Ystävänpäivätanssi komeetan luona (päivitetty)

Komeettaluotain Rosetta teki lentonsa uskaliaimman tempun viime lauantaina, kun se lensi vain noin kuuden kilometrin etäisyydeltä komeetan ytimen pinnasta. Ohilento tapahtui kaksiosaisen ytimen suuremman osan päältä ja sujui suunnitellulla tavalla.

Tarkoituksena oli paitsi tutkia komeettaydintä erittäin läheltä, niin myös käydä vielä kerran sen lähituntumassa ennen kuin luotain jää tarkkailemaan komeetta Churyumov-Gerasimenkoa hieman kauempaa. Komeettaydin on muuttunut viime aikoina olennaisesti aktiivisemmaksi sen (ja Rosettan) lähestyessä Aurinkoa. 

Lähiohituksen jälkeen Rosetta jatkoi kauemmaksi komeetasta ja saavuttaa huomenna tiistaina 255 kilometrin etäisyyden. Tämä siksi, että aikomuksena on nyt saada laajempi kuva siitä mitä komeetan ympärillä on tapahtumassa. 

Sen jälkeen rataa lasketaan jälleen lähemmäksi, ja luotain pysyttelee noin sadan kilometrin päässä ytimestä. Sieltä se tekee toisinaan koukkauksia lähemmäksi ja kauemmaksi, riippuen komeetan aktiivisuudesta ja tutkijoiden tarpeista.

Ongelmana kauempana ytimestä lennettäessä on se, että siellä luotain ei ole enää itse asiassa komeetan kiertoradalla, koska heikkopainovoimainen komeettaydin ei kykene pitämään luotainta enää kahleissaan; siellä lennonjohto “lentää” Rosettaa kuin se olisi planeettainvälisessä avaruudessa komeetan lähellä.

ESA julkisti Rosettan navigointikameran kuvia nyt maanataina ja jopa niissä näkyy huimia yksityiskohtia komeetan pinnasta. Parempia OSIRIS-kameralaitteiston ottamia kuvia saadaan jälleen odottaa kuukausien ajan. Luotaimen lentorata oli suunniteltu sellaiseksi, että Aurinko paistoi komeetan pintaan hetken aikaa täsmälleen päältä, jolloin kuvista saatiin hyvin tarkkoja ja kiinnostavia.

Julkistetut 16 navigointikameran kuvaa on vapaasti ladattavissa ESAn nettisivuilta.

Rutiinia

Ellei lähiohitusta oteta huomioon, on Rosetta-lennojohto siirtynyt viime vuodenhektisten tapahtumien jälkeen toimimaan arkisen tasaisesti. 

Lentosuunnitelmaa tehdään 16 viikon ajalle etukäteen siten, että tutkijat ehdottavat erilaisia tehtäviä ja määrittelevät mitä mittalaitteita ja kuinka he haluaisivat käyttää, minkä jälkeen lentodynamiikkatiimi ja luotaimen kunnosta vastaavat insinöörit tutkivat mikä on mahdollista.

Lisäksi käytössä on kaksi lyhyen aikajakson suunnitelmaa: maanantaisin tehtävä suunnitelma keskiviikosta lauantaihin tehtäviä tutkimuksia varten ja torstaisin päätettävä lista lauantaista keskiviikkoon tehtävistä toimista.

Yleensä suunnittelupäivänä aamulla kerätään kaikki mahdollinen havaintotieto komeetasta ja luotaimen mahdollisesta radasta, joista koostetaan tehtävälista tehtäviksi toimiksi. Näiden perusteella tehdään komentosarja, joka testataan ensin simulaattorilla ja tarpeen mukaan Rosetta-luotaimen kaksoiskappaleella ennen kuin ne lähetetään luotaimelle.

Lennonjohto tarkkailee erityisen huolellisesti luotaimen sijaintia komeetan suhteen niin radiolinkin doppler-siirtymän avulla, luotaimen omilla navigointilaitteilla kuin luotaimen navigointikameran kuvilla. Kuvia saadaan viisi kertaa vuorokaudessa.

Lisäjännitystä toimintaan juuri nyt tuo niin sanottu konjunktio, eli Aurinko osuu jotakuinkin suoraan Maan ja Rosettan väliin. Se haittaa tiedonsiirtoa lähes koko helmikuun ajan.

Yhteys ei ole missään vaiheessa kokonaan poikki, mutta tällä haavaa tietoa saadaan luotaimelta Maahan ESAn 35-metristen antennien kautta vain 14 kilobittiä sekunnissa ja suurempien NASAn 70-metristen antennien kautta 45 kbit/s.

Tämä luonnollisesti rajoittaa luotaimelta saatavien tietojen määrää, mutta tilanne paranee maaliskuussa jo olennaisesti. Erityiden hyväksi tilanne tulee kesäkuussa, jolloin Maa on radallaan paikassa, mistä on hyvä ja suora yhteys komeetalle.

Silloin toivottavasti myös laskeutuja Philae on taas mukana toiminnassa!

9. helmikuuta 2015 otettu kuva näyttää jo selvästi, miten Chury on aktivoitumassa.

IXV teki onnistuneen koelennon

Kuva: ESA / S. Corvaja
Kuva: ESA / S. Corvaja
Kuva: ESA / J. Huart

11. helmikuuta kello 15.40 Suomen aikaa Kouroun avaruuskeskuksesta kohosi kohti avaruutta Vega-kantoraketti ja sen keulilla Euroopan avaruusjärjestön koealus IXV (Intermediate eXperimental Vehicle). 

Alus irtosi raketista 340 kilometrin korkeudella ja jatkoi vielä noin 50 kilometriä ylemmäs, kunnes alkoi vajota – tai oikeastaan syöksyä – takaisin kohti maankamaraa.

120 kilometrin korkeudella aluksen nopeus oli 7,5 kilometriä sekunnissa eli noin 27 000 kilometriä sekunnissa. Yhä tihenevä ilmakehä alkoi hidastaa IXV:n nopeutta ja samalla kuumentaa sen lämpösuojaa. Pikaisen avaruuspiipahduksen viimeisessä vaiheessa alus leijui noin 26 kilometrin korkeudelta laskuvarjojen varassa Tyyneenmereen Galapagos-saarten länsipuolelle.

 

Lentoa seurattiin ALTEC-keskuksessa Torinossa Italiassa, mutta dataa saatiin myös Librevillessä Gabonissa ja Malingissa Keniassa sijaitsevilta maa-asemilta sekä Nos Aries -alukselta, joka lennon päätteeksi poimi koealuksen merestä.

IXV:ssä oli yli 300 sensoria, jotka rekisteröivät aluksen ja sen laitteiden toimintaa ja käyttäytymistä koko lennon ajan. Alustavat tulokset mittauksista on määrä julkaista maalis–huhtikuun vaihteessa.

 

Kuva: ESA / J. Huart

Koelennon tuloksia tullaan käyttämään hyväksi ESAn PRIDE-avaruuslentokoneen (Programme for Reusable In-orbit Demonstrator) suunnittelussa – mikäli alus päätetään rakentaa. Monikertakäyttöinen alus laukaistaisiin avaruuteen IXV:n tapaan Vega-kantoraketilla ja se laskeutuisi kiitoradalle Nasan avaruussukkulan tapaan.

IXV:n koelento oli merkittävä edistysaskel myös Vega-kantoraketille. Vuodesta 2012 käytössä ollut raketti laukaistiin nyt ensimmäisen kerran ekvaattorin suuntaan, kun aiemmat lennot ovat olleet kohti pohjoista. Samalla IXV oli Vegan toistaiseksi raskain hyötykuorma.

 

Virosta tulossa ESAn jäsenmaa

Viro otti eilen tärkeän askeleen kohti täysjäsenyyttä Euroopan avaruusjärjestössä, kun ESAn pääkonttorissa Pariisissa allekirjoitettiin liittymissopimus. Sen mukaisesti Virosta on tulossa ESAn 21. jäsenmaa.

Virallisesti Viron ja ESAn välinen yhteistyö alkoi 20. kesäkuuta 2007 Tallinnassa pidetyssä tilaisuudessa, jonka perusteella Viro ja ESA sopivat virallisesti 10. marraskuuta 2009 sopimuksen siitä, että Virosta tuli ESAn ns. yhteistyömaa. Tämä tarkoitti sitä, että virolaiset saattoivat tulla esimerkiksi harjoittelemaan ESAn avaruuskeskuksiin.

Virolla on pitkä historia avaruustutkimuksessa, ennen kaikkea astrofysiikan alalla, ja virolaiset ovatkin osallistuneet viime vuosina moniin ESAn tieteellisiin ja teknologisiin ohjelmiin. Viro on myös aktiivisesti mukana ESA-jäsenyyteen tähtäävien maiden yhteisessä ns. PECS-ohjelmassa (Plan for European Cooperating States), jonka puitteissa on yhteistyötä mm. avaruustutkimuksen, Maan havainnoinnin, materiaalitutkimuksen, biologian ja avaruustekniikan aloilla.

Viro on myös avaruusmaa: sen ensimmäinen satelliitti, Tarton yliopiston opiskelijoiden satelliittiohjelman puitteissa tehty ESTCube-1 laukaistiin avaruuteen toukokuussa 2013 eurooppalaisella Vega-kantoraketilla.

Nyt solmittu sopimus ei vielä liitä virallisesti Viroa ESAan, vaan näin käy vasta myöhemmin tänä vuonna, kun Viron hallitus hyväksyy puolestaan liittymismaksun maksamisen ja sen on talletettu Ranskan hallituksen haltuun. 

Tilaisuudessa ESAn pääkonttorissa olivat paikalla ESAn pääjohtaja Jean-Jacques Dordain ja Viron ulkomaankaupasta ja yritystoiminnasta vastaava talous- ja viestintäministeri Anne Sulling, jotka allekirjoittivat sopimuksen, sekä Viron avaruuskomitean puheenjohtaja sekä kansanedustaja Ene Ergma ja Sven Jürgenson, Viron suurlähettiläs Ranskassa.

 

Euroalus tekee kuuman hypyn avaruuteen

Avaruusrintamalla tapahtuu taas: nyt koelentovuorossa on eurooppalainen avaruusalus IXV, Intermediate eXperimental Vehicle, joka testaa maahanpaluutekniikkaa tekemällä helmikuussa loikkauksen avaruuteen ja tulemalla sieltä suurella nopeudella saman tien takaisin.

IXV ei ole minkään tulevan avaruusaluksen mallikappale, vaan se on tehty nimenomaan koekoneeksi: se testaa uudenlaisia lämpösuoja- ja ohjausmenetelmiä, joita voidaan käyttää myöhemmin varsinaisia avaruusaluksia rakennettaessa. Periaatteessa tämänkaltaista alusta voitaisiin käyttää myöhemmin jopa miehitettynä avaruusaluksena.

Lento oli tarkoitus tehdä jo viime lokakuussa, mutta silloin sitä päätettiin lykätä, koska lentorataa ja Vega-kantoraketin ohjelmointia haluttiin vielä tarkistaa. Lopulta rataan tehtiin pieniä muutoksia ja aluksen valmistelua lentoaan varten jatkettiin nyt alkuvuodesta.

Viime viikolla tämä viitisen metriä pitkä, noin kaksi tonnia painava puikulamainen alus tankattiin ja tällä viikolla se asennettiin kiinni raketin ylimpään vaiheeseen. Parhaillaan kantoraketin nokkakartiota ollaan asentamassa aluksen ympärille.

Lentoon alus on tarkoitus lähettää 11. helmikuuta.

Avaruuslennosta tulee varsin lyhyt, sillä matka laukaisualustalta Kouroun avaruuskeskuksesta Etelä-Amerikassa laskeutumiseen Tyyneen valtamereen kestää vain 100 minuuttia, eli tunnin ja 40 minuuttia.

Vaikka IXV nousee lennollaan kunnolla avaruuteen 420 kilometrin korkeuteen, se aloittaa laskeutumisen saman tien, koska tarkoituksena ei ole testata lentämistä avaruudessa, vaan nimen omaan laskeutumista. Se osuu ilmakehään 27 000 kilometrin tuntinopeudella (7,5 km/s) ja sen ulkopinta alkaa kuumeta ilmanvastuksen kitkakuumennuksen vuoksi noin 120 kilometrin korkeudesta alkaen. Siellä ilma on vielä hyvin harvaa, mutta suurella nopeudella lennettäessä se alkaa jo tuntua.

Alus kiitää ilmakehässä avaruussukkulan tapaan ilman moottorivoimaa moninkertaisella äänen nopeudella ja jarruttelee vauhtiaan, joka putoaa myös ilmanvastuksen vuoksi koko ajan. Samalla sen pinta kuumenee noin 1600°C:n lämpötilaan.

Lopulta alus laskeutuu laskuvarjojen varassa pehmeästi Tyyneen valtamereen Panaman länsipuolelle, missä sitä on odottamassa Nos Aries -niminen pelastusalus. Se poimii IXV:n kyytiinsä ja tuo takaisin Eurooppaan tutkimuksia varten.

Lentonsa aikana IXV tallettaa tietoja sensoreistaan ja laitteidensa toiminnasta sisällään olevaan muistiin, mutta myös lähettää niitä satelliitin kautta lennonvalvomoon siltä varalta, että lennon jälkeen tietoja ei saataisi talteen.

Kuva: IXV kuvattuna alapuolelta kantoraketin nokassa ilman nokkakartiota. Aluksen suurimman lämpörasituksen kohteeksi joutuva suojaus näkyy tässä hyvin.

Euroopassa on runsaasti osaamista avaruustekniikassa ja Euroopan avaruusjärjestö on testannut aikaisemminkin maahanpaluuta, mutta juuri alusten saaminen turvallisesti takaisin Maan pinnalle on eräs asioista, missä Eurooppa kaipaa lisää kokemusta. 

Erityisen kiinnostavaa IXV:n tekemisessä ja sen lennossa on testata luonnollisesti periaatteessa uudelleenkäytettävän, keraamista tiilistä ja sulavasta aineesta koostuvan lämpösuojan toimintaa. Aluksen runkorakenne on kevyttä ja kestävää hiilikuitua, jonka kestävyys maahanpaluussa on myös huomion kohteena. Samoin ohjaus- ja navigointilaitteet, laskuvarjot ja ilmanohjaimia käyttävät aktuaattorit ovat tekniikkaa, mitä Euroopassa ei ole aikaisemmin koeteltu oikeissa maahanpaluun olosuhteissa.

Kuva: IXV:n laskuvarjoja ja lentolaitteistoja testattiin kesällä 2013 pudottamalla nyt avaruuteen laukaistavan aluksen näköinen ja kokoinen koelentoversio helikopterista mereen Sardinian luona. Alusta ei oltu varustettu avaruuslentoa varten, eikä siinä ollut esimerkiksi täydellistä lämpösuojakilpeä. Tämä koekoneen koekone oli viime syksyllä esillä Euroopan avaruutekniikkakeskus ESTECissä, Hollannissa. 



Venus Express on hiljentynyt

Venus Express
Venus Express

Venusta kahdeksan vuoden ajan kiertänyt eurooppalaisluotain Venus Express on vaiennut. Viimeinen yhteys luotaimeen oli 19. tammikuuta. 

On todennäköistä, että sen on syöksynyt pilvisen planeetan paksuun kaasukehään ja tuhoutunut – mutta tämä ei ollut mikään yllätys. Luotaimen polttoaine loppui jo joulukuussa uskaliaan ja vaarallisen ilmajarrutusmanöveerin jälkeen tehdyn ratamuutoksen aikana.

Polttoaineen määrää oli luonnollisesti seurattu tarkasti koko lennon ajan, joten kun viime keväänä tankin tiedettiin olevan jo aika tyhjillään, päätettiin luotaimella tehdä uskaliaita koukkauksia Venuksen kaasukehän yläosiin, koska näin sieltä saataisiin erittäin kiinnostavia mittaustietoja. Tähän uskallettiin ryhtyä luotaimen ollessa joka tapauksessa elinikänsä lopussa.

Samalla haluttiin testata luotaimen tekniikan toimintaa vaativissa olosuhteissa sekä mm. lämpötilojen muuttumista luotaimen sisällä lähiohitusten aikana. Venus Express kävi lähimmillään noin 130 kilometrin korkeudella planeetan pinnasta ja opetti paljon niin ilmajarrutuksen dynamiikasta, luotaimen tekniikan suorituskyvystä ja Venuksen kaasukehästä.

Kerroimme tästä vaarallisesta ilmajarrutusmanöveeristä tarkemmin 18. kesäkuuta jutussamme Koukkaus syvälle Venukseen.

Kuva: Piirros ilmajarruttavasta Venus Express -luotaimesta.

Luotain kesti paljon paremmin kuin uskallettiin toivoa, minkä lisäksi polttoainetta oli tempun jälkeen arvioitua enemmän jäljellä. Tankkien sisällön aivan tarkkaa määrää ei voida sanoa, joten polttoainemittarin näyttämä oli arvio, mutta menovettä oli selvästi vielä yllättävän paljon jäljellä.

Niinpä luotaimen rataa päätettiin nostaa jälleen korkeammalle,  jotta se voisi jatkaa tutkimuksiaan uudelta, kaukaisemmalta kiertoradalta mahdollisimman pitkään. Lennonjohto teki siten suunnitelman ratamuutoksista, jotka piti toteuttaa 23.-30. marraskuuta. 

Venus Express aloitti ratamanöveerit suunnitellulla tavalla, mutta marraskuun 28. päivänä se ei enää käyttänytkään moottoreitaan odotetulla tavalla. Lennonjohto menetti otteensa luotaimesta. Mitä todennäköisimmin polttoaine oli loppunut kesken polton. 

Luotaimeen pystyttiin pitämään epäsaannöllisesti yhteyttä, mutta sitä ei voitu enää ohjata. 

Koska se ei päässyt tavoitellulle kiertoradalle, jäi se kiertämään Venusta soikealla radalla. Aina radan Venusta lähimmässä osassa  kaasukehä jarrutti luotaimen nopeutta, kunnes nyt lähes kahden kuukauden kuluttua, jatkuvasti alaspäin pudonneella radalla kiertämisen jälkeen, planeetta nappasi Venus Expressin huomaansa.

Yllä olevassa kuvassa on Venus Expressin viimeinen radioviesti. Se saatiin 18. tammikuuta noin klo 16 Suomen aikaa, kun luotaimen antenni osoitti suoraan kohti maapalloa.

Sen jälkeen 21. tammikuuta luotaimen radiosignaalin kantoaalto saatiin vähäksi aikaa kuuluviin, mutta viestissä ei ollut tietoa. Kun yhteys luotaimeen olisi normaalisti muodostunut seuraavan kerran 22. tammikuuta, ei siitä enää kuultu mitään.

Ratalaskelmien mukaan Venus Express oli 21. tammikuuta radalla, joka vei sen klo 17:56 Suomen aikaa vain 119,4 kilometrin korkeudelle planeetan pinnasta. Viimeistään silloin, tai kierrosta aikaisemmin tai myöhemmin, kaasukehän kitka hidasti sitä todennäköisesti niin paljon, että se syöksyi alas.

“Tiedämme vain sen, että emme saa luotaimeen enää yhteyttä”, sanoo Venus Express -lennon johtaja Patrick Martin pragmaattisesti. “Se voi olla edelleen kiertämässä Venusta, mutta emme kuule siitä mitään. Jatkamme sen kuuntelua kuitenkin vielä noin viikon ajan kaikelta varalta.”

 

Venuksen pikalinja

Venus Expressin virallinen tarina alkoi vuonna 2002, kun Euroopan avaruusjärjestö päätti sen tekemisestä. Se nimitettiin Venus Expressiksi, koska luotain oli käytännössä kuin kaksoiskappale Mars Express -luotaimesta. 

Vaikka kumpikin Express käytti samaa perusrunkoa, niiden elektroniikka sekä työntövoimalaitteet olivat samanlaisia ja ne muistuttivat toisiaan hyvin paljon, ei Venus ole Mars, ja siksi suunnitelmiin piti tehdä pieniä muutoksia.

Aurinko kuumentaa luotainta Venuksen luona neljä kertaa enemmän kuin Marsissa, siellä ionipommitus on suurempi ja Venuksen painovoimakenttä on Marsin gravitaatiota suurempi. Siis luotaimeen piti saada marsilaiseen veljeensä verrattuna lisää lämpösuojausta, kestävämmät aurinkopaneelit ja enemmän polttoainetta mukaan. Ja tietoliikenteessä pitää lyhyempi välimatka (suurimmillaan vain 1,7 AU verrattuna Marsin kaukaisimpaan etäisyyteen 2,7 AU) sekä Venuksen sijainti aina lähempänä Aurinkoa taivaalla ottaa huomioon.

Kooltaan Venus Express oli noin 1,5 metriä kanttiinsa oleva kuutio, jonka aurinkopaneelien kärkiväli oli kahdeksan metriä. Laukaisun aikaan sen massa oli 1240 kg, mistä 570 kiloa oli polttoainetta ja ruhtinaallisesti 93 kiloa tutkimuslaitteita. Luotaimen tekemiseen osallistui 25 yhtiötä 14 Euroopan maasta; päävastuun laitteesta kantoi Astrium-yhtiön ranskalainen osa. Mukana oli myös suomalaista tekniikkaa, sillä samaan tapaan kuin Mars Expressissä, olivat Venuksen pikalinjan virranjakolaitteet Patrian valmistamia.

Venus-luotaimen mittalaitepakettiin koottiin seitsemän instrumenttia, jotka joko olivat Mars Expressin tai komeettaa parhaillaan tutkivan Rosettan varalaitteita, tai ne tehtiin Venuksen olosuhteet huomioiden samojen suunnitelmien perusteella.

Venuksessa kiinnostavimpia asioita ovat ilmakehä, planeetan plasmaympäristö sekä Venuksen tarkka kuvaaminen, joten mukana on kolme erilaista spektrometriä, ultravioletista infrapunaan näkevä kameralaitteisto, plasmamittari ja magnetometri. Lisäksi luotaimen ja Maan välistä radiolinkkiä voitiin käyttää hyväksi kaasukehän tutkimisessa, sillä signaalissa tapahtuvat pienet muutokset kertovat kaasukehän tiheydestä, lämpötilasta ja paineesta sekä pinnan muodoista ja sähköisistä ominaisuuksista.

Venus Express laukaistiin avaruuteen Baikonurin kosmodromista Sojuz-kantoraketilla 9. marraskuuta 2005 ja se saapui perille pilviplaneettaa kiertämään 162 vuorokautta kestäneen matkan jälkeen 11. huhtikuuta seuraavan vuoden puolella. Luotain asettui kiertämään uutta kotiplaneettaansa jännittävän 53 minuuttia kestäneen päämoottorin polton avulla.

Pari viikkoa kestäneiden ratamanöveerien sarjan jälkeen Venus Express alkoi tutkia uutta kotiplaneettaansa radalla, joka kiersi Venuksen  kerran 24 tunnissa. Sen kaukaisin piste ylettyi 60 000 kilometrin korkeuteen ja läheisin piste liippasi 250 kilometrin päästä planeetasta.  

Tarkoituksena oli alun perin tehdä havaintoja ainakin kahden Venuksen vuoden ajan, siis noin neljän Venuksen päivän ajan, eli jotakuinkin 500 Maan vuorokauden ajan. Vaikka monet uskoivat luotaimen jatkavan toimintaansa vielä tuon ajan jälkeenkin, harva tuskin tuli ajatelleeksi, että se päättäisi toimintansa vasta vuonna 2014 – siis  kuusi vuotta pitempään kuin oli suunnitelmissa.

Lisätietoja Venus Express -luotaimesta ja sen keräämästä suuresta tietomäärästä on ESAn sivuilla.

Austfonna sulaa

Tietoja jäätiköiden arvioitua nopeammasta tai hitaammasta sulamisesta tai kasvamisesta saadaan nykyisin usein. Suuret epävarmuudet liittyvät usein siihen, ettei jäätiköistä ole tarpeeksi havaintoja riittävän pitkältä ajalta.

Paras tapa saada tarkkaa ja ajantasaista tietoa on havaita jäätiköitä avaruudesta. Euroopan avaruusjärjestön Sentinel 1A- ja CryoSat -satelliitit ovat tässä erinomaisia apuvälineitä. Tuorein niillä saatu ja julkaistu merkittävä havainto koskee Huippuvuorilla olevaa Austfonnan jäätikköä.

Austfonna on Huippuvuorten Koillismaalla oleva ns. lakijäätikkö, eli vuoristoisen saaren ylänköaluetta peittävä kupera jäätikkö. Havaintojen mukaan sen paksuus on pienentynyt 50 metriä sitten vuoden 2012 – eli vain kahden vuoden aikana se on menettänyt kuudenneksen paksuudestaan.

Viimeisen kahden vuosikymmenen aikana Austfonnan jääpeite on pienentynyt olennaisesti ja jään ohemenista tapahtuu jo noin 50 kilometrin päässä jään reunasta. Aivan jäätikön laki on edelleen jokseenkin ennallaan, mutta jo 10 kilometrin päässä huipulta jäässä on jo havaittu muutoksia.

Havaintojen mukaan jäätikön virtaama on 25 kertaa aiempaa nopeampi, sillä se on kasvanut 150 metristä vuodessa 3,8 kilometriin. Siis puoli metriä tunnissa.

Leedsin yliopistossa olevan Iso-Britannian Polaarialueen havainnointi- ja mallinnuskeskuksen tutkijoiden tekemä, Geophysical Research Letters -sarjassa julkaistu tutkimus käytti hyväkseen kahdeksalla satelliitilla kerättyjä tietoja (mukana Sentinel-1A ja CryoSat), jotka yhdistettiin alueen paikalliseen ilmastomalliin.

“Nämä tulokset ovat selvä esimerkki siitä kuinka nopeasti lakijäätiköt voivat muuttua ja osoittavat hyvin sen, miten hankalaa on ennustaa jäätiköiden sulamisen vaikutusta merenpinnan tasoon tulevaisuudessa”, sanoo julkaistun tutkimuksen vetäjä Mal McMillan.

“Uudet satelliitit, kuten Sentinel-1A ja CryoSat, ovat tärkeitä työkaluja, koska voimme tarkkailla niillä järjestelmällisesti jäätiköitä ja jääalueita. Näin voimme myös ymmärtää paremmin näiden kaukaisten napa-alueiden toimintaa.”

Clusterit kylki kyljessä

Cluster on englanninkielisen nimensä mukaisesti neljän pienen satelliitin parvi, jonka Euroopan avaruusjärjestö laukaisi vuonna 2000 tutkimaan Maan magnetosfääriä. 

Ne ovat siis mitanneet ja tunnustelleet liki 15 vuoden ajan Maata avaruudessa Auringon hiukkassäteilyltä suojaavaa magneettista kuplaa ja keränneet samalla paljon kiinnostavaa tietoa niin lähiavarudestamme kuin myös siitä, miten Aurinko vaikuttaa elämäämme täällä maapallolla.

Alun perin Clusterien toivottiin toimivan vain kahden vuoden ajan, mutta koska nelikko on toiminut erinomaisesti, on niiden lentoa pidennetty koko ajan. Ensin vuoteen 2005, sitten vuoteen 2009, sitten vuoteen 2012 ja nyt rahoitus on turvattu vuoden 2016 loppuun saakka. Vaikka satelliitit toimisivat hyvin, koituu kustannuksia lennonjohdosta, yhteydenpidosta sekä tieteellisten mittaustietojen keräämisestä, jakamisesta ja arkistoinnista. Mutta nämä kustannukset ovat varsin pieniä verrattuna siihen, kuinka kiinnostavia tietoja satelliiteilla saadaan.

Nyt, kun Clusterien toiminta ja käyttäytyminen tunnetaan hyvin, ja ne ovat toimineet jo hyvin pitkään, uskalletaan niillä tehdä myös temppuja, joihin ei aiemmin ole rohjettu.

Normaalisti neljä identtistä satelliittia ovat olleet hyvin soikeilla kiertoradoillaan Maan ympärillä toisistaan 600 - 20 000 kilometrin etäisyydellä toisistaan, mutta nyt tammikuussa satelliitit numero 3 ja 4 (nimiltään Samba ja Tango) ohjattiin vain kuuden kilometrin päähän toisistaan. Avaruuden mittakaavassa tämä on hyvin lähekkäin.

Tempun tarkoituksena on mitata paremmin Maan edessä olevan shokkirintaman aivan ulointa osaa, missä Auringosta virtaavien hiukkasten vuo, aurinkotuuli, alkaa hidastua ja kääntyä kohti maapalloa.

“Tieteellinen päämäärämme on saada satelliitit vain muutaman kilometrin päähän toisistaan, jotta voimme tehdä mittauksia hyvin pienessä mittakaavassa”, kertoo Detlef Sieg, Euroopan avaruusjärjestön avaruusoperaatiokeskuksessa ESOC:issa, Darmstadtissa, työskentelevä lentodynamiikka-asiantuntija.

Kun esimerkiksi toinen satelliiteista on jo rintaman ulkopuolella vapaassa aurinkotuulessa ja toinen on edelleen rintaman alueella, voidaan rintaman uloimman osan sijainti määrittää hyvin tarkasti. Tiedämme jo, että sijainti muuttuu koko ajan Auringon aktiivisuuden mukaan, mutta mittauksilla saadaan tietoa rintaman rakenteesta sekä toivottavasti myös siitä, miten rintama elää.

Satelliittien saaminen lähituntumaan vaati tarkkaa etukäteissuunnittelua ja laskemista, sekä rakettimoottorien polttoja siten, että kaksi satelliittia saatiin käytännössä samalle kiertoradalle vain hieman peräkkäin. Näin ne eivät törmää toisiinsa, vaikka ovatkin lähekkäin.

Koska satelliitit eivät ole yhteydessä toisiinsa ja koska niiden sijaintia avaruudessa ei tiedetä kuin parin sadan metrin tarkkuudella, niiden ratamuutokset täytyy tehdä huolella.

“Jokaisella kierroksellaan Maan ympärillä ne ovat kaksi kertaa vain noin kolmen sekunnin lentoajan päässä toisistaan. Juuri tuolloin ne ovat rinnakkain ja toinen satelliitti ohittaa toisen.”

Samba ja Tango saatiin ohjattua onnistuneesti turvallisen lähelle toisiaan 7. tammikuuta ja ne pysyvät näillä paikoillaan ainakin maaliskuun puoliväliin saakka. Kaksi muuta saatelliittia (Rumba ja Salsa) ovat noin 5000 kilometrin päässä ja tekevät siellä omia mittauksiaan.

“Joka kerta kun muutamme muodostelmaamme, pitää sitä suunnitella hyvin”, selittää Clusterin operaatiojohtaja Bruno Sousa.

“Se teettää työtä ja vaatii koordinaatiota niin täällä Darmstadtissa kuin myös tutkimuslaitteiden ohjauskeskuksessa Iso-Britanniassa sekä jokaisen tutkimuslaitteen tutkijaryhmässä.”

“Me myös koitamme koko ajan säästää satelliiteissa olevaa polttoainetta. Samalla varmistamme sen, että törmäyksen riski on mahdollisimman pieni, mutta tämä tulee olennaiseksi asiaksi vasta kun satelliittien välinen etäisyys on vain 1-2 kilometriä.”

Se, että kaksi satelliittia on hyvin lähellä toisiaan, tuo mukanaan myös muutoksia yhteydenpidossa. 

Satelliitit ovat nyt niin lähellä toisiaan, että ne osuvat maa-aseman antennin näkökenttään samanaikaisesti. Siksi satelliittien täytyy käyttää eri aallonpituutta radioliikenteessään. Käytännössä kuitenkin vain yhteen satelliittiin ollaan yhteydessä kerrallaan.

Avaruustekniikka pelastaa sarvikuonoja

Vuosi 2014 ei ollut erityisen hyvä sarvikuonoille. Virallisten lukujen mukaan laiton metsästys kaatoi viime vuonna vieläkin enemmän sarvikuonoja kuin vuonna 2013, jolloin 1004 eläintä tapettiin.

Kolme opiskelijaa Iso-Britanniasta, Cranfieldin yliopistosta keksi ajatuksen käyttää avaruuskaukoputkien kuvantamistekniikaa hyväksi metsästäjien paljastamissa. 

Satelliittien sijaan uudenlaiset kameralaitteet asennettaisiin mehittämättömiin lentokoneisiin, jotka voisivat partioida riistanvartijoiden kanssa alueilla, missä sarvikuonoja metsästetään salaa.

“Ehdotuksemme voisi olla avuksi paitsi villieläinten suojelussa, niin myös etsintä- ja pelastustoimissa”, toteaa Idriss Sisaid. 

Hän sekä opiskelijatoverinsa Enrique Garcia Bourne ja Edward Anastassacos voittivat ideallaan vuoden 2014 Space Solutions University (S2UN) -kilpailun, jonka järjestäjänä toimii ESAn teknologiansiirtotoimisto.

Keksintö käyttää hyväkseen ESAn patentoimaa tekniikkaa, joka kehitettiin korjaamaan optiikan kuvaisvirheitä. Sen avulla esimerkiksi yksinkertaisten linssien muodostama hieman pallomainen kuva voidaan lukea tasomaissella kuvakennolla ja korjata oikeaksi. Tämä auttaa tekemään kuvista teräviä ja tarkkoja ilman monimutkaista optiikkaa korjaavaa laitteistoa.

“Kyseessä oleva ESAn patentti numero 561 auttaa meitä tuottamaan korkealaatuisia, vääristymättömiä laajakulmakuvia”, selittää Enrique ja jatkaa: “Kun tällainen laitteisto asennetaan miehittämättömään lentolaitteeseen, voimme kattaa suuremman alueen ja tehdä sen tarkemmin kuin olisi mahdollista perinteisillä kameroilla ja lentolaitteilla”.

Keksintö tekee havainnoinnista paljon aiempaa edullisempaa, ja näin voidaan kartoittaa nopeasti laajoja alueita. Siten metsänvartijat voisivat paikantaa helposti missä salametsästäjät ovat vaanimassa esimerkiksi sarvikuonoja tai elefantteja.

Havainnonteon edullisuus on tärkeää salametsästäjiä etsiville eläinsuojelujärjestöille ja pienimäärärahaisille metsänvartijoille. Toimiva valvonta vaatii jatkuvaa havainnontekoa sekä laajojen alueiden seurantaa, missä lentolaitteet kameroineen voisivat olla suuri apu.

Hätätilanteissa jokainen sekunti on kallis. Siksi nopeasti ilmaan saatavat ja tehokkaasti laajalta alueelta kuvia keräävät lentolaitteet voivat olla suureksi avuksi myös pelastusjoukoille. Heillä voisi olla näin ajantasaista tietoa heti käytettävissään.

Opiskelijat pohtivat parhaillaan tapoja kehittää ajatustaan eteenpäin ja muuttaa se toimivaksi liiketoiminnaksi – mahdollisesti jonkun ESAn yrityshautomon kanssa.

“Toivomme, että ideamme saa siivet mahdollisimman pian!”

Otsikkokuvassa on eläimiä Virungan kansallispuistossa Kongossa (Kuva: ESA)

Ariane 35 vuotta

Eurooppalainen kantoraketti Ariane on jo 35 vuotta vanha. Kun sen ensimmäinen lento nousi ilmaan jouluaattona vuonna 1979 ja sujui ilman ongelmia, pääsi monilta helpotuksen huokaus: viimeinkin se onnistui!

Arianen edeltäjän, umpikujaan päättyneen yhteiseurooppalaisen Europa-raketin tie oli kivinen ja mutkainen. Sitä kehittänyt European Launcher Development Organisation ELDO (Eurooppalainen kantorakettikehitysorganisaatio) ei saanut rakettiaan toimimaan, mutta se loi pohjan eurooppalaiselle yhteistyölle ja oli toinen Euroopan avaruusjärjestön edeltäjäorganisaatioista. Sen kokemukset auttoivat myös Arianen nousemaan siivilleen ja kehittämään ainutlaatuisen tähän saakka kestäneen yhteistyökuvion kansallisten, kansainvälisten ja paikallisten avaruusalalla toimivien yhtiöiden ja organisaatioiden välille.

Ajatus omasta eurooppalaisesta satelliittilaukaisijasta virisi heti avaruusajan alussa, kun Iso-Britannia ja Ranska olivat kehittämässä omia rakettejaan ja huomasivat sen olevan kovin kallista. Oli selvää, että etenkin siviilikäyttöön tarkoitetuissa raketeissa yhteistyö oli paras vaihtoehto, ja tämä ajatus johti vuonna 1964 kuuden maan yhteistyöjärjestö ELDOn perustamiseen. Sen tehtävänä oli kehittää Europa-nimimen kantoraketti, joka koostuisi brittiläisestä Blue Streak -raketista otetusta ensimmäisestä vaiheesta, ranskalaisesta Coraliesta toisena vaiheena ja kolmantena olevasta saksalaistekoisesta Astris-vaiheesta.

Gaia taivaalla ja taskussasi

Vuosi sitten avaruuteen laukaistu ESAn Gaia-teleskoopi on laite, joka kartoittaa taivasta huiman tarkasti. Tarkoituksena on muun muassa koota Linnunradasta ainutlaatuinen kolmiulotteinen kartta, mutta lisäksi Gaia havaitsee paljon muuta, kuten muita tähtiä kiertäviä planeettoja , ruskeita kääpiöitä, oman galaksimme ulkopuolella olevia kohteita sekä lähellä, aurinkokunnassa olevia pienkappaleita.

Gaian työtä ja sen havaintomaailmaa voi seurata kätevästi älypuhelimille tehdyllä sovelluksella. Barcelonan yliopiston tekemä sovellusohjelma näyttää paitsi kauniita kuvia ja interaktiivisia diagrammeja, niin myös kertoo Gaiasta, sen matkasta havaintopaikalleen ja siitä miten sen tekee työtään.

Sovellus kertoo myös ajantasaista tietoa siitä mitä Gaia on tekemässä ja kuinka paljon tietoa se on kerännyt. Myös kaikki uudet löydöt tulevat näkyviin puhelimeesi.

Sovellus katsoo lisäksi menneeseen: se kertoo Hipparcos-satelliitista, Gaian edeltäjästä, joka keräsi havaintoja 120 000 tähdestä ja muusta taivaalla olevasta kohteesta. Näistä on koottu suuri, tähtitieteilijöiden aktiivisesti käyttämä taivaan kartasto. Gaian havainnoista tullaan tekemään uusi, moninkertaisesti parempi ja laajempi kartasto, jonka ensimmäinen osa on tarkoitus julkistaa kesällä 2016.

Gaia havaitsee arvion mukaan viisi vuotta kestämään suunnitellun havaintorupeamansa aikana noin miljardia kohdetta – tämä vastaa noin petatavua tietoa (miljoona gigatavua). Tiedot käy läpi Gaian eri maissa ja eri tutkimuslaitoksissa oleva tietojenkäsittely ja -analyysiyhteistö, johon kuuluu myös Helsingin yliopiston tähtitieteilijäryhmä. Suomalaisten vastuualueena ovat havainnoista löytyvät aurinkokunnan pienkappaleet, eli uudet asteroidit ja komeetat.

Toistaiseksi ilmainen Gaia-app on saatavissa vain iOS- ja Android-käyttöjärjestelmille. Lähiaikoina sovellukseen ollaan vielä lisäämässä materiaalia. Sovelluksen tekemisen rahoittivat yhdessä Espanjan tieteellistekninen säätiö sekä Espanjan talous- ja kilpailukykyministeriö. Niinpä englannin lisäksi sovelluksen kielet ovat espanja ja katalaani.

Gaia-app on ladattavissa iTunesista ja Google Playsta.

Jäätä ja hajavaloa

Gaia laukaistiin avaruuteen tasan vuosi sitten, 19. joulukuuta 2013, ja se aloitti tieteellisen työnsä 25. heinäkuuta, eli hieman myöhemmin kuin oli tarkoitus. Syynä viivästymiseen oli satelliitin sisällä ollut vesihöyry; normaalisti kaikissa avaruuslaitteissa on sisällä ilmaa, joka laukaisun aikana ja avaruudessa pihisee siitä ulos tätä varten tehtyjä tiehyeitä pitkin. Tähtitieteellisissä havaintolaitteissa, joissa on herkkää optiikkaa, tähän on kiinnitetty erityistä huomiota, koska ilmassa oleva vesihöyry tiivistyy jääksi muun muassa peileihin. Siksi Gaiankin peileissä on sähkövastukset, joilla niitä voidaan lämmittää ja siten jäästä voidaan päästä vähitellen eroon. 

Gaiassa vesihöyryä oli jostain syystä enemmän kuin oletettiin, joten vesihöyryn härmistyminen jääksi peilien päälle oli ongelma. Tämä saatiin hallintaan ajan myötä ja erityisillä kikoilla, joilla satelliitin sisälle jäänyttä ylimääräistä ilmaa puolipakotettiin ulos avaruuteen.

Lisäksi Gaialla oli – ja on edelleen – toinen ongelma: sen optiikkaan pääsee ylimääräistä valoa. Valoa ei tule paljon, ja sen määrä vaihtelee Gaian asennosta ja Auringon suunnasta riippuen. 

Hajavalo ei haittaa havaintojen määrää, mutta vaikuttaa sen tekemien havaintojen laatuun. Kirkkaiden kohteiden tutkimista hajavalo ei haittaa paljoakaan, mutta himmeämpien tähtien kohdalla ero on merkittävä. Eniten tästä kärsivät spektrometriset havainnot, joiden avulla määritetään tähtien liikkumisnopeutta. Mikäli Gaia pystyy jatkamaan havaintojaan suunniteltua pitempään, saadaan silloin enemmän havaintoja erilaisissa hajavalotilanteissa, ja siten tulokset ovat parempia.

Joka tapauksessa Gaian mittaukset ovat nytkin paljon aiempia parempia, joten vaikka Gaia-lentoon osallistuvat tähtitieteilijät ovat hieman pettyneitä, saavat he käsiinsä päivittäin ainutlaatuista havaintomateriaalia.