyempi kuin perinteisellä tavalla valmistettu; keskimmäinen on alkuperäinen, vasemmalla samanlaisesta metallista tulostettu ja oikealla titaanista tulostettu optimoitu kevytversio. Olennaisin eroavaisuus on keskimmäisessä oleva hitsaussauma, mitä tulostetuissa ei ole.

Tavoitteenamme ei ole pelkästään toistaa 3D-tulostimella osia, joita tehdään tällä hetkellä muilla valmistusmenetelmillä, vaan pyrimme integroimaan koko suunnittelu- ja valmistusketjun palvelemaan uutta teknologiaa. Tällöin saavutamme täysin optimoidun, funktionaalisia vaatimuksia vastaavan lopputuotteen, jonka ominaisuuksia eivät enää rajoita perinteisten valmistusmenetelmien reunaehdot.

Suunnittelun, valmistuksen ja laadunvalvonnan rajojen rikkominen mahdollistaa uuden suoritusarvotason. Ajatelkaapa vaikkapa auton moottoria, jonka suunnittelua ja valistusta eivät rajoita esimerkiksi standardimitoitetut putket, liittimet tai pultit. Ei olekaan ihme, että keskustelemme tallakin hetkellä erään tunnetun F1-tallin kanssa teknologisesta yhteistyöstä. Avaruustekniikkaa on jo nyt kilparadoilla, mutta pian sitä on vielä enemmän!

Kaikkein parasta 3D-tulostamisessa on se, että se on ympäristöystävällistä, koska siinä ainetta ei poisteta (kuten esimerkiksi alumiinia jyrsittäessä lopulliseen muotoonsa) vaan tulosteessa käytetään vain kappaleessa tarvittava määrä ainetta. Siten valmistusprosessin tuottaman jätteen määrä saadaan minimoitua.

ESA vei mukanaan

Kun aikanaan tulin ESTECiin, kuvittelin viipyväni vain parin vuoden ajan tarkoin määritellyissä tehtävissä. Mutta toisin kävi, ja ulkomaankeikka on muuttunut pysyväksi asumiseksi Alankomaissa. Kiinnostavat teknologiahaasteet ja kansainvälinen työilmapiiri vie mennessään – niin kävi minulle, ja niin on käynyt jo monille muille suomalaisille (ja muillekin) kollegoilleni!

Mikko Nikulainen
ESAn teknologiakeskuksen ESTECin materiaali- ja komponenttidivisioonan johtaja

Kohta GOCE putoaa

Kohta GOCE putoaa

ESA:n GOCE-satelliitti kesti avaruudessa pitempään kuin toivottiin ja se onnistui tehtävässään paremmin kuin uskottiin. Tämän maapallon painovoimakenttää hyvin tarkasti ja sen havaintojen perusteella tiedetään nyt millainen on oman kotiplaneettamme tarkka muoto – ei, se ei ole aivan täsmälleen pallo, vaan hieman muhkurainen sellainen.

Jotta GOCE olisi pystynyt mittaamaan painovoimaa hyvin tarkasti, oli se epätavallisen matalalla kiertoradalla, vain noin 250 km korkealla. Koska sielläkin on vielä vähän ilmakehän rippeitä, piti satelliitista tehdä hieman aerodynaaminen ja sen ratanopeutta täytyi koko ajan pitää yllä pienellä rakettimoottorilla.

Nyt painovoimamittauslaitteistoa, joka on itse asissa erittäin tarkka kiihtyvyysmittari, käytetään apuna Maahan putoamisen tarkkailussa: saatujen mittausten mukaan GOCEa hidastava ilmakehän kitka on nyt noin 90 mN ja se kasvaa koko ajan. Lennonjohto on yhteydessä satelliittiin, joka toimii normaalisti, ja pystyy hallitsemaan sen lentoa – paitsi että polttoaineen loppumisen vuoksi sen rakettimoottoria ei voi käyttää.

Tuorein ennuste putoamisajasta on edelleen sunnuntain ja maanantain välinen yö.

Mitä selviää pinnalle?

Kun satelliitti laukaistiin, tiedettiin jo varmasti, että sitä ei voida ohjata tehtävän päätyttyä tuhoutumaan Maan ilmakehässä samaan tapaan kuin esimerkiksi ATV-rahtialukset. Niissä on voimakkaat ratamuutoksia varten tarkoitetut moottorit, mutta GOCE oli liian pieni, jotta siinä olisi voinut olla isompi moottori.

Samalla GOCE on sen verran suuri, että siitä selviää ilmakehän kitkakuumennuksen jälkeen pieniä osia Maan pinnalle saakka.

"Vain pieni osa, noin 20% eli noin 200 kg, satelliitin alkuperäisestä massasta putoaa pinnalle", kertoo ESAn avaruusromua tutkivan toimiston johtaja Heiner Klinkrad ESAn Rocket Science -blogissa.

"Tämä massa on jakaantuneena kymmeniin pieniin osiin, jotka leviävät laajalle aluelle maahanpaluuradan alueella."

Yhtä lailla tiedetään, että joka vuorokausi Maan ilmakehään törmää luonnollisesti 100-210 tonnia ainetta avaruudesta, ja isompia kappaleita on kymmeniä tuhansia vuodessa. Vajaan tonnin painoinen GOCE on hyvin mitätön näihin verrattuna.

Useita kertoja vuodessa uutisissakin kerrotaan tulipalloista, hyvin kirkkaista tähdenlennoista, jonka syntyvät meteoroidin törmätessä meihin. Joistakin niistä jää jäljelle myös kiinteitä, pinnalle saakka selviäviä kappaleita, mutta niistäkin suurin osa putoaa huomaamatta valtameriin, aarniometsiin tai autiomaihin.

Satelliitteja, kantorakettien osia ja muita ihmisen tekemiä laitteita putoaa Maahan säännöllisesti, noin 100 tonnia vuodessa, mutta vain noin kerran vuodessa suurempi avaruusalus törmää ilmakehään hallitsemattomasti.

"Riski GOCEn puotoamisesta on ihmisille erittäin pieni", jatkaa Heiner Klinkrad. "Tilastollisesti on 250 000 kertaa todennäköisempää voittaa lotossa kuin olla paikassa, mihin GOCEn osa putoaa. Näinä 56 vuotena, jolloin avaruuslentoja on tehty, ei yksikään ihmisen tekemä ja Maahan pudonnut kappale ole aiheuttanut edes loukkaantumista."

GOCEn kaltaisia, ilman voimakkaita rakettimoottoreita olevia tutkimussatelliitteja laukaistaan kaikista maista koko ajan, koska riski niiden putoamisesta asutuille alueille on häviävä pieni. Satelliittien lähettäjät ovat silti aina vastuussa niiden putoamisen mahdollisesti aiheuttamista vaurioista.

ESAlle tämä on kuitenkin ensimmäinen hallitsematon satelliitin maahanpaluu 25 vuoteen. Sen tavoitteena on luonnollisesti saada tulevaisuudessa kaikki satelliitit sellaisiksi, että ne voidaan tuhota tehtävänsä päätteeksi vaarattomasti. Sitä mukaa kun avaruustoiminta lisääntyy, kasvaa myös riski sille, että putoavan satelliitin osa voisi osua johonkin.

Milloin ja minne?

Koko ajan tarkkenevan arvion mukaan GOCE putoaa alas radaltaan siis sunnuntain 10.11. ja maanantain 11.11. välisenä yönä (Suomen aikaa). Satelliitti putoaa parhaillaan noin kahdeksan kilometriä vuorokaudessa alemmas ja ilmakehän ote siitä tiukkenee jatkuvasti. GOCEn radan keskikorkeus nyt lauantaina oli jo noin 160 km. Lauantain kuluessa sen oletetaan putoavan jo 13 kilometriä ja sunnuntaina vielä enemmän.

"Kun GOCE on alle 100 kilometrin korkeudessa, ilman tiheys on jo sen verran suuri, että se alkaa hidastaa olennaisesti noin 25 000 kilometriä tunnissa kulkevan GOCEn nopeutta", Klinkrad jatkaa. "GOCE putoaa alaspäin ja ilman aerodynaaminen paine ja kitkakuumennus rikkovat GOCEn oletettavasti noin 80 km:n korkeudessa."

Tuloksena on suuri määrä irtonaisia osia, jotka edelleen hajaantuvat pienemmiksi osiksi, joista suurin osa tuhoutuu tähdenlentojen tapaan jo korkealla ilmakehässä. Eräitä pinnalle saakka sinnitteleviä osia ovat todennäköisesti xenon-polttoaineen säiliö ja sille painetta antaneen typen säiliö, gravimetrit, tähtietsimet sekä rakettimoottorit. Ne näkyvät hyvin otsikkokuvassa.

ESA seuraa jatkuvasti GOCEn rataa ja on edelleen yhteydessä satelliittiin. Arvio putoamisajasta täsmentyy koko ajan, mutta siihen liittyy monia tekijöitä, joihin ei voida vaikuttaa: tärkeimpiä ovat yläilmakehän tiheyteen vaikuttava Auringon aktiivisuus sekä GOCEn ohjauslaitteistojen toiminta putoamisen aikana ja siten satelliitin asento.

Kun putoamispaikka tiedetään tarkasti, ESA tulee tiedottamaan siitä kyseisen alueen viranomaisia välittömästi. Tieto välitetään myös kaikille ESAn jäsenmaille. ESAn lisäksi kansainvälinen avaruusromun koordinointikomitea (Inter-Agency Space Debris Coordination Committee) seuraa GOCEn putoamista ja ryhtyy tarvittaessa toimiin.

GOCEa tarkkaillaan sen lähettämien tietojen lisäksi tutkilla ja optisesti. Sen voi havaita myös harrastajateleskoopeilla, kuten belgialainen Ralf Vandebergh on tehnyt: alla olevassa, ESAn Rocket Science -blogissa julkaistussa kuvassa on GOCE 22. syyskuuta 2013 Alankomaista kuvattuna.

Planck sulki mikroaaltokorvansa

Planck sulki mikroaaltokorvansa

Tähtitaivaan mikroaaltotaustasäteilyä havainnut Planck-teleskooppi sammutettiin 23. lokakuuta toimittuaan pari vuotta suunniteltua pitempään. Planckin tieteellinen johtaja Jan Tauber lähetti satelliittiin viimeisen käskyn, jolla Planck käänsi itsestään peruuttamattomasti virran pois päältä. Jo sitä ennen lennonjohto oli komentanut Planckin käyttämään ohjausrakettimoottoreitaan siten, että sen polttoainetankit tyhjenivät, jotta polttoaineen mahdollisesta räjähdyksestä joskus tulevaisuudessa ole vaaraa.

Planck ei kiertänyt Maata, eikä se siten tule putoamaan alas, vaan se etääntyy parhaillaan Maasta Aurinkoa kiertävällä radalla. Se teki havaintojaan ns. Lagrangen pisteessä noin 1,5 miljoonan kilometrin päässä Maasta, joten tästä eteenpäin teleskooppi on ikään kuin kaukana meistä avaruudessa vapaasi oleva avaruusromu; sen sijainti tiedetään, eikä se siten tule olemaan uhka meille tai muille avaruusaluksille ainakaan tuhansiin vuosiin.

Havaintopaikalleen Planck laukaistiin vuonna 2009 yhdessä Herschel-infapunateleskoopin kanssa. Ne nousivat avaruuteen Ariane 5 -kantoraketilla ja lensivät erikseen samoille seuduille Lagrangen pisteeseen numero 2 (tai pikemminkin kiertämään tätä laskennallista paikkaa, missä Maan ja Auringon vetovoimat ikään kuin kumoavat toisensa).

Kumpikin teleskooppi käytti havaintolaitteidensa jäähdyttämiseen nestemäistä heliumia, ja kummankin tapauksessa helium riitti lähes tuplasti arvioitua pitempään. Kumpikin laite oli myös täysin riippuvaista heliumista, sillä ilman sitä havaintojen laatu kärsi niin paljon, ettei kallista teleskooppia kannattanut pitää toiminnassa – vaikka muuten laitteet olivatkin toiminnassa.

Planckissa on kaksi mikroaaltosäteilyä vastaanottavaa laitteistoa, matala-aaltopituinen LFI ja korkeammilla aallonpituuksilla toimiva HFI, joista HFI:n helium loppui ensin tammikuussa 2012. Sen jälkeen LFI jatkoi toimintaansa, ja ennätti tekemään peräti viisi täyttä taivaan kartoitusta ennen kuin sen helium pihisi loppuun nyt syksyllä. Tieteelliset havainnot lopetettiin 3. lokakuuta ja havaintolaitepaketista virta sammutettiin jo 19. lokakuuta.

Lokakuun aikana satelliittia valmisteltiin sammuttamiseen. Olennaisinta oli ohjata se radalle, millä se ei ole vaaraksi kenellekään.

Kyseessä oli samankaltainen toimenpide kuin Herschelillä aiemmin. “Nämä olivat kaksi ESAn ensimmäistä avaruusalusta Lagrangen pisteessä 2, joka on hyvin tärkeä paikka tieteellisesti", kertoo Andreas Rudolph, ESAn avaruusohjauskeskus ESOCissa tähtitedelennoista vastaava lennonjohtaja. Piste sijaitsee Maasta katsottuna poispäin Auringosta, joten se sopii erinomaisesti juuri tähtitieteellisiin havaintoihin.

"Planck 'passivoitiin' ja ohjattiin lentoradalle, mikä pitää sen Aurinkoa kiertävällä radalla poissa Maan ja Kuun läheisyydestä ainakin tuhansien vuosien ajan."

Ensin teleskooppi ohjattiin 9. lokakuuta pois Lagrangen pisteen luota Aurinkoa kiertävälle radalle kaksipäiväisellä, monimutkaisella manöveerillä. Radallaan Planck alkoi etääntyä hitaasti Maasta.

Sen jälkeen systeemejä sammutettiin vähitellen ja Planckin radiolähettimet kytkettiin pois päältä ja varmistettiin, ettei Planck enää koita ottaa yhteyttä. Tämä on hyvin tärkeää siksi, että luotain saattaisi joskus saada virtaa aurinkopaneeleihinsa ja alkaa lähettää, mikä voisi häiritä myöhempiä avaruusaluksia.

Lopulta 23. lokakuuta Jan Tauber painoi vertauskuvallisesti nappia, joka käynnisti ennalta laaditun ohjelman, mikä kytki kaikki Planckin laitteet pois päältä.

Kyseessä oli herkkä hetki, sillä Tauber ja koko tutkijajoukko oli tehnyt työtä Planckin parissa 1990-luvun lopusta alkaen ja toimintakuntoisen, mutta heliuminsa käyttäneen teleskoopin hylkääminen on aina vaikeaa.

Planck jättää jälkeensä hienon perinnön: maailman tarkimman ja parhaan kartan taivaan mikroaaltotaustasäteilystä, mikä on ikään kuin kaiku maailmankaikkeuden alkupamauksesta. Suomalaisille Planck oli erityisen tärkeä, sillä paitsi että suomalaistutkijat olivat - ja ovat edelleen - tärkeässä roolissa havaintotulosten käsittelyssä, niin Suomessa tehtiin Planckiin osa sen huipputarkoista vastaanottimista.

Tiedetuubi kirjoitti Planckista ja sen työstä viime maaliskuussa: Lähes täydellinen maailmankaikkeus?

3D-tulostus mullistaa avaruuttakin Jari Mäkinen Pe, 11/10/2013 - 14:24
3D-tulostus mullistaa avaruuttakin

Euroopan avaruustekniikkakeskuksen ESTECin käytävälle oli ilmestynyt omituinen betonikappale. Erilaisten avaruuslaitteiden ja satelliittimallien, joita avaruuskeskuksen seinillä ja käytäville on aseteltu ihmeteltäväksi, keskellä on nyt möhkäle betonia – siinä aivan Hubblen aurinkopaneelin vieressä.

Kyse ei kuitenkaan ole mistä tahansa palasesta betonia, vaan puolitoista tonnia painava mallikappale mahdollisen kuuaseman rakennusmateriaalista, joka on tehty Kuun pinta-ainetta muistuttavasta seoksesta 3D-tulostusmenetelmällä.

Juuri tästä kappaleesta ja sen tekemiseen käytetystä tekniikasta kerrottiin viime keväänä, kun ESA julkaisi tutkimuksen uudesta tavasta tehdä kuuasema aikaisempaa kätevämmin ja edullisemmin. Ryhmä rakennus- ja avaruusalojen asiantuntijoita, muun muassa tunnettu arkkitehtiyhtiö Foster + Partners, olivat lähestyneen aseman rakentamisen ongelmaa aivan uudesta näkökulmasta: ei mitään esivalmistettuja sylintereitä, jotka laukaistaisiin ensin kiertoradalle, hilattaisiin sieltä Kuun ympärille ja laitettaisiin laskeutumaan sen pinnalle, vaan koko asema voitaisiin tehdä paikan päällä, paikallisista materiaaleista.

Kätevin tapa valmistaa rakennuspalasia on käyttää sovellettua 3D-tulostintekniikkaa. Erikoisprintterin lähettäminen olisi suhteellisen edullista, ja sillä voitaisiin tehdä juuri sellaisia osia, mitä tarvitaan. Kun eri muotoisten, sisäosiltaankin monimuotoisten osien tekeminen olisi mahdollista, voitiin aseman suunnittelussakin ottaa uusia vapauksia.

Tuloksena oli kupolirakenne, joka haudataan Kuun pinnan alle. Sen "tiilet" olisivat lintujen luiden tapaan sisältä osittain onttoja, ohuiden, tarkasti laskettujen ja sijoiteltujen tukiranteiden täyttämää tyhjää tilaa, jolloin kappaleet olisivat lujia sekä kestäviä, mutta myös kevyitä ja niiden tekeminen vaatii vähän ainetta. Paitsi että muoto voitaisiin tehdä aivan millaiseksi halutaan, myös sisältä, olisi materiaalihävikki minimaalinen.

Brittiyhtiö Monolite onnistui valmistamaan juuri halutunlaisia rakennuspalasia D-Shape -tulostimellaan, joka on suunniteltu jopa kuusi metriä halkaisijaltaan olevien maanpäällisten rakennuskappaleiden valmistamiseen. Se tuottaa hiekkamaisesta raaka-aineesta betonia sekoittamalla siihen sidosainetta ja ruiskuttamalla aineen pienempien 3D-tulostinten tapaan kerros kerrokselta haluttuihin kohtiin tietokoneen ohjaamana.

Itse asiassa jättibetoniprintteriä on käytetty rakennusten sijaan toistaiseksi eniten keinotekoisten koralliriuttojen ja taideteosten tulostamiseen.

Kuun tapauksessa betoni olisi kuun pintaregoliittia, mihin lisätään ensin magnesiumoksidia ja tulostettaessa suolaa, mikä muuttaa aineen kivenkovaksi. Laitteella voisi tulostaa yhden kuuaseman periaatteessa viikossa. Huimaa!

Avaruus tuo uutta maanpäälliseenkin 3D-tulostukseen


Samalla kun kolmiulotteinen tulostus leviää Maan päällä, ollaan myös avaruusasemalle lähettämässä 3D-printteriä.

Se, että monien yksittäisten varaosien asemalle rahtaamisen sijaan osia voitaisiin tulostaa muovi- tai metalliseoksista siellä tarpeen mukaan on huima askel eteenpäin. Ongelmana avaruudessa on tosin painottomuus, mutta siihenkin on omat ratkaisunsa. Tulevaisuudessa, kun lennetään kauemmaksi ja kaikkien mahdollisten osien pakkaaminen mukaan on hankalaa, on printteri todella suureksi avuksi.

3D-tulostuksen vääntäminen avaruuskelpoiseksi on kehittänyt tekniikkaa myös maanpäällisessä käytössä paremmaksi. Varsin voimakasta tämä kehitys on ollut Euroopan avaruusjärjestön teknologiaosastolla, missä on kehitetty aivan uusi, mullistava tapa tehdä metallisia, hyvin vaikeita olosuhteita kestäviä 3D-tulosteita. Hanke on osoittautunut niin kiinnostavaksi kaupallisesti, että sen ympärille on kerätty ESAn, Euroopan unionin ja alan teollisuusyritysten yhteinen AMAZE-projekti.

Tätä monessa mielessä vallankumouksellista tekniikkaa esitellään Lontoon Tiedemuseossa nyt lokakuun 15. päivänä ja Tiedetuubissa kerrotaan luonnollisesti heti päivän annista.

Myös muut tiedotusvälineet ovat tervetulleita tilaisuuteen: kutsu sinne on ESAn nettisivuilla.